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Chapter 1

Introduction

In this thesis, we study distributed hypothesis testing under bandwidth and privacy
constraints. Hypothesis testing is concerned with making a decision on the truth or
falsehood of a statement on the basis of data that may provide evidence in support
of, or against said statement. In a distributed setting, however, such data is not
readily available in one “location”, meaning that there is no “central” access to the
complete data. This scenario commonly occurs when data is observed or stored at
multiple locations, such as hospitals, sensors or servers, from which the data cannot
be shared in full because of communication limitations. Constraints on the sharing of
data arise for various reasons, such as limited bandwidth, issues concerning privacy
or ownership of the data.

Hypothesis testing enjoys a large body of classical literature studying theoretically
optimal performance in terms of statistical power, the ability to correctly discern the
falsehood of a statement based on data. Nevertheless, in the presence of commu-
nication constraints, classical statistical methods that are designed with having full
access to the data in mind, no longer apply. Distributed methods aim to overcome
these barriers by providing mechanisms that operate within these limitations on what
can bed communicated, by e.g. preserving privacy or using only a limited amount of
bandwidth.

When it comes to the performance of these methods, the communication constraints
might severely affect the quality of the statistical inference, for instance by dimin-
ishing the statistical power that could be obtained under availability of the complete
data. For example, a technique that does not abide by privacy constraints has full
utility in the sense that it can give the classically optimal “full data” answer, whereas
maintaining full privacy may prevent the data owner from disclosing anything about
the data at all. Thus, there is often a trade-off between the quality of statistical infer-
ence and privacy. Similarly, in order to satisfy a bandwidth constraint, the data may
need to be compressed, which could result in loss of information and consequently a
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2 1. Introduction

worse performance. Another example can be found in meta-analysis, where combining
test statistics or test outcomes from independent trials or experiments is a popular
method when only the outcome of studies are published (e.g. a test outcome or p-
value). This can be seen as a communication constraint and a form of compression
also, which similarly might result in a loss of statistical power.

This introduces an important question that lies at the heart of this thesis: What
is the anticipated loss of statistical power under communication constraints? What
are the possibilities and limitations when operating under bandwidth constraints,
when assuring a certain level of privacy, or when performing meta-analysis solely on
the basis of study outcomes? The answers to these questions, i.e. knowing what is
theoretically possible and quantifying the impact of communication constraints on
performance is of great importance when conducting statistical analysis within such
contexts.

Quantifying the trade-off between privacy and statistical power means that researchers
and data analysts can make an appropriate balance between data privacy and mean-
ingful analysis. It enables a conscious choice in terms of the amount of privacy that
is sacrificed for the sake of accuracy in the data analysis and gives insight in how to
design studies such that high statistical power can be combined with adequate privacy
guarantees.

The capacity to transmit data does not match the capacity to generate or process
data in many modern applications. By knowing the bounds of what can and cannot
be achieved, systems can be designed to work as efficiently as possible within such
bandwidth constraints. It allows organizations to make informed decisions about
where and how much to invest in infrastructure. Furthermore, for inherently band-
width constraint settings such as voting systems or meta-analysis on the basis of test
outcomes, it is important to understand to what extent substantial statistical power
can be expected at all.

Starting a few decades ago, investigations into distributed settings with bandwidth
and other information constraints originated in the electrical engineering community,
under the names “decentralized decision theory / the CEO problem” e.g. [199, 20,
203, 33, 133, 197] or “inference under multiterminal compression” (see [198] for an
overview). These were largely motivated by applications where data is by construction
observed and processed locally, such as astronomy, meteorology, seismology, surveil-
lance systems, wireless communication, military radar or air traffic control systems.
With the advent of the internet and big data, interest in distributed methods with
bandwidth constraints increased further. Modern machine learning settings often con-
cern settings where inference is centralized, while training data remains distributed
over numerous clients. Examples of such “federated learning” or “edge computing”
settings are siloed data centers, such as hospitals, or networks of cellphone users, in
applications such as word prediction, face or voice recognition, Siri or Google Assis-
tant, driverless cars or even earthquake prediction [142, 130, 114, 31, 160, 63]. In
such settings, bandwidth often forms a limited/costly resource, or an outright bottle-
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neck [131].

Similarly, with advances in electronic record keeping, privacy has become a more
and more pressing issue in the modern era. In various scientific fields, there is an
increased awareness of privacy issues, for example in the medical sciences [135] or
social sciences [162]. In the internet era, also societal awareness towards privacy issues
has been heightened, paralleling the rise of consumer engagement with tech industry
products [66], including many of the federated learning applications mentioned in the
previous paragraph.

Methods that preserve privacy have been around in the statistics community for some
time, starting in the 1980s [80, 81]. The current leading formal privacy framework
is that of differential privacy, as introduced in [82]. Differential privacy is a mathe-
matical guarantee, describing whether results or data sets can be considered “privacy
preserving” and hence can be openly published. Whilst many other privacy frame-
works exist, this notion of privacy holds a prominent position both theoretically and
practically, finding application within industry giants like Google [93], Microsoft [74],
Apple [25], as well as governmental entities such as the US Census Bureau [175].

Rigorous study of performance under bandwidth constraints has been mostly con-
ducted for estimation problems. Bandwidth constraints have been studied for the
many-normal-means and parametric models in e.g. [229, 77, 180, 39, 219, 113, 46, 45],
as well as nonparametric models, including Gaussian white noise [230], nonparamet-
ric regression [187], density estimation [30], general, abstract settings [191] and online
learning [207]. Distributed adaptive estimation methods under bandwidth constraints,
where adaptation occurs to the unknown regularity of the functional parameter of in-
terest, were derived in [187, 188, 47].

For distributed testing under bandwidth constraints, much less is known. In [6], the
authors consider a setting in which each machine obtains a single observation from a
distribution on a finite sample space and derive lower bounds for testing uniformity
of this distribution. Similar distributed uniformity testing is considered in [7], where
matching upper bounds are exhibited for this setting. [12] derives bounds that are
optimal for the Gaussian setting in case of 1-bit bandwidth constraints for a single
observation of the many-normal-means model.

The literature on the theoretical properties of differential privacy can be mostly di-
vided into those studying local differential privacy or central differential privacy. In
local differential privacy, the privacy protection is applied at the level of individual
data entries or observations. This is a stringent form of differential privacy because
each “item” of data is independently given privacy protection. In the other extreme,
central differential privacy, only the inference output needs to satisfy the differential
privacy constraint, meaning that if the output is a test, only the final decision needs
to satisfy a differential privacy constraint.

Distributed estimation under local differential privacy has been studied for the many-
normal-means model, discrete distributions and parametric models in [78, 79, 5, 223],
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and density estimation [176, 134, 43]. Testing under local differential privacy has
been studied for discrete distributions in [103, 181, 3, 4, 34, 9, 15] and nonparametric
densities in [136]. In [44], the authors consider estimation of a quadratic functional
under local differential privacy constraints, which has connections to goodness-of-fit
testing. Estimation in the central setting was investigated in [127, 48, 50]. Private
testing in the central setting, where all data is available on a single machine, has been
studied by [2, 54, 157] for discrete distributions and the many-normal means model.

In-between local differential privacy and central differential privacy, there are general
distributed settings. Here, privacy is applied at a level ‘sample’ level (sometimes called
‘user’ level), where for example different entities, such as hospitals, are concerned
about sharing their data with other entities due to privacy concerns for their patients.
In such settings, differential privacy needs to apply at the level of the local sample,
e.g. the patient pool of each hospital. Investigations into this more general setting
have been much more limited, with only estimation being considered in [147, 18],
which study estimation for discrete distributions and [141, 158] which study mean
estimation.

Contrary to some literature that defines “communication constraints” solely as band-
width constraints, we we broaden the term to include both bandwidth and privacy
constraints. This use of the terminology is appropriate when considering that both
types of constraints, both limit information sharing, albeit in different ways. Further-
more, both types of communication constraints will be studied using similar mathe-
matical techniques.

This brings us to specifying the aim of this thesis.

1.0.1 The aim of the thesis

The aim of this thesis is to mathematically characterize and quantify the impact of
bandwidth and differential privacy communication constraints in distributed hypoth-
esis testing. That is to say, we wish to gain insight into how the statistical problem
of testing gets more difficult depending on the severity of the communication con-
straint. The statistical task this thesis centers around is that of hypothesis testing,
where the type of hypothesis test we shall consider will be that of “signal detection”
or “goodness-of-fit” testing, where we wish to decide between the null hypothesis that
the data is generated by a particular specified “null” probability distribution, ver-
sus the alternative hypothesis that the data is generated by some other probability
distribution belonging to a family of alternatives.

The theory shall be derived in an abstract setting in which we have m locations (e.g.
hospitals, sensors, servers, etc.) which we shall refer to as machines. Each of the
j “ 1, . . . ,m machines communicates a transcript Y pjq on the basis of a local inde-

pendent sample of i “ 1, . . . , n data points X
pjq

i drawn from an unknown distribution.
Each transcript Y pjq has to satisfy a certain communication constraint. In case of a
bandwidth constraint, the transcript Y pjq may contain at most b-bits of information
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(details are given in Section 1.2.1). In case of privacy constraint, the transcript Y pjq

must satisfy a differential privacy constraint governed by two parameters ϵ and δ,
where smaller values for ϵ and δ give stronger privacy guarantees (we defer the details
to Section 1.2.2).

In modern applications, it is common that the number of data samples is small com-
pared to the dimension of statistical model, such as in functional data or large his-
tograms. For some settings, the dimensionality is a known, finite number, say d P N.
For nonparametric models, data is infinite dimensional and appropriate statistical
techniques in such cases require adaptation. In such adaptive settings, the certain hy-
perparameters such as the “effective dimension” or “regularity” are unknown, and in
order achieve optimal performance, the statistical procedure should be able to adapt
to the unknown hyperparameter in a data driven way.

The theory in this thesis aims to capture the difficulty of the testing problem in terms
of the characteristics of the underlying model and statistical setting. That is to say,
to capture the difficulty as a function of b in the bandwidth constraint setting and ϵ
and δ in the differential privacy constraint setting, as well as m, n and d (or in terms
of the regularity hyperparameter “s” if the model is nonparametric).

In order to effectively do so, we restrict ourselves to certain canonical statistical mod-
els. The main focus is the d-dimensional many-normal-means model, which offers the
benefit of tractable analysis whilst also capturing the principle phenomena of testing
under communication constraints. As a canonical nonparametric setting, we shall con-
sider goodness-of-fit testing in the signal-in-white-noise model, where we investigate
the case where the regularity of an underlying signal is unknown. Here, goodness-of-
fit testing is to be understood in the sense of [123], which bares a close relationship
with “classical” nonparametric goodness-of-fit testing in the sense of [23, 182, 67, 211]
(see e.g. Section 1.4 in [123] and the introduction to Chapter 5).

These models typically serve as benchmark models for many other models in the
statistical literature, as it has been a long-standing and consistent finding that models
that describe seemingly very different data and dynamics, can still be subject to very
similar phenomena, such as the asymptotic minimax risk coinciding as the number of
samples grows. That this holds in the distributed communication constraint setting
as well finds mathematical substantiation in Chapter 6. Leveraging existing results
on distance between statistical models, it is shown that the detection boundary for
the Gaussian model occurs in certain other models, such as for discrete distributions
but also more complicated statistical models as well.

Lastly, throughout the thesis, we contrast the results in the thesis for testing with
known results for estimation under communication constraints. There are many con-
nections between estimation and testing. However, classically the high-dimensional
testing problem is fundamentally different from estimation. We uncover even more
fundamental differences between estimation and testing which occur under the pres-
ence of communication constraints.
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1.0.2 On the structure of the thesis

This section provides an overview of the layout of the thesis and describes how the
progression of ideas is structured.

The introduction continues with formally outlining the problem of hypothesis test-
ing under communication constraints. Here, some pages are spent outlining and
motivating the minimax paradigm for goodness-of-fit hypothesis testing. Then, the
distributed setting is formally introduced, where we formally specify what the band-
width constraints and privacy constraints that will be considered in the thesis are,
and give a motivation for them.

Chapters 2 and 3 together establish the key optimality results which lay the foundation
for the concepts and results in the subsequent chapters. Chapter 2 establishes the
fundamental boundaries on what is possible performance wise within the statistical
problem of signal detection in the Gaussian model. It provides insights into what
levels of performance under communication constraints are theoretically unattainable,
with an emphasis on the techniques that are required to show this. On the other
hand, Chapter 3 presents various methods that successfully achieve the performance
boundary outlined in Chapter 2, demonstrating approaches and techniques that are
optimal in terms of the bounds laid out in Chapter 2. These two chapters can be read
in any order, but together form the theoretical basis for much of the later chapters.

Chapter 4 establishes a link between the bandwidth constrained setting and meta-
analysis, from which optimality results for meta-analysis are obtained. Chapter 5
concerns nonparametric goodness-of-fit testing, in which the dimension of the model
is infinite and the quality of inference is dependent on an unknown hyperparame-
ter which requires so called ‘adaptive methods’ in order to attain optimal inference.
Chapters 4 and 5 can be read independently of each other.

The final chapter, Chapter 6, is dedicated to extending the results from the first four
chapters to other statistical models using Le Cam theory. It is perhaps best saved for
last as this chapter uses results from Chapters 2, 3 and 5, unless one wants a sneak
peek into the broader applicability of the results beyond the Gaussian models of the
earlier chapters.

In each chapter, proofs are given for results whenever the result is key, the technique
novel, or when the proof is short and (perhaps) insightful. Some proofs are moved to
the appendix, of which each chapter has its own. These proofs are typically either of
a (purely) technical nature or concern well known results and therefore only included
for completeness.

Unless indicated otherwise, all results in this thesis are original in the sense that they
are based on original proofs or original combinations of existing results by the author
and collaborators. They are based on joint works [193, 195] with Botond Szabó and
Harry van Zanten,[194] with the aforementioned authors and Aad van der Vaart, and
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the works [52, 51] with T. Tony Cai and Abhinav Chakraborty. The final chapter is
based [215], which benefited from comprehensive proofreading by Aad van der Vaart.

1.1 Statistical hypothesis testing: formal prelimi-
naries

“A good technical writer, trying not to be obvious about it, says everything
twice; formally and informally. Or maybe three times.” -Donald E. Knuth

In this thesis, we shall study hypothesis testing through the lens of statistical deci-
sion theory as developed by [159, 216]. Statistical decision theory is concerned with
decision-making under uncertainty, where the decision is to be made on the basis of
observed data. For a more general introduction see e.g. [32]. In what follows, let
the random variable X, defined on some measurable space pX ,X q, denote the ob-
served data. We shall consider a family of possible probability distributions of the
data, P “ tPf : X Ñ r0, 1s | f P Fu, which we refer to as the statistical model. The
indexing set F shall be called the parameter space.

The statistician is concerned with designing a rule of how to make the decision based
on the data. In order to assess the quality of the decision rule, we shall be concerned
with the distribution of outcomes from the decision rule under the distributions Pf P P
as if Pf was the true distribution truly generating the data.

A hypothesis test is a particular kind of statistical decision problem, where the statis-
tician needs to decide whether to reject a statement called the null hypothesis, which is
a statement about the distribution of the data. We shall be concerned with goodness-
of-fit testing for a simple null hypothesis, where the null hypothesis is a statement of
the form: “X follows the distribution Pf0”, where f0 P F is a fixed element. Such
a null hypothesis could represent the scenario where a disease or defect is absent, or
the case where a treatment has no effect.

The opposing statement of the null hypothesis is called the alternative hypothesis,
which states that data comes from some other distribution Pf , belonging to a class
of alternative distributions H1 Ă PztPf0u. The alternative hypothesis is sometimes
what one hopes or might expect to establish, for example that a treatment has an
effect of a certain magnitude or the presence of a signal. When H1 consists of more
than one element, it is called a composite alternative hypothesis.

This type of goodness-of-fit testing is what we shall be concerned with in this thesis.
It corresponds to situations in which one wishes to assess how well one particular “ex-
planation” of the data fares against a class of alternative explanations. For example,
in linear regression, one might want to test whether a group of explanatory variables
with corresponding vector of coefficients f have an effect on outcome variable, which
could be expressed as testing the null hypothesis that f “ 0 versus the alternative
hypothesis of f ‰ 0. Or, one might want to test whether the data is distributed
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according to some particular density, H0 : f “ f0, versus the alternative hypothesis
that f belongs some specified (nonparametric) class of densities. For a more general
discussion of hypothesis testing problems, we refer the reader to [139, 123].

When testing a null hypothesis, making the incorrect decision comes in two flavors.
In one case, the statistician could decide to reject the null hypothesis whilst it is true:
X does in fact follow the distribution Pf0 . This mistake; of incorrectly rejecting the
null hypothesis, shall be referred to as a Type I error. The other kind of mistake, is
to not reject the null hypothesis, even though it is false. This shall be referred to as
a Type II error.

A decision rule deciding between the two hypotheses shall be referred to as a test.
Formally, a test T is a random variable, possibly depending on the data, taking
values in a space of cardinality two, e.g. tdo not reject,rejectu. Given a test
of a null hypothesis “X follows the distribution Pf0”, the Type I error probability of
T or the level of T is Pf0pT “ rejectq. Here, we use Pf to denote the probability
distribution governing both T and X, where X is marginally distributed according to
Pf . The probability of making the correct decision given a test T and Pf P H1, i.e.
Pf pT “ rejectq, is called the power of the test T against Pf . Similarly, the Type II
error probability of the test T under Pf is Pf pT “ do not rejectq. To assess the
power or probability of making a mistake of the second kind against the alternative
hypothesis as a whole, one needs to specify which “alternative” distribution Pf ‰ Pf0

is under consideration, since Pf pT “ do not rejectq might vary across different
Pf P H1. Given the class H1 and a test T , the worst-case Type II error probability is

sup
Pf PH1

Pf pT “ do not rejectq.

We shall concern ourselves with studying how well an alternative hypothesis can be
distinguished from the null hypothesis in terms of achieving “minimal” worst-case
Type II error probability with tests that also have a “minimal” Type I error prob-
ability. While this approach may appear cautious, doing so provides assurances for
differentiating between the null hypothesis and the entire set of alternative hypothe-
ses, without being tied to a specific distribution within the alternative class. This
statistically guarantees validity of the procedure, irrespective of the a priori unknown
truth.

Given a class of alternatives, it is natural to ask what is the best possible testing
performance, in terms of worst-case Type II error probability. Given a level α P p0, 1q,
we quantify the best possible performance by the minimax Type II error probability
for tests of level α, which we define as

βPpα,H0, H1q “ inf
T

sup
Pf PH1

Pf pT “ do not rejectq,

where the infimum is over all tests of level at most α.

The choice of the class of alternativesH1 is important to the statistical analysis. If one
takes “too small” of a class, it might mean that it does not include, or is in some sense
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“too far” from distributions which in reality could explain the data. When testing a
theory, it is desirable to rule out alternatives that are “close to the theory” or may
produce behavior that “looks like the theory” but that are in fact not the theory
at all. On the other hand, if one chooses “too large” of a class for the alternative
hypothesis, it might not be distinguishable from the null hypothesis at all, which in
turn leads to unduly conservative expectations regarding the optimal performance of
a test. This brings us to the concept of minimax separation between the hypotheses.

In what follows, consider a collection of alternative hypotheses Hρ indexed ρ ą 0, such
that Hρ1 Ă Hρ for ρ ď ρ1. We will call ρ the separation between H0 and the alternative
hypothesis (Hρ). The map ρ ÞÑ βPpα,H0, Hρq is a decreasing function, meaning that
the testing problem increases in difficulty as ρ decreases. Now, let us consider a
collection of models tPν : ν P Iu, where each model Pν has a corresponding null
hypothesis H0 ” H0;ν and alternative hypotheses, Hρ ” Hρ;ν , ρ ą 0. The minimax
separation at α, β P p0, 1q is given by

ρ˚
ν,α,β :“ inf tρ ą 0 : βPν pα,H0, Hρq ď βu , ν P I.

The minimax separation effectively captures what is the smallest degree of separation
at which the null hypothesis can be distinguished from the alternative hypothesis,
as the alternative hypothesis “grows closer” to H0 as ρ decreases. The index ν can
be related to certain features of the model, such as the number of observations, the
dimension of the data or other characteristics corresponding to the model Pν . This
is exemplified at the end of the section, where we present the many-normal-means
model. In this model, the relevant characteristics are the dimension of the data d and
the number of observations n. The minimax separation for the many-normal-means
model as a function of d and n tells us how the statistical problem depends on these
model characteristics. For instance, it could tell us what the gain in terms of power is
when we obtain additional observations, or how much more complicated the problem
becomes as the dimension grows.

Often, the minimax separation is characterized by giving upper and lower bounds on
it, which we shall express here as a function of ν. This provides a coarser lens, but in
somewhat complex statistical models, such upper and lower bounds on the minimax
separation are the best that one can hope for. We shall call a nonnegative function
ν ÞÑ ρν,α,β an upper bound for the minimax separation rate whenever ρ˚

ν,α,β À ρν,α,β .
It is a lower bound for the minimax separation rate if ρν,α,β À ρ˚

ν,α,β . It is ‘the’
minimax separation rate whenever ρ˚

ν,α,β — ρν,α,β . In slight abuse of terminology,
we shall sometimes simply refer to the minimax testing rate, or the minimax rate,
whenever the context should be clear. Grasping the minimax rate offers insights
into the dynamics of a statistical problem as its attributes change. The minimax
testing framework, as developed in [94, 121, 140, 118], provides a robust foundation
for addressing hypothesis testing within complex statistical contexts, such as high-
dimensional and nonparametric settings.
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In problems where data consists of multiple independent, identically distributed ob-
servations that increase as (a function of) ν, it (typically) makes sense to analyze the
testing risk of a test T ,

RPν
pHρν

, T q :“ Pf0;νpT “ rejectq ` sup
Pf;νPHρν

Pf pT “ do not rejectq

and study sequences of models Pν and ρν such that the minimax testing risk
infT RPν

pHρν
, T q tends to either zero or one. This is easier to analyze instead

of the minimax separation at different α, β P p0, 1q and yields (typically) the same
conclusion. To see this, suppose that βPν pα,H0, Hρν q ď β for all ν large enough, for
some β P p0, 1q such that α ` β ă 1. Under (typical) assumptions on the minimax
rate, any other desired level α1 and level worst-case Type II error probability β1 ď β
can be achieved by repeating a testing procedure of level α and worst-case Type II
error probability β a constant number of times (see e.g. Lemma 3.25 in the appendix
of Chapter 3 for a more precise statement).

We exemplify the minimax framework outlined above with a statistical problem that
is canonical for goodness-of-fit-testing; signal detection in the many-normal-means
model. The many-normal-means model postulates that we observe data X satisfying

X “ f `
1

?
n
Z, (1.1)

where f P Rd is the unknown signal, Z is an unobserved noise vector with a d-
dimensional standard Gaussian distribution, and 1{n is the signal-to-noise ratio. Note
that this is equivalent to observing n independent copies of a Ndpf, Idq-vector. The
corresponding statistical model Pn,d, indexed by the parameter set Rd, consists of
distributions Pf such that X is governed by (1.1) given f P Rd. Testing for the pres-
ence of a signal in the normal-means model translates to testing the null hypothesis
H0 : f “ 0 that the sequence is identically equal to 0. Rejecting this hypothesis means
declaring that there is a non-zero signal. The difficulty of distinguishing between the
two hypotheses depends on signal strength, the noise ratio n and dimension d. Given
separation ρ ą 0, one could translate this to the test of hypotheses

H0 : f “ 0 versus Hρ : }f}2 ě ρ, (1.2)

The separation ρ tells us for what signal size (by which we mean the Euclidean norm
of f) a signal can be meaningfully distinguished from 0. For this testing problem, it
is known that the minimax separation satisfies

cα,β

?
d

n
ď
`

ρ˚
n,d,α,β

˘2
ď Cα,β

?
d

n
,

where cα,β , Cα,β ą 0 are constants depending only on the tolerated Type I and Type
II errors α and β. This can be found in e.g. [29], but it also follows as a corollary to
results in this thesis. The (squared) minimax rate for this problem is consequently
given by

?
d{n.
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The quantity
?
d{n indicates how the difficulty of the statistical problem changes as

the dimension d and number of observations n change. The factor
?
d{n in this case,

indicates that the as the number of observations increases faster than the square root
of the dimension, we can guarantee detection of signals of a smaller size, since every

f P Rd with }f}22 ě Cα,β

?
d

n can be detected with probability at least β by a test of
level at most α, where Cα,β ą 0 is a constant depending only on α and β. On the

other hand, the class of signals with }f}2 ď cα,β
?
d

n cannot be distinguished from 0
with testing risk smaller than α` β, whenever cα,β ą 0 is small enough. This means
in particular that, given sequences n ” nν , d ” dν and ρ ” ρν , we cannot consistently
distinguish classes of signals f such that }f}22 ď ρ2 “ op

?
d{nq from f “ 0. The

square root of the dimension here is particularly interesting, as it implies that certain
small signals can still be detected even when the dimension is larger than the number
of observations. This is not the case for estimation in the Euclidean norm, where we
find that we cannot consistently estimate if d is of larger order than n, as we shall
discuss next.

In the canonical estimation problem in the many-normal-means model, one is con-
cerned with finding an estimate of the true parameter f when the data X is generated
by Pf . An estimator is a measurable function f̂ on the sample space1 taking values
in F “ Rd. Loosely speaking, a good estimator uses the data to produce an estimate
that is (hopefully) “close” to the true parameter f . The minimax estimation risk for
the Euclidean norm is given by

inf
f̂

sup
fPRd

Ef

›

›

›
f̂pXq ´ f

›

›

›

2

2
,

where the infimum is taken over all measurable functions f̂ : X Ñ F . It can be shown
that the above expression is bounded between cd{n and Cd{n for fixed constants
c, C ą 0 (see e.g. [204]). This means that, for sequences n ” nν , d ” dν such that
d{n converges to a constant (or diverges), no estimator is guaranteed to converge
to the true underlying parameter, even as n tends to infinity. Interestingly, even as
the estimation problem becomes easier with larger n, the dimension increasing at an
equal or faster rate prevents the estimation problem from having a consistent solution.
However, as previously discussed, for such sequences d and n, the testing problem is
solvable in the sense that signals above the

?
d{n threshold can be detected as n tends

to infinity. In particular, when
?
d{n Ñ 0 whilst d{n Á 1, consistent testing is possible,

whilst consistent estimation is not. The testing problem is easier than the estimation
problem in the sense that it is possible to distinguish between the null-hypothesis
and the alternative, even when the seperation between them is much smaller than the
possible accuracy of estimation. Thus, optimal testing requires different procedures
than those used for estimating unknown parameters.

1Or a possibly enlarged probability space allowing for f̂ to be a random measurable function of
the data.
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We shall continue the study of signal detection in the many-normal-means model in
the distributed setting under communication constraints in Chapters 2, 3 and 4. The
reason for studying this Gaussian problem, besides it being of practical importance,
is that it is simple from technical point of view yet allows for exhibition of various
principle phenomena that occur in the distributed setting. Using Le Cam’s theory of
experiments and asymptotic equivalence, Chapter 6 shows that some of the main re-
sults in the many-normal-means model translate to other, more complicated statistical
models, such as regression and density testing, both parametric and nonparametric.

1.1.1 Notation and notions

Most of the notation used in the thesis shall be introduced throughout the text itself.
Certain notions will be used so frequently that it makes sense to briefly go through
them here.

We shall frequently abuse notation when speaking about sequences, where “a sequence
ak” is used to refer both to the collection takukPN as well as individual elements of
the sequence ak, where the reader is to discern which is which based on the context.
For two positive sequences ak and bk, let ak ! bk denote that ak{bk “ op1q. For two
nonnegative functions f, g defined on the same domain D, let f À g if the inequality
fpxq ď Cgpxq holds for all x P D for some universal positive constant C. Similarly,
we write f — g if f À g and g À f hold simultaneously. Every once in a while, such
notations will be used in the thesis without providing proper function notation, for
example by saying “when mb À d”. Such a statement is then to be understood as:
“for all sequences m ” mk, b ” bk and d ” dk such that mb À d”.

We use the notations a _ b and a ^ b for the maximum and minimum, respectively,
between two real numbers a and b. For k P N, rks shall denote the set t1, . . . , ku.
Throughout, c and C denote universal positive constants which value can differ from
line to line. The Euclidean norm of a vector v P Rd is denoted by }v}2 and its i-th
coordinate by pvqi. Throughout, Id P Rdˆd denotes the identity matrix and ιd P Rd

the vector of all ones. For a subset V of a vector space and scalars γ P R, the set γV
is to be understood as tγv : v P V u. For vectors v “ pv1, . . . , vkq P V k, let v denote

their average, i.e. k´1
řk

i“1 vi. Given a matrix M P Rdˆd, the norm M ÞÑ }M} is the
spectral norm and TrpMq is its trace.

We shall define the total variation distance between two probability measures P and
Q defined on a measurable space pX ,X q as

}P ´Q}TV :“ sup
APX

|P pAq ´QpAq|. (1.3)

For two sigma algebras X ,Y , we let X b Y denote the smallest sigma algebra
containing X ˆ Y . Given measurable spaces pX ,X q and pY,Y q, a Markov kernel
K (between pX ,X q and target pY,Y q) is a map K ” Kp¨|¨q : Y ˆ X Ñ r0, 1s with
the following two properties:
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• The map x ÞÑ KpA|xq is measurable for all A P Y .

• The map A ÞÑ KpA|xq is a probability measure on Y for every x P X .

If S is a random variable on a probability space pX ,X ,Pq, we let PS denote its push-
forward measure, i.e. the measure defined by PSpBq :“ PpS´1pBqq. We shall use E
and ES as the expectation operator corresponding to P and PS . For statistical models
defined on a measurable space pX ,X q, we shall use regular capital letters such as
Pf , with f typically indicating the indexing parameter f P F . In these cases, for
a measurable function h : X Ñ R, Pf phq is to be understood as the expectation of
h, i.e.

ş

hpxqdPf pxq. Random variables X,Y, Z form a Markov chain X Ñ Y Ñ Z
whenever their joint distribution PpX,Y,Zq disintegrates as

dPpX,Y,Zq “ dPXdPY |XdPZ|Y .

In displays such as the one above this sentence, we shall use the short hands “left-
hand side” and “right-hand side” to refer to the left-hand side and right-hand side of
the relational operator (e.g. the equality sign) in the display, respectively.

Certain terminology shall be used purely to indicate the “role” of the object within
the statistical framework considered. For example, the words sample space and deci-
sion space are both to be understood “just” as measurable spaces; the terminology
indicating the role they play in the statistical decision problem. In that light, a
statistic is nothing more than a measurable map between two measurable spaces, the
measurable space of the data is called the sample space. When we are concerned with
hypothesis testing, we shall consider the decision space t0, 1u, where 0 corresponds
to do not reject and 1 with reject. A test is then simply to be understood as a
statistic taking values in t0, 1u.

We shall use the notions of σ-sub-Gaussian and σ-subExponential random variables
as defined in [210] and use stochastic-O-notation “OP ” and “oP ” as defined in [205].

1.2 Distributed inference

Consider a measurable space pX ,X q with a statistical model P “ tPf : f P Fu

defined on it. In the distributed framework, we consider j “ 1, . . . ,m machines, each
receiving data Xpjq drawn from a given distribution Pf P P. Each of the machines
communicates a transcript based on the data to a central server, which based on
the aggregated transcripts computes its solution to the decision problem at hand. In
case of a hypothesis test, we shall call the combination of the process generating the
transcripts and the test based on the transcripts a distributed testing protocol.

Definition 1. A distributed testing protocol for the model P consists of a triplet
tT, tKjumj“1, pU ,U ,PU qu, where tKjumj“1 is a collection of Markov kernelsKj : Y pjqˆ

X ˆ U Ñ r0, 1s defined on a measurable space pYpjq,Y pjqq, T :
Âm

j“1 Ypjq Ñ t0, 1u is

a measurable map and pU ,U ,PU q is probability space.
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The test T decides on the basis of the transcripts generated from the data by the
kernels tKjuj“1,...,m, which form the conditional distribution of transcripts given the
data. The transcript from kernel Kj , which takes values in Ypjq, shall be denoted
by Y pjq. The probability space pU ,U ,PU q is used to (possibly) generate a source of
randomness (independent of the data) that is shared by the machines. The distributed
protocol is said to have no access to shared randomness or to be a local randomness
protocol if PU is trivial2. In an abuse of notation, we shall often refer to the entire
triplet tT, tKjuj“1,...,m, pU ,U ,PU qu using just T .

The statistical model underlying the distributed protocol plays an (ambient) role in
the definition of a distributed protocol. In most of the thesis, the statistical model
under consideration is clear from the context, and we shall simply say “distributed
testing protocol” without stating for which underlying model. An exception to this
is Chapter 6, where multiple models are under consideration in the same context.

Given a distributed protocol and i.i.d. data from Pf we shall use Pf to denote the
joint distribution of Y “ pY p1q, . . . , Y pmqq, the data X under Pm

f and the shared

randomness U „ PU . Writing x “ pxp1q, . . . , xpmqq P Xm, let x ÞÑ KpA|x, uq denote
the Markov kernel

Âm
j“1K

jp¨|xpjq, uq (i.e. the product measure). The independence

structure of the data yields that Pm
f K “

Âm
j“1 PfK

j and the push-forward measure
of Y can be seen to disintegrate as

PY
f pAq “ Pm

f PUKpAq “ PUPm
f KpAq “

ż ż

KpA|x, uqdPm
f pxqdPU puq,

where the second equality follows from the independence of U with the data drawn
from Pf . The above disintegration of the push-forward measure of Y and the product
structure of K can be interpreted as pX,Y, T pY qq forming a Markov chain given U ,
in the sense of the diagram

Xp1q -
Y p1q|UPPq

... - ... -

Xpmq - Y pmq|U��1

T pY q. (1.4)

In Chapter 6, the above definition is generalized further to general decision problems.
This generalization is straightforward. Because it is interesting to draw parallels with
certain estimation problems throughout the thesis, we informally describe distributed
estimation problems. A distributed estimation protocol consists of a similar triplet as
a distributed testing protocol, differing only in the decision function; which we shall
call estimator and denote by f̂ :

Âm
j“1 Ypjq Ñ F . We shall consider F to be equipped

with some metric ℓ and the corresponding Borel sigma-algebra. The estimator f̂ is
required to be measurable. The estimation risk is then defined as

sup
fPF

Ef ℓpf̂ , fq.

2Meaning that U „ PU is a degenerate random variable / U is the trivial sigma-algebra.
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The next section introduces a specific kind of distributed protocol, namely those that
are bandwidth constrained.

1.2.1 Bandwidth constrained distributed protocols

“2019: Now 325 Mbps. The regression line has R2 “ .99, meaning that
Nielsen’s Law explains 99% of the variability in the data. Beyond uncanny.
One small change is that when I first wrote about this in 1998, the best-fit
growth rate for the 1984–1998 data was 53% (which I rounded to 50%),
whereas the best-fit growth rate for the larger data set of 1984–2019 is 49%
per year (which still rounds to 50%).” - Jakob Nielsen

The kind of bandwidth constraints considered in this thesis is a limitation on the
number of bits that a transcript can consist of. That is, when a distributed protocol
satisfies a bandwidth constraint, each of the machines can only communicate a limited
number of bits to the central server.

Definition 2. A distributed protocol is said to satisfy a b-bit bandwidth constraint
if its kernels tKjuj“1,...,m are defined on measurable spaces pYpjq,Y pjqq satisfying

|Ypjq| ď 2b for j “ 1, . . . ,m.

We use T
pbq

LR and T
pbq

SR to denote the classes of all local randomness and shared
randomness distributed testing protocols with communication budget b per machine,
respectively.

Such a constraint is of concern in settings where data is observed, stored and/or pro-
cessed locally and then required to be “compressed” when communicated to a central
server. Note that the bandwidth constraint as defined here does not involve any
notion of time or back-and-forth communication between the machines. In settings
where it makes sense to consider bandwidth per unit of time (such as when describing
up- and download speed), b should be interpreted as the total number of bits allowed
to be communicated over a fixed amount of time.

Historically, computational power has increased3 at a faster rate than bandwidth4. To
speed up computation, it could make sense to distribute computation across servers,
but for large data one might consequently run into bandwidth limitations as a bot-
tleneck. In such settings, it is natural to consider the bandwidth and the data to be
rather large, where the latter could be large in terms of dimensionality.

In other settings, bandwidth might be naturally scarce or costly. One could think of
cellphone networks, where the total bandwidth is to be divided across all users, or
sensors which gather data at a much higher resolution than they have the capacity to
transmit, such as low energy sensors. Very low bandwidth settings capture for example

3Through e.g. the doubling of transistors every two years by “Moore’s law” [154], which is stipu-
lated to result in a roughly 60% increase in computational power year over year.

4The roughly 50% year of year increase in bandwidth is sometimes referred to as “Nielsen’s law”.
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voting problems, where decisions are made on the basis of “yes” or “no” outcomes
only, which can be seen as a 1-bit bandwidth constraint. A classical example of such a
setting is meta-analysis on the basis of test outcomes. In fact, in Chapter 4, we shall
employ bandwidth constraint bounds to obtain rates for meta-analysis in settings
where only a study outcome in the form of a single real valued test statistic such as
a p-value is available.

1.2.2 Privacy constrained distributed protocols

“Anonymized data isn’t.” - Cynthia Dwork

The notion privacy considered in the thesis is that of differential privacy as put forward
by [85]. Differential privacy provides a mathematical framework that guarantees
preservation of privacy, in a notion akin to cryptographical guarantees [84].

What differentiates privacy from cryptographic protocols is that in the latter the
goal is to protect data by giving selective access. The goal of a differential privacy
constraint is that individuals within a dataset have their identity protected whilst (a
part or version of) the dataset is publicly accessible.

The latter goal is the same as anonymization, which aims to to protect the identity of
individuals by obfuscating certain information. Differential privacy, however, provides
much stronger framework than anonymization. Anonymization, in principle, allows
to reconstruct the identity of individuals given enough data or side information, see
e.g. [156, 83, 87]. Differential privacy on the other hand, guarantees that the identity
of individuals cannot be reconstructed with certainty, regardless of the amount of side
information available.

Formally, a differential privacy constraint on a transcript in our setting is formulated
as follows.

Definition 3. Let ϵ ě 0, δ ě 0. The transcript Y pjq generated from Kj , u P U is said
to be pϵ, δq-differentially private if

KjpA|x1, . . . , xi, . . . , xn, uq ď eϵKjpA|x1, . . . , x
1
i, . . . , xn, uq ` δ (1.5)

for all A P Y pjq, x1
i, x1, . . . , xi, . . . , xn P X , i P t1, . . . , nu.

Small values of ϵ and δ ensure that, even when the transcript Y pjq is publicly available,
the individuals within the sample (i.e. x1, . . . , xn) underlying Y

pjq are unidentifiable.
The notion of differential privacy offers a very strong privacy guarantee: even when
the entire sample is known, up to one individual, that one individual remains uniden-
tifiable.

We shall elucidate the latter statement formally: Even if an entire sample px1, . . . , xnq

is known except for the individual corresponding to the index i “ 1, deciding between
H0 : x1 “ v or H1 : x1 “ w cannot be done with a testing risk less than 1´peϵ´1q´δ.
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To see this, note that test T ” T pY pjqq of level α (i.e. KjpT “ 1|v, x2, . . . , xn, uq “ α),
has Type II error

KjpT “ 0|w, x2, . . . , xn, uq “ 1 ´KjpT “ 1|w, x2, . . . , xn, uq (1.6)

ě 1 ´ eϵKjpT “ 1|v, x2, . . . , xn, uq ´ δ “ 1 ´ eϵα ´ δ.

That is, any test with a nontrivial level, has close to trivial power when ϵ ą 0 and δ ą 0
are small. This extends to the alternative hypothesis x1 ‰ w, as the power calculation
holds uniformly over the sample space. Such a guarantee is sometimes called plausible
deniability: each individual can plausibly deny their presence or absence in a dataset,
thereby protecting their identity even if the rest of the data is known.

The sizes of ϵ and δ depend heavily on the application. Typically, ϵ À 1 is considered,
as a value of ϵ “ 3 already allows arbitrary power for tests of level 0.05. For this
thesis, we shall take ϵ ď 1 for simplicity, but minimax rate results do not change
when considering any range for which ϵ “ Op1q.

Protocols satisfying the above definition for δ “ 0 are often called “pure” differentially
private protocols, whereas for δ ą 0 the protocols are sometimes called “approxi-
mately” or “impure” differentially private protocols. In this text, we shall sometimes
write ϵ-differentially private protocols instead of pϵ, 0q-differentially private protocols,
and use DP as a shorthand for “differentially private”. The δ parameter allows for
catastrophic privacy breaches: with probability at most δ transcripts which that re-
veal the identity of individuals in the sample could be released. When δ is small, this
may still be acceptable.

Typically, δ decaying polynomially in the number of observations is deemed accept-
able, e.g. δ ! pmnq

´p
with p ą 1. Larger values of δ can permit somewhat pathological

situations. For example, δ Á 1{n permits privacy protocols that with positive prob-
ability violate the privacy of a random individual. In such a “bad-luck-lottery”, one
data point of the machine can be released with probability 1{n. This is p0, 1{nq-DP,
yet exposes a person’s information with probability 1´p1´1{nqn. Similarly, δ Á 1{m
allows for at least one machine to give up privacy of its sample with nonvanishing
probability.

We note that for the definition of differential privacy, the sigma-algebra underlying
the space of transcripts is important. The larger the sigma-algebra, the stronger
the privacy constraint. For our purposes, when deriving differentially private testing
protocols, it suffices to consider Rd equipped with the Borel sigma-algebra. The lower
bounds hold for general sigma-algebras as well, as long as the quantities considered
in the proof are appropriately measurable.

A distributed differentially private (testing) protocol is one in which the transcripts
generated satisfy (3), or more specifically, as in the following definition.

Definition 4. A distributed testing protocol tT, tKjumj“1, pU ,U ,PU qu, is said be a

distributed pϵ, δq-differentially private testing protocol if tKjuj“1,...,m satisfies (1.5)
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for all u P U .

Lastly, we note that the use of shared randomness does not affect the privacy guaran-
tee provided by the protocol, as under the current definition, the guarantee of (1.6)

is not affected if the outcome of the shared randomness is known. We use T
pϵ,δq

LR and

T
pϵ,δq

SR to denote the classes of all local- and shared randomness pϵ, δq-differentially
private distributed testing protocols, respectively.

1.3 Main results for the many-normal-means model
under bandwidth and privacy constraints

“A model is some way of reducing the actuality of the world, to something
where you can readily give a narrative for what actually occurs. Where
you can make an abstraction of what is happening and answer questions
that you care about.” - Stephen Wolfram

In this section, we describe the minimax rate for this distributed signal detection
problem under bandwidth- and differential privacy constraints. We revisit the many-
normal-means model considered in Section 1.1, now formulated in the distributed
setting. In the distributed version of the above normal-means model, the mn obser-
vations are divided over m machines. Equivalently, each local machine j P t1, . . . ,mu

observes
X

pjq

i “ f ` Z
pjq

i , (1.7)

with Z
pjq

i i.i.d. Np0, Idq for i “ 1, . . . , n, with f P Rd.

The hypotheses remain unchanged; we wish to test the null hypothesis that f “ 0
versus the alternative hypothesis that

f P Hρ :“
␣

f P Rd : }f}2 ě ρ
(

. (1.8)

The test is to be conducted on the transcripts Y “ pY p1q, . . . , Y pmqq, where each of
machine j “ 1, . . . ,m has generated its transcript Y pjq on the basis of the underlying

dataXpjq “ pX
pjq

1 , . . . , X
pjq
n q and possibly a shared source of randomness U . Following

the framework outlined in the previous section, the test is to be conducted by using
a distributed testing protocol, tT, tKju

m

j“1, pU ,U ,PU qu, where the Markov kernels

map from the underlying sample space Rnˆd.

In this section, we present the main results for this model where the distributed
protocol is either satisfying a b-bit bandwidth constraint or a pϵ, δq-differential privacy
constraint. These are spread across two results, Theorems 1.1 and 1.2. The first,
which describes the detection boundary under bandwidth constraints, is given in
Section 1.3.1. The second describes the detection boundary under pϵ, δq-differential
privacy constraints, presented in Section 1.3.2. Deriving these results is the focus of
Chapters 2 and 3.
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The phenomena occurring within the many-normal-means model extend to other
models and testing problems, such as the nonparametric signal-white-noise model
discussed in Chapter 5, the multinomial model, regression or density testing (see
Chapter 6) or to meta-analysis (Chapter 4). We give an interpretation of these phe-
nomena in this section, to provide the reader a flavor of the intricacies encountered
in distributed, communication constrained settings.

1.3.1 Detection boundary under bandwidth constraints

The following theorem captures the detection boundary corresponding to the goodness-
of-fit test of (1.8) in the many-normal-means problem under bandwidth constraints.

Recall that T
pbq

LR and T
pbq

SR , respectively denote the classes of all local randomness
and shared randomness distributed testing protocols with a communication budget
of b-bits per machine.

Theorem 1.1. Consider any sequences n ” nν , d ” dν , m ” mν and b ” bν in N.
For any sequence of nonnegative numbers ρ ” ρν such that

ρ2 —

?
d

mn

˜

c

d

b^ d

ľ?
m

¸

, (1.9)

it holds that

inf
TPT

pbq

SR

RpHMνρ, T q Ñ

#

0 for any Mν Ñ 8,

1 for any Mν Ñ 0.

Similarly, in the case of only local randomness, if

ρ2 —

?
d

mn

ˆ

d

b^ d

ľ?
m

˙

, (1.10)

we have that

inf
TPT

pbq

LR

RpHMνρ, T q Ñ

#

0 for any Mν Ñ 8,

1 for any Mν Ñ 0.

When m ” 1, we obtain the non-distributed (or unconstrained) minimax testing rate
of ρ2 “

?
d{pnmq. This makes sense, as even one bit of communication allows for

the single machine to conduct and communicate an optimal test. Furthermore, when
b Á d, enough information about the coefficients can be communicated to obtain the
non-distributed minimax rate also, for both shared- and local randomness distributed
protocols. When the communication budget is smaller than the dimension (b “ opdq),
the class of shared randomness protocols starts to exhibit strictly better performance
than the local randomness ones in scenarios as long as d “ opmbq. That is, as long
as the total communication budget mb of the system exceeds the dimension d of the
parameter, shared randomness protocols achieve a strictly better rate than the local
randomness ones. This remarkable phenomenon is further explored in Chapter 3,
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particularly in Section 3.3. This feature disappears when the dimension is larger than
the total communication budget (i.e. mb “ opdq), at which point there exists a one-
bit local randomness protocol achieving the optimal rate of ρ2 —

?
d{p

?
mnq in both

cases.

Consistent distributed testing turns out to be possible even for small values of b and
m or n, as long as

?
mn is large enough compared to

?
d. This stands in contrast to

estimation in the d-dimensional Gaussian mean model, where in the squared L2-loss
as considered in Section 2.1 is subject to a lower bound rate of ρ2 Á d2{pbmnq, as
exhibited in Theorem 2.1. Comparing the latter estimation rate with the testing rate
shows that there are multiple scenarios in which distributed estimation is not possible
consistently whereas consistent distributed testing is. What is not necessarily unique
to the distributed setting, is that estimation is more difficult in terms of dimensional
dependence. However, this phenomenon is further exacerbated in the distributed
setup under bandwidth constraints. For example, when b — 1, consistent estimation
under bandwidth constraints requiresm " d, whereas distributed testing only requires
mn2 " d.

Another stark difference with estimation is that, as long as mb “ opdq in the shared
randomness case or mb2 “ opd2q in the local randomness case, an increase in com-
munication budget does not lead to a better rate in testing. However, in estimation,
an increase in small budgets can lead to an exponential improvement in convergence
rate when the budget is very small, as found in [46].

Finally, we remark that the phenomenon of shared randomness offering improvement
in terms of error rate is also not observed in the estimation problem considered in
Section 2.1. In Chapter 3, Section 3.3.1 we go into why this is.

1.3.2 Detection boundary under differential privacy constraints

The following theorem describes the detection boundary in the many-normal-means
problem under pϵ, δq-differential privacy constraints. The goodness-of-fit test we shall
consider here is null hypothesis f “ 0 versus the alternative hypothesis

f P Hρ :“
␣

f P Rd : M ě }f}2 ě ρ
(

,

where M ą 0 is a constant that can be taken arbitrarily large. Such a restriction is

commonplace in the differential privacy landscape, see e.g. [128]. We recall that T
pϵ,δq

LR

and T
pϵ,δq

SR denote the classes of all local- and shared randomness pϵ, δq-differentially
private distributed testing protocols, respectively.

Theorem 1.2. Consider any sequences of natural numbers n ” nν , m ” mν such
that mn Ñ 8, d ” dν , ϵ ” ϵν P ppmnq´1, 1s and δ ” δν À pmndq´p for some constant
p ě 2. Let ρ ” ρν be a sequence of positive numbers such that

ρ2 —

˜

d

mn
?
nϵ2 ^ 1

?
nϵ2 ^ d

ľ

˜ ?
d

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

. (1.11)
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Then,

inf
TPT

pϵ,δq

SR

RpHMνρ, T q Ñ

#

0 for any Mν "
a

logp1{δq log3pmndq,

1 for any Mν Ñ 0.

Similarly, for

ρ2 —

˜

d
?
d

mnpnϵ2 ^ dq

ľ

˜ ?
d

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

, (1.12)

we have that

inf
TPT

pϵ,δq

LR

RpHMνρ, T q Ñ

#

0 for any Mν "
a

logp1{δq log3pmndq,

1 for any Mν Ñ 0.

The derived rate indicates that the distributed testing problem under privacy con-
straints undergoes multiple phase transitions, resulting in different regimes where ϵ
affects the detection boundary differently. Specifically, a smaller ϵ, which implies a
stronger privacy guarantee, leads to an increased detection threshold. When δ de-
creases as a polynomial of d, m and n, its impact on the detection boundary is limited
to a logarithmic factor, making its effect on the error rate minor compared to that of
ϵ.

For m “ 1, the theorem describes the optimal separation rate for the testing problem
in the central DP setting; where all data is available on a single machine. In this
case, our theorem recovers the result of [157]. When ϵ À 1{

?
n, the privacy constraint

affects the rate polynomially. In contrast, for ϵ Á 1{
?
n, the rate approximates

the classical minimax rate, up to logarithmic factors. Thus, the privacy constraint
significantly impacts the rate only when ϵ is relatively small compared to the number
of observations n whenever m “ 1. That testing is more difficult under central DP
constraints might be surprising, since in the central setting, a transcript can consist
of just a binary outcome. However, when ϵ is relatively small enough (ϵ À 1{

?
n),

the privacy constraint still forms a bottleneck. This is in contrast to the bandwidth
constraint setting, where the detection boundary is not affected by the communication
budget when m “ 1.

When n “ 1, we establish the optimal separation rate for the testing problem in the
local DP setting. Here, ϵ can be seen to always have a pronounced effect on the rate.
This makes sense, as in this case, the privacy constraint is applied at the observation
level, which is comparatively costly. The optimal rate unconstraint rate of

?
d{mn

cannot be reached for values of ϵ that align with conventional differential privacy
considerations (i.e. ϵ À 1) in this case.

In the general federated setting, with m " 1, we see that m and n come into play
with different powers in the minimax rate whenever ϵ2 À d{n. This means that if one
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distributes N “ mn observations across m machines, the task becomes more chal-
lenging as the N observations are spread over a greater number of machines, rather
than having many observations on a smaller number of machines. This phenomenon
of benefitting from large local samples is not unique to testing, as we shall see in the
estimation rates derived in Section 2.5.6. Here, it is found that the L2-risk minimax
estimation rate under pϵ, δq-differential privacy is d2{pmn2ϵ2q whenever privacy con-
straints are binding (ϵ À

a

d{n). The main difference with the estimation problem,
is that the estimation rate does not exhibit the phase transitions that are observed in
the testing problem.

The distributed testing problem under privacy constraints can be seen to be subject
to multiple phase transitions, resulting in different “regimes” where ϵ affects the
detection boundary differently. We shall interpret these regimes and phase transitions
below. In most regimes, ϵ has a polynomial impact on the detection boundary. The
impact of δ on the detection boundary is no more than a poly-logarithmic factor in
n,m and d. This is true for the entire range of δ’s that decrease faster than pnmdq´p,
with p ě 2, where the power of the poly-logarithmic factor is unaffected by the choice
of p. Whilst this means that the effect of δ on the error rate is minor compared to
that of ϵ, fully capturing the impact of δ on the error rate is an interesting future area
of research, but beyond the scope of this thesis.

When the privacy constraints are binding (ϵ À
a

d{n), the first phase transition in

the testing problem occurs whenever ϵ —
a

d{pmnq in the case of shared randomness,
ϵ — d{

?
mn in case of local randomness protocols with ϵ ď 1{

?
n or ϵ — d{p

?
mnq

in case of local randomness protocols with ϵ ě 1{
?
n, respectively. These particular

phase transition corresponds to shifting from a “high-privacy-budget”, in the sense
that ϵ is relatively large compared to d, 1{m and 1{n, to a “low-privacy-budget”.
In the high-privacy-budget regime, the relatively lenient privacy constraint enables a
distinct testing strategy from the one in the low-privacy-budget regime. Whenever
ϵ Á

a

d{n, the optimal unconstrained rate of
?
d{mn is achieved by these differentially

private methods. There are certain values of d,m, n, where some of these regimes do
not occur, for any value of ϵ ď 1. When ϵ ě 1{

?
n, the phase transitions between

the high-privacy-budget regime and low-privacy-budget regimes still occur, but at
different values of ϵ in case of local randomness protocols.

In the high-privacy-budget regime, there is an improvement in the minimax rate when
shared randomness is allowed. This highlights a phenomenon that is remarkably sim-
ilar to the bandwidth constraint setting; the delineation into high- and low-budget
regimes, where only in the high budget regime, there is benefit to having access to
shared randomness. The root cause of this advantage bears resemblance across both
types of constraint settings. In the high-privacy-budget regime, the optimal strat-
egy mirrors that of the optimal high-bandwidth approach. Specifically, this entails
transmitting transcripts that essentially allow (partial) reconstruction of the original
data at the central machine (see Chapter 3 for details). For both types of constraints,
there is benefit to the increased coordination between the machines that the shared
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randomness allows.

Another similarity between the privacy and bandwidth constraint settings is that the
shared randomness advantage disappears in the low-budget scenario. The optimal
testing strategies under both types of constraints bear a resemblance as well, where
in both cases, locally optimal tests (or their corresponding test statistics) are essen-
tially averaged, yielding a testing strategy that can essentially be viewed as a type
of “majority vote” globally, on the basis of the locally optimal tests. Besides the
testing strategies reflecting this phenomenon, the attentive reader will also find that
the strategy in the proof the lower bound does so too.

Within the low-privacy-budget regime (ϵ À
a

d{pmnq in case of shared randomness,
ϵ À d{

?
mn in case of only local randomness), the best possible rate that can be

attained is
?
d{p

?
mnq. What is striking here, is that this rate is achieved for ϵ Á

1{
?
n, whilst it does not depend on ϵ. Thus, in this regime, one should opt for

the smaller ϵ — 1{
?
n, which obtains a stronger privacy guarantee “for free”. This

phenomenon can be explained as follows. Whereas in the high-privacy-budget regime,
the strategy for attaining the corresponding minimax rate is to create synthetic data
which retains certain aspects of the underlying true data, the strategy in the low-
privacy-budget regime is to conduct testing procedures on the local data and combine
only the m outcomes of the local test statistics. When ϵ Á 1{

?
n, the “artificial noise”

needed to guarantee the privacy of the local test statistics is negligible in terms of its
effect on minimax rate. Whenever ϵ À 1{

?
n, second phase transition occurs where

this “artificial noise” that is added to the locally optimal private test is no longer
negligible. A third phase transition occurs around ϵ — 1{

?
mnd, for both shared-

and local randomness protocols. Here, a striking phenomenon occurs whenever ϵ À

1{
?
mnd: dimension ceases to be of influence in the minimax rate. Essentially, this

reveals that there is no difference between the one dimensional problem and the
multivariate problem whenever the required privacy guarantee is stringent in relation
to m,n and d.

The latter phenomenon can be explained as follows. Given the condition ϵ À 1{
?
mnd,

signals of size larger than pmn2ϵ2q´1 are in particular larger than d{n, which is the
local estimation rate. When signals can be estimated consistently locally, dimension-
ality seizes to be a bottleneck. Loosely speaking, given a (very) accurate estimate of
the mean vector f in each machine, the problem almost reduces to a univariate test-
ing problem in the sense that xf,Xpjqy can be accurately estimated locally. However,
even if xf,Xpjqy can be computed locally, it cannot be communicated without adding
substantial noise due to the stringent privacy constraint stemming from ϵ À 1{

?
mnd.

Roughly speaking, retaining privacy for the univariate test statistic xf,Xpjqy is eas-

ier than retaining privacy for a local estimator of the signal (e.g. n´1
ř

X
pjq

i ) as a
whole, which is d-dimensional. The minimax rate reflects this, as it can be seen to
be much smaller than the estimation rate whenever d is large in this regime. This
regime also exemplifies privacy folklore: retaining privacy is easier in testing than
in estimation, as the inference outcome is inherently low-dimensional. Interestingly,
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our findings show that this is not always the case (i.e. this is not observed in the
high-privacy-budget regime).

1.4 Beyond the many-normal-means model

Whilst the many-normal-means model is a canonical benchmark model for continuous
distributions on Rd, the multinomial model describes independent draws from distri-
butions on discrete spaces. Consider a sample space X with cardinality d, such that
a probability distribution q can be identified with an element of the d´1-dimensional
simplex; q : X Ñ r0, 1s and

ř

xPX qpxq “ 1.

Recently, there have been numerous applications in areas that handle large samples
of multinomial data over extensive domains (i.e. large d and n). For example, in pop-
ulation genetics [166, 196] and computer science; where it is used for e.g. information
retrieval [228, 177], speech and text and classification [126], text mining [49] and large
language models [168].

In the distributed analogue of this model, each machine j “ 1, . . . ,m observes i “

1, . . . , n i.i.d. observations X
pjq

i taking values in a discrete space X of cardinality d.
Given some candidate distribution q0 on X , a goodness-of-fit test would then be

H0 : qpxq “ q0pxq for all x P X versus H1 : }q0 ´ q}TV ě ρ.

The natural comparison to the signal detection problem as described in Section 1.3
with the null hypothesis f “ 0, is to test for uniformity, q0pxq “ 1{d for all x P

X . In Chapter 6, we shall demonstrate that, depending on the values of d and n,
the communication constraint phenomena observed in the many-normal-means model
described in the previous section extend to goodness-of-fit testing for these discrete
distributions too. In particular, we derive the minimax testing rates for the above
hypothesis under bandwidth constraints and differential privacy constraints whenever
n is large enough compared to d and m. At the time of writing, minimax rates only
having been obtained for the case of having just one draw from a discrete distribution
per machine in [9, 10, 15], so the results here contribute to the literature by deriving
the rates for the large sample regime (i.e. large n compared to d and m).

The many-normal-means model allows for extensions to nonparametric settings too.
In Chapter 5, we shall consider the infinite dimensional signal-in-white-noise model,
which serves as a canonical benchmark model for nonparametric goodness-of-fit test-
ing and has been extensively studied outside of the distributed setting, see [94, 121,
140, 184, 118]. In the distributed setting, the j “ 1, . . . ,m machines observe i.i.d.
Xpjq taking values in X Ă L2r0, 1s and subject to the stochastic differential equation

dX
pjq

t;i “ fptqdt` dW
pjq

t;i (1.13)

under Pf , with tW
pjq

¨;i : i P rns, j P rmsu i.i.d. Brownian motions and f P L2r0, 1s.
Besides the difference in the local observations, the distributed setup considered for
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this model remains exactly the same. The results derived for the alternatives Hρ in
the finite dimensional model translate to testing in the infinite dimensional model
against the alternative hypotheses

f P Hs,R
ρ :“ tf P Hs,Rr0, 1s : }f}L2 ě ρ and }f}Hs ď Ru. (1.14)

Here, Hs,R “ Hs,Rpr0, 1sq denotes the Sobolev ball of radius R in the space of s-
smooth Sobolev functions and } ¨}Hs the Sobolev norm, see Section 5.5.3 in Chapter 5
for the definition.

The problem bares a close relationship with “classical” nonparametric goodness-of-fit
testing in the sense of [23, 182, 67, 211], in which we aim to distinguish the null
hypothesis that an i.i.d. sample is generated from a cumulative distribution function
F “ F0 versus the alternative hypothesis that F ‰ F0. To briefly (and roughly) illus-

trate this relationship, consider a CDF t ÞÑ F0ptq and F ptq :“ F0ptq ` n´1{2
şt

0
fpsqds

for bounded |f | such that
ş1

0
fpsqds “ 0 and an i.i.d. sample ζ1, . . . , ζn „ F taking

values in r0, 1s. A natural statistic for this problem is the function mapping t P r0, 1s

to

?
n

˜

n´1
n
ÿ

i“1

1tζi ď tu ´ F0ptq

¸

“
?
n

˜

n´1
n
ÿ

i“1

1tζi ď tu ´ F ptq

¸

`

ż t

0

fpsqds.

The first term on the right-hand side converges weakly to an F -Brownian bridge (see
e.g. Section 19.1 in [205]). This motivates the Gaussian model described by (5.1) and
test of the hypotheses H0 : f “ 0 and alternative (5.2) as a “benchmark problem”
for nonparametric goodness-of-fit testing, with a class of alternatives of the form
F ptq :“ F0ptq ` n´1{2

şt

0
fpsqds with f P Hs,R

ρ .

The smoothness parameter s ą 0 determines the difficulty of the classical (non-
distributed, m “ 1) nonparametric testing problem as considered in e.g. [123]. Typi-
cally, the regularity of the function is not known in practice and one has to use data
driven methods to find the best testing strategies. In Chapter 5, we derive upper
and lower bounds for distributed tests adapting to unknown regularity under both
bandwidth constraints and differential privacy constraints for the signal-in-white-noise
model. The bounds are tight up to a log-log factor in the case of bandwidth constraints
and up to poly-logarithmic factors in case of differential privacy.

The results for the nonparametric signal-in-white-noise models are extended to var-
ious other nonparametric models in Chapter 6. One such extension is distributed
nonparametric regression, where each machine j “ 1, . . . ,m observes i “ 1, . . . , n
i.i.d. samples

X
pjq

i “ fpζ
pjq

i q ` Z
pjq

i ,

where Z
pjq

i are i.i.d. standard Gaussian and ζ
pjq

i are either fixed or random design

points. When ζ
pjq

i “ i{n, the model can be seen as a discretized version of (1.13).
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Lastly, we shall extend the results to nonparametric density testing. Here, each
machine j “ 1, . . . ,m observes i “ 1, . . . , n i.i.d. observations from a probability
density f on r0, 1s, say

Xpjq “ pX
pjq

1 , . . . , Xpjq
n q

i.i.d.
„ f.

The goodness-of-fit test we shall consider is over the class F of all probability densities
f P Hs,Rr0, 1s such that f Á n´1{p2s`1q, where we consider a hypothesis test of the
form

H0 : f “ f0 versus H1 : f P F , }f ´ f0}1 ě ρ,

for some fixed density f0 P F . For simplicity, we shall restrict here also test to tests
of uniformity (f0 ” 1), but with more technical work the results can be extended
to testing for general Sobolev smooth densities f0 bounded away from 0. Minimax
distributed testing rates for nonparametric density testing for the above hypothesis
have been studied in [75, 136], but only for the case of privacy constraints with a
single observation per machine. The results in Chapter 6 compliment these results
by providing minimax rates for bandwidth constraints and privacy constraints for the
distributed setting when the number of observations per machine is large.

The extensions from the many-normal-means model to these more complicated models
is one of the reasons warranting the thorough study of the many-normal-means model,
to which we now return in Chapters 2, 3 and 4.



Chapter 2

Impossibility theorems for
distributed testing

“Once you eliminate the impossible, whatever remains, no matter how
improbable, must be the truth.” – Arthur Conan Doyle

The main results in this chapter come in the form of lower bounds for the minimax
detection thresholds under bandwidth- and privacy constraints for the distributed
signal detection problem presented in the introduction. We recall that in this problem,
each local machine j P t1, . . . ,mu observes

X
pjq

i “ f ` Z
pjq

i , (2.1)

with f P Rd and Z
pjq

i „ Np0, Idq, i.i.d. for i “ 1, . . . , n. The null hypothesis constitutes
that f “ 0 versus the alternative hypothesis that

f P Hρ :“
␣

f P Rd : }f}2 ě ρ
(

. (2.2)

The first of these main results is to be found Section 2.3 in the form of Theorem 2.3,
which establishes the lower bounds for the detection threshold for both the shared-
and local randomness distributed testing protocols under bandwidth constraints. The-
orem 2.4 in Section 2.4 establishes the lower bounds for both the shared- and local
randomness distributed testing protocols under pϵ, δq-differential privacy constraints.
The lower bounds established in each of these theorems are tight (up to log-factors
in the case of Theorem 2.4), in the sense that the lower bound rates can be attained
by distributed testing protocols within their respective classes. This is established in
Chapter 3, by providing methods which attain the respective rates posed by the lower
bounds of Theorem 2.3 and Theorem 2.4. Together with the results from Chapter 3,
we obtain the minimax rates as posed by Theorems 1.1 and 1.2.

27
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We note that the aforementioned results are not asymptotic in nature as they hold
for every combination of b, n,m and d under bandwidth constraints and every n,m, d
and 0 ă ϵ ď 1 under privacy constraints, hence going beyond the classical parametric
framework. We do not present explicit constants for each of the theorems, but these
could in principle be determined through the chosen methods of proof.

However, before deriving the aforementioned lower bounds, we will first take a brief
detour to explore the use of mutual information in obtaining lower bounds for the
distributed testing problem, based on the approach of [193]. The mutual information
technique has been successful in deriving lower bounds for distributed estimation
problems, see e.g. [78, 77, 39, 188, 46, 47, 226]. It is natural to consider this successful
approach for the distributed testing problem as well.

It turns out that the mutual information technique is only partially successful in deriv-
ing the optimal minimax rates for the distributed testing problem. To understand the
limitations of the mutual information technique for the distributed testing problem,
and to fully understand the necessity of the novel approach based on a Brascamp-Lieb
type inequality of Section 2.2, we shall first explore its use in the context lower bounds
in the many-normal-means model.

In Section 2.1.1, we start by deriving a mutual information based lower bound for an
estimation problem closely aligned with the testing problem under consideration. We
then turn to the testing lower bound using mutual information in Section 2.1.2.

Not only does this approach illustrate the difference between the estimation and
testing problems, but it also serves as a warm-up exercise in terms of understanding
the general approach in deriving lower bounds for both problems. The Brascamp-Lieb
type inequality based proof of Section 2.2 is more lengthy and technical, which means
that some of the intuition might be lost.

2.1 Lower bounds through mutual information

In this section, we shall explore the use of mutual information in obtaining a testing
lower bound. Mutual information is a concept in information theory that measures
the amount of information shared between two random variables. It quantifies the de-
pendency between the variables and provides a way to understand how much knowing
one variable can tell you about the other.

For random variables X,Y we define the mutual information between X and Y as
the Kullback-Leibler distance between the joint distribution and the product of the
marginal distribution:

IpX;Y q “ DKLpPpX,Y q}PX ˆ PY q.

WhenX and Y are independent, the mutual information between them is 0, a positive
value for the mutual information indicates dependence between X and Y , where the
dependence is stronger for larger values.
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The concept of mutual information is used in distributed systems to derive lower
bounds on various problems, such as data compression and source coding (see e.g. [65])
or interactive communication [38], but also general minimax theory (see e.g. [221,
225]).

Lower bounds based on mutual information enjoy success as an approach to dis-
tributed estimation for two main reasons. Firstly, its tensorization properties al-
lows exploitation of the Markov chain structure of (1.4). Secondly, data processing
arguments allow quantitative capture of the loss of bandwidth constraints. These
properties of mutual information are proven in Section 2.5.1 of the chapter appendix.

Before we turn to the testing lower bound using mutual information in Section 2.1.2,
we make a small detour to the corresponding estimation problem, deriving a mutual
information based lower bound for an estimation problem closely aligned with the
testing problem under consideration. This estimation lower bound obtained is not
novel, but serves to exemplify an approach commonly taken for distributed estimation
lower bounds.

2.1.1 A mutual information based lower bound for estimation
under bandwidth constraints

Below, we exemplify the mutual information approach to obtaining a distributed
estimation lower bound, culminating into Theorem 2.1. The proof of the theorem
is based on [77] and [39]. The proof is structured in the general framework of the
distributed testing lower bounds in this thesis: the estimation risk is lower bounded by
a type of Bayes risk, which is then further lower bounded, in this case by a variation
of Fano’s inequality. The final step uses “data processing arguments”, e.g. arguments
that capture the loss of information due to the communication restriction.

Theorem 2.1 focusses on bandwidth constraints only, although for local differential
privacy (n “ 1) such a bound can easily be derived using the approach below (with
a different data processing argument). However, we shall defer the reader to Sec-
tion 2.5.6, in which we present a novel method to derive a tight pϵ, δq-differential
privacy lower bound in the same estimation setting for a full range of n P N values.

In what follows for the formulation and proof of Theorem 2.1 below, we consider no
shared randomness. Specifically, we take U to be degenerate and ignore it completely
in notation. The motivation for this is given in Section 3.3.1, in which we show that
for convex loss functions, distributed protocols do not benefit from shared randomness
(Theorem 3.3). The proof is essentially that of [77] combined with the data processing
arguments of [193].

Theorem 2.1. Let Y “ pY p1q, . . . , Y pmqq be generated according to a b-bit constrained
distributed estimation protocol (see Section 1.2 and Section 1.2.1). There exists con-
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stant c, c1 ą 0 such that whenever ρ2 ď c d2

pb^dqnm , it holds that

sup
fPRd

Efρ
´2

›

›

›
f̂pY q ´ f

›

›

›

2

2
ě c1 for all d, b, n,m P N. (2.3)

Remark 1. This is a (log-factor) tighter version of the lower bound of [77]. The lower
bound is tight for mb{d Á log n, where notably mb{d Ñ 0 implies that the estimate
on a local machine starts outperforming the central estimate. To uncover the optimal
lower bound rate for the regime when mb{d À logpnq requires a much more extensive
argument, see [46]. Here, it is shown in that whenever b À d{m, ρ2 — d is the minimax
squared L2-norm estimation rate: for very small bandwidth budgets, the estimation
error blows up linearly in d.

We consider a prior distribution on the parameter f in (2.1); given by F “ d´1{2ρR
with R a d-dimensional vector of independent Rademacher random variables (Ri

takes values ´1 or 1 with probability 1{2 each). Such choices are typically considered
as “least favorable priors” supported on signals that are difficult to detect, see for
instance Section 3.2 of [118]. Let Pf “ PpX,Y q|F“f , such that under PpF,X,Y q we have
the Markov chain structure

F
��1 Xp1q - Y p1q PPq

- ... - ... -

PPq
Xpmq - Y pmq��1

f̂pY q, (2.4)

where f̂ :
Âm

j“1 Ypjq Ñ Rd is some estimator. The following lemma provides lower
bound on the squared L2-norm estimation risk in terms of the mutual information
between F and Y . The proof, which we provide for completeness, is based on [77]
and employs a standard multiple testing argument combined with a version of Fano’s
inequality (Lemma 2.22 in the appendix).

Lemma 2.1. Consider F as above. The following lower bound holds for the estima-
tion risk;

sup
fPRd

Ef }f̂pY q ´ f}22 ě
ρ2

2

ˆ

1 ´ 2 ¨
IpY ;F q ` log 2

d

˙

. (2.5)

Remark 2. The unconstrained estimation lower bound follows by a data processing
inequality IpY ;F q ď IpX;F q (Lemma 2.19 in the appendix) and by showing that
IpX;F q ď nρ2 log 2, which follows by the arguments below. Plugging this bound into
the right-hand side of (2.5), we see that if ρ2 ! d{n, the estimation risk is strictly
bounded away from 0, which yields ρ2 Á d{n as a lower bound estimation rate. This
lower bound rate is tight, as it can be seen to be attained by the sample mean through
a simple calculation.



2.1. Lower bounds through mutual information 31

Proof. Lower bounding the supremum over a set by an integral over the same set and
using Markov’s inequality, we obtain for t ě 0 that

sup
fPRd

Ef }f̂pY q ´ f}22 ě EFEY |F }f̂pY q ´ F }22

ě t2P
´

}f̂pY q ´ F }2 ě t
¯

.

Define

ϕpY q “ argmin
rP

ρ
?

d
t´1,1ud

}f̂pY q ´ r}2.

By definition of ϕpY q, }f̂pY q ´ ϕpY q}2 ď }f̂pY q ´ F }2. Therefore, on the event that

}f̂pY q ´ F }2 ă t, we also have that

}ϕpY q ´ F }2 ď }f̂pY q ´ F }2 ` }f̂pY q ´ ϕpY q}2 ă 2t.

Thus, }ϕpY q ´ F }2 ě 2t ùñ }f̂pY q ´ F }2 ě t, which in turn implies that

P
´

}f̂pY q ´ F }2 ě t
¯

ě P p}ϕpY q ´ F }2 ě 2tq .

Combining the above chain of inequalities with Fano’s inequality (Lemma 2.22) –
with V “ d´1{2ρt´1, 1ud and t “ ρ{2

?
2 – we obtain (2.5), following the fact that

|tv P t´1, 1ud : }v ´ v1}2 ě
a

d{2u| ď 2d{2 for all v1 P t´1, 1ud.

Next, we employ data processing arguments to capture the loss of information in the
Markov chain F Ñ X Ñ Y that necessarily occurs. To do so, we start with the
following “tensorization” upper bound,

IpF ;Y q ď

m
ÿ

j“1

I
´

F ;Y pjq
¯

,

which follows from applying Lemma 2.21 (with V “ F and U in the lemma degener-
ate). Writing Fk “ d´1{2ρRk for k “ 1, . . . , d, the chain rule for mutual information
(see (2.72) in the appendix) gives

IpF ;Y pjqq “

d
ÿ

k“1

I
´

Fk;Y
pjq|R1:k´1

¯

“

d
ÿ

k“1

IpFk;Y
pjqq, (2.6)

where the second equality follows from the fact that F1, . . . , Fd are independent ran-
dom variables. Loosely speaking, this identity combined with (2.6) effectively reduces
the distributed estimation problem to the sum of the information loss of the Markov

chain Fk Ñ pX
pjq

1k , . . . , X
pjq

nk q Ñ Y pjq, as pX
pjq

1k , . . . , X
pjq

nk q is independent of Fl for
l ‰ k.
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The mutual information is necessarily decreasing as we move further along a Markov
chain. Lemma 2.19 in the appendix captures this effect and yields

IpFk;Y
pjqq ď γIppX

pjq

1k , . . . , X
pjq

nk q;Y pjqq (2.7)

with γ “ 1. The above inequality (with γ “ 1) is referred to as the data processing
inequality for the mutual information. The Markov chain F Ñ Xpjq Ñ Y pjq, is
said to satisfy a γ-strong data-processing inequality if the above inequality holds for
0 ă γ ă 1. Here, γ captures a “strict” loss of information. The following lemma
states that, if the likelihood ratio (with respect to the mixture distribution) of the
data is

a

γ{2-sub-Gaussian, the mutual information satisfies a strong data processing
inequality. A proof is provided in the appendix (Lemma 2.23), based on the proof
of [170] who shows the same result for discrete sample spaces.

Lemma 2.2. Consider random vectors V,W, V̂ forming a Markov chain V Ñ W Ñ

V̂ . Suppose that PW |V “v ! PW and that the random variables

dPW |V “v

dPW
pW q

are
a

γ{2-sub-Gaussian for 0 ă γ ă 1, PV -almost surely. Then, the Markov chain

V Ñ W Ñ V̂ satisfies the γ-strong data-processing inequality (2.7).

With some effort, it can be shown that the likelihoods of Wjk “ pX
pjq

1k , . . . , X
pjq

nk q;

dPWjk|Fk“v

dPWjk
pW q for v P

ρ
?
d

t´1, 1u (2.8)

are
a

Cnρ2{d-sub-Gaussian for a universal constant C ą 0 (Lemma 2.25 in the ap-
pendix). Putting the above together, we have obtained that

IpF ;Y q ď

m
ÿ

j“1

d
ÿ

k“1

2C
nρ2

d
IppX

pjq

1k , . . . , X
pjq

nk q;Y pjqq.

So far, it has not been used that the transcript Y pjq is bandwidth constraint. At
this point, the lower bound without communication constraints of ρ2 À d{pmnq could

be obtained by showing that IppX
pjq

1k , . . . , X
pjq

nk q;Y pjqq “ Op1q. Under communication
constraints, a better bound is available for the above display whenever b À d. Using

once more that the vectors pX
pjq

1k , . . . , X
pjq

nk q are independent (since F1, . . . , Fd are
independent), we obtain

d
ÿ

k“1

IppX
pjq

1k , . . . , X
pjq

nk q;Y pjqq “ IpXpjq;Y pjqq.

The transcript Y pjq takes values in a discrete space Ypjq of cardinality at most 2b

under a b-bit bandwidth constraint. Consequently, by standard results for the mutual
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information, IpXpjq;Y pjqq ď b logp2q (see Lemma 2.20 in the chapter appendix). To
conclude the proof of the estimation lower bound, we have obtained that

sup
fPRd

Ef }f̂pY q ´ f}22 ě
ρ2

2

¨

˝1 ´ 2 ¨

logp2q

´

2Cbmnρ2

d ` 1
¯

d

˛

‚,

which yields (2.3) whenever ρ2 ď cd2{pmnbq for a small enough constant c ą 0. To
obtain the “classical”, unconstrained rate, Lemma 2.19 and the chain rule for mutual
information (see (2.72) in the appendix) also yield that

I
´

F ;Y pjq
¯

ď I
´

F ;Xpjq
¯

“

d
ÿ

k“1

n
ÿ

i“1

I
´

Fk;X
pjq

ik

¯

.

Whenever d´1{2ρ ď 1{4,

I
´

Fk;X
pjq

ki

¯

“
ÿ

rPt´1,1,u

DKL

ˆ

Nprd´1{2ρ, 1q;
1

2
pNpd´1{2ρ, 1q `Np´d´1{2ρ, 1qq

˙

“ E log cosh
´

d´1{2ρNp0, 1q

¯

ď 2
ρ2

d
.

This yields the statement of the theorem, since we now also have that

sup
fPRd

Ef }f̂pY q ´ f}22 ě
ρ2

2

˜

1 ´ 2 ¨
logp2q

`

2mnρ2 ` 1
˘

d

¸

.

2.1.2 A mutual information based lower bound for testing un-
der bandwidth constraints

The following theorem establishes a detection threshold for the bandwidth constraint
distributed signal detection problem of (2.1) using the mutual information approach
as exhibited for estimation in the previous section. The theorem is tight for bandwidth
constrained shared randomness protocols when b “ 1, otherwise the technique cannot
successfully capture the tight testing lower bounds, as we shall argue in the next
section. Its proof is described in the remainder of this section.

Theorem 2.2. For any α P p0, 1q there exists cα ą 0 small enough such that whenever

ρ2 ă cα

a

dp
?
m^ dq

nmb
, (2.9)

it holds that

inf
TPT

pbq

SR

RpHρ, T q ą α for any n,m, d, b P N.
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Remark 3. It should be noted that we do not optimize for the value of the constant
cα in the proof below and the statement is likely to be still true for larger values of
cα.

The proof of the theorem relies on three key lemmas, which we state below after
introducing some necessary notations. As a first step, we use the basic fact that the
supremum of the probability of a type two error of a test can be lower bounded by a
Bayesian type two error, i.e. for any prior distribution π supported on Hρ

sup
fPHρ

Pf pT “ 0q ě

ż

Hρ

Pf pT “ 0q dπpfq.

To further lower bound the risk we construct an appropriate Markov chain and relate
the testing problem to an information transfer problem through the chain. Con-
sider V „ Berp1{2q, i.e. V is 0 or 1, each with probability 1{2, independent of the
shared random vector U , such that the random vectors Xpjq|pV “ 0q, j “ 1, . . . ,m
follow (2.1) with f “ 0 and Xpjq|pV “ 1q follows a Gaussian mixture Pπ defined
as PπpAq “

ş

Pf pAq dπpfq for all Borel sets A Ă Rd. Let us denote by P the joint
probability measure describing the corresponding Markov dynamics

V - F
��1 pXp1q, Uq

- Y p1q PPq

- ... - ... -

PPq
pXpmq, Uq

- Y pmq��1

T, (2.10)

where F „ π. We then have that for any distributed test T ,

RpHρ, T q ě PpT “ 1|V “ 0q ` PpT “ 0|V “ 1q “ 2PpT ‰ V q. (2.11)

The right-hand side of (2.11) can be further bounded from below using the mutual
information between T and V in the chain (2.10), defined by

IpV, T q “ DKL

`

PV ˆT } PV ˆ PT
˘

,

where PV , PT and PV ˆT denote marginal- and joint distributions of V and T . In-
formally, the mutual information measures how much knowing T reduces uncertainty
about V and vice versa. The following lemma fulfills this role, similarly to Fano’s
inequality in the estimation problem.

Lemma 2.3. Let π be a prior on Hρ and consider the dynamics (2.10). For any
T P T b

SR we have

RpHρ, T q ě 1 ´
a

2IpV, T q.

Proof. In view of (2.11) we have

RpHρ, T q ě 1 ´ pPpT “ 0|V “ 0q ´ PpT “ 0|V “ 1qq

ě 1 ´

ˇ

ˇ

ˇ
PT |V “0 ´ PT |V “1

ˇ

ˇ

ˇ
pT “ 0q

ě 1 ´ }PT |V “0 ´ PT |V “1}TV.
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By the triangle inequality,

}PT |V “0 ´ PT |V “1}TV ď }PT |V “0 ´ PT }TV ` }PT ´ PT |V “1}TV.

Applying the second Pinsker bound to the two terms on the right-hand side and using
that 2ab ď a2 ` b2,

}PT |V “0 ´ PT |V “1}2TV ď DKLpPT |V “0}PT q `DKLpPT |V “1}PT q “ 2IpV, T q,

which completes the proof of the lemma.

In view of the usual data processing inequality (Lemma 2.19 in the appendix) we
have IpV, T q ď IpV, pY p1q, . . . , Y pmqqq. The following lemma asserts that, up to an
additional term, this further tensorizes conditionally on the shared randomness.

Lemma 2.4. Consider the dynamics (2.10). We have

IpV, pY p1q, . . . , Y pmqqq ď

m
ÿ

j“1

IpV, Y pjq|Uq `

m
ÿ

j“1

IpF, Y pjq|U, V q. (2.12)

The proof of this lemma is given in Section 2.5.1, restated as Lemma 2.21. This bound,
combined with Lemma 2.3, allows us to break down the difficulty of the ‘global’ testing
problem in terms of the difficulty of the m ‘local’ testing problems, captured by the
quantities IpV, Y pjq|Uq. These conditional local mutual informations quantify the
capacity of the local tests to distinguish a signal drawn from the prior π from the zero
signal. The second sum in the display of the lemma captures dependency between the
transcripts and the prior draw F „ π. The terms IpF, Y pjq|U, V q are similar quantities
to the ones appearing in the estimation setting of the previous section. Essentially,
the second sum captures how well the signal can be estimated by the local tests.

We now discuss the choice of prior distribution π. Let ϱ :“ ρ{
?
d and let R be a

d-dimensional vector of independent Rademacher random variables, and define the
prior π as the distribution of ρ{

?
dR. Note that π has support contained in Hρ. Since

V , F and Xpjq are independent of U , conditioning on U does not disrupt the Markov
chain property: we have the chain V |U Ñ F |U Ñ Xpjq|U Ñ Y pjq|U .

As a consequence of this choice of prior distribution, the “estimation term” IpF, Y pjq|U, V q

can be handled using strong data processing techniques employed in distributed esti-
mation as in the previous section. Writing R1, . . . , Rd for the coordinates of R and

write for k ď d, R1:k :“ pR1, . . . , Rkq and X
pjq

i;1:k “ pX
pjq

i1 , . . . , X
pjq

ik q. Conditionally on

V “ 0, F “ 0 with probability 1, so IpF ;Y pjq|V “ 0q “ 0. Conditionally on V “ 1,
F “ ϱR. Combining these facts with the chain rule for mutual information (see (2.72)
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in the appendix),

IpF ;Y pjq|V q “
1

2
IpF ;Y pjq|V “ 1q “

1

2

d
ÿ

k“1

IpFk;Y
pjq|V “ 1, R1:k´1q

“
1

2

d
ÿ

k“1

IpFk;Y
pjq|V “ 1q,

where the last equality follows from the fact that the coordinates of R are independent.

Furthermore, Rk|V “ 1 Ñ pX
pjq

1k , . . . , X
pjq

nk q|V “ 1 Ñ Y pjq|V “ 1 forms a Markov

chain with pX
pjq

ik |Rk, V “ 1q „ NpϱRk, 1q. Consequently, by applying Lemma 2.2 in
conjunction with (2.8), we obtain that

IpF, Y pjq|U, V q ď 96
nρ2

d
IpXpjq, Y pjq|U, V “ 1q.

Using that Y pjq is supported on a set of cardinality at most 2b, we obtain that the

second term in (2.12) is bounded above by 96 bmnρ2

d .

The loss of information about V resulting from the compression of Xpjq|U into Y pjq|U
in this Markov chain is quantified by inequality (2.14) below, which is a strong data
processing inequality for the information contained on V . Similarly to the approach
in estimation, we prove the strong data processing inequality through proving sub-
Gaussianity of the conditional likelihood ratio and then employing Lemma 2.2. The
aforementioned sub-Gaussianity is described by the following lemma.

Lemma 2.5 (Public Coin Strong Data Processing Inequality). The likelihood ratios

dPXpjq
|V “0

dPXpjq
pXpjqq and

dPXpjq
|V “1

dPXpjq
pXpjqq

are
?
Cβ-sub-Gaussian with

β “

#

n2ρ4

d if nρ2 ą 2,
2nρ2

d if nρ2 ď 2,
(2.13)

and C ą 0 a universal constant.

We obtain the following strong data processing inequality for the local testing problem,
capturing its difficulty of the local testing problem in terms of n, d and ρ;

IpV, Y pjq|Uq ď p48β ^ 1qIpXpjq, Y pjq|Uq. (2.14)

By combining the information theoretic inequalities above with the fact that

IpXpjq, Y pjq|Uq ď HpY pjq|Uq ď b,
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we get that

IpV, T q ď

m
ÿ

j“1

IpV, Y pjq|Uq `

m
ÿ

j“1

IpF, Y pjq|U, V q ď 48βmb` 96
bmnρ2

d
.

Therefore, in view of Lemma 2.3,

RpHρ, T q ě 1 ´ C

c

bmnρ2

d
pmax tnρ2, 2u ` 1q,

for a universal constant C ą 0. For ρ satisfying (2.9), the right-hand side is bounded
from below by α for an arbitrary distributed test.

2.2 The Brascamp-Lieb inequality and testing lower
bound

“I don’t have any particular recipe... Doing research is challenging as well
as attractive. It is like being lost in a jungle and trying to use all the
knowledge that you can gather to come up with some new tricks, and with
some luck you might find a way out.” – Maryam Mirzakhani

In this section, we develop an approach that proves fruitful in deriving tight testing
lower bounds for both bandwidth and differential privacy constraints.

Before describing the novel method, let us reflect on why the usual “estimation ap-
proach” through mutual information does not lead to a tight distributed testing lower
bound. The mutual information approach fails to capture a tight testing communica-
tion constrained lower bound for the full range of bits for multiple reasons. For one,
the bound depends on b even when upper bound methods suggest that there is no
benefit to having additional communication budget (i.e. the regime where mb À d).
In this regime, majority voting (see Section 3.1.1), which requires only 1-bit of in-
formation per machine, turns out to be optimal. In addition, it fails to capture the
increase in testing error when no shared randomness is available, due to the limited
options in choosing the prior due to the requirement of coordinate wise independence.
As we shall see in this section, least favorable priors in the distributed testing setting
exploit the local randomness distributed protocol’s limitations in terms of the extent
to which each dimension of the data is sufficiently “covered” by the protocol’s tran-
scripts1. Furthermore, in the case of differential privacy constraints, adequate data
processing techniques are not available for the mutual information whenever n " 1.
Another approach to obtain a distributed testing lower bound is through directly Tay-
lor expanding the (local) likelihoods and bounding the resulting polynomials directly,
see [12]. This approach suffers from the same fate as mutual information; see Section
4 of the aforementioned paper for a description of the issues of this specific approach.

1We further explore this idea in generality in Section 3.3.1.
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Similarly to the mutual information based approach, the approach taken in this section
consists of three steps. The first step is standard; we put a prior on the alternative
hypothesis and lower bound the testing risk by the Bayes risk. Through standard
arguments, the Bayes risk is shown to be lower bounded by a quantity tending to
one if the variance of the Bayes factor (i.e. the likelihood ratio of the prior mixture
with respect to the null distribution) tends to zero. As a second step, we bound
the variance of the Bayes factor using a type of Brascamp-Lieb inequality, which is
a generalization of Young’s inequality [37]. Roughly speaking, the Brascamp-Lieb
inequality we derive “factorizes” the second moment of the Bayes factor into m-times
the second moment of the “local Bayes factors” and a factor that can be interpreted
as the Fisher information of the distributed protocol. The third step consists of data
processing arguments, i.e. inequalities that capture the loss of information resulting
from the privacy and bandwidth constraints. These data processing techniques dif-
fer for bandwidth- and privacy constraints. Hence, they are discussed separately in
Section 2.3 and Section 2.4, respectively. In these sections, we also formally state the
main theorems that are consequently obtained or bandwidth- and privacy constraints.

The rest of this section is dedicated to step one and two as outlined in the previous
paragraph. As a first step, we introduce a prior distribution π on Rd and lower bound
the testing risk by a type of Bayes risk and the mass of π that resides outside of
the alternative hypothesis Hρ, akin to e.g. [123]. Recall that Pf denotes the joint

distribution of Y , U and X where Xpjq follows (1.7) and Y „ EX,U
f Kp¨|X,Uq “:

PY
f,K “ PY

f . For π a given distribution on Rd, define the mixture distribution PX
π “

Pπ on Rmd by PπpAq “
ş

Pf pAqdπpfq, where we recall the notational convention
PX
f “ Pf . For an arbitrary distributed testing protocol T ” tT, tKjumj“1,PUu, using

that T ď 1, we can lower bound the testing risk RpHρ, T q by the Bayes risk as follows:

P0pT pY q “ 1q ` sup
fPHρ

Pf pT pY q “ 0q ě P0pT pY q “ 1q `

ż

Pf pT pY q “ 0qdπpfq ´πpHc
ρq.

(2.15)
Consequently, the minimax testing risk satisfies

inf
TPT

RpHρ, T q ě inf
TPT

sup
π

ˆ

P0pT pY q “ 1q `

ż

Pf pT pY q “ 0qdπpfq ´ πpHc
ρq

˙

,

(2.16)
where the supremum is taken over all probability distributions on Rd. We note that
the above display means we can adversarially choose π contingent on tT, tKjumj“1,PUu,

but not the outcome of the source shared randomness U . Let L
Y |U“u
π pY q denote the

Bayes factor of the Bayesian testing problem corresponding to the Bayes risk above;
that is,

LY |U“u
π pY q “

dPY |U“u
π

dPY |U“u
0

pY q.

To lower bound the Bayes risk, in light of the Neyman-Pearson lemma, it should

suffice to show that L
Y |U“u
π pY q is close to 1 with high probability. Lemma 2.28 in
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Section 2.5.3 makes this precise, showing that the right-hand side of (2.16) is further
bounded from below by

1 ´ sup
K

inf
π

˜

d

p1{2q

ż

EY |U“u
0

´

L
Y |U“u
π pY q ´ 1

¯2

dPU puq ` πpHc
ρq

¸

. (2.17)

To lower bound the testing risk further, it suffices to show that for some prior π on
Rd with little mass outside of Hρ, the variance of the Bayes factor conditionally on
the shared randomness U , is small while integrating over PU .

This brings us to the crux of the proof, Lemma 2.6 below. We first introduce some
notation. Denote the “local” and “global” likelihoods of the data as

L j
f pXpjqq “

dPn
f

dP0
pXpjqq, Lf pXq :“

źm

j“1

dPn
f

dP0
pXpjqq,

and the mixture likelihoods as

L j
π pXq “

ż

Lf pXpjqqdπpfq and LπpXq “

ż

Lf pXqdπpfq

In view of the Markov chain structure, the probability measure dPπpx, u, yq disinte-

grates as dPY |pX,Uq“px,uqdPX
f pxqdPU puqdπpfq. Using this, EY |U“u

0

´

L
Y |U“u
π pY q

¯2

can

be seen to equal

EY |U“u
0 E0

„

LπpXq

ˇ

ˇ

ˇ

ˇ

Y,U “ u

ȷ2

“

ż

˜

ż

Lπpxq
dKp¨|x, uq

dPY |U“u
0

pyqdPX
0 pxq

¸2

dPY |U“u
0 pyq,

(2.18)

where it is used that Kp¨|x, uq ! PY |U“u
0 p¨q, PpX,Uq

f -almost surely (Lemma 2.27).
Using Fubini’s theorem (“decoupling” in X), we can write the above display as

ż

Lπpx1qLπpx2qqupx1, x2qdpPX
0 ˆ PX

0 qpx1, x2q, (2.19)

where

qupx1, x2q :“

ż

dKp¨|x1, uq

dPY |U“u
0

pyq
dKp¨|x2, uq

dPY |U“u
0

pyqdPY |U“u
0 pyq. (2.20)

Since Kp¨|x, uq and PY |U“u
0 are product measures on Y “

Âm
j“1 Ypjq, we can write

qupx1, x2q “ Πm
j“1q

j
upx1, x2q where

qjupx1, x2q “

ż

Kjpyj |xj1, uqKjpyj |xj2, uq

PY pjq|U“u
0 pyjq

dPY pjq
|U“u

0 pyq. (2.21)

The map px1, x2q ÞÑ qupx1, x2q can be seen as capturing the dependence between the
original data X and a random variable X 1 with conditional distribution

X 1|X “ x „

ż

dPX|pY,Uq“py,uq

0 dPY |pX,Uq“px,uq, (2.22)
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which is sometimes referred to as the “forward-backward channel”, stemming from
the fact that X Ñ Y Ñ X 1 forms a Markov chain. An easy computation using the
law of total expectation shows that the covariance of qupx1, x2qdpP0 ˆ P0qpx1, x2q,

ż
ˆ

x1
x2

˙

`

xJ
1 xJ

2

˘

qupx1, x2qdpP0 ˆ P0qpx1, x2q P R2mndˆ2mnd, (2.23)

is equal to Σu :“ Diag
`

Σ11
u , . . . ,Σ

1n
u , . . . ,Σm1

u , . . . ,Σmn
u

˘

P R2mndˆ2mnd for

Σji
u :“

ˆ

Id Ξji
u

Ξji
u Id

˙

,

with

Ξji
u :“ EY pjq

|U“u
0 E0

„

X
pjq

i

ˇ

ˇ

ˇ

ˇ

Y,U “ u

ȷ

E0

„

X
pjq

i

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ȷJ

.

Define also

Ξj
u :“ EY pjq

|U“u
0 E0

«

n
ÿ

i“1

X
pjq

i

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ff

E0

«

n
ÿ

i“1

X
pjq

i

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ffJ

. (2.24)

We are now ready to state the lemma that forms the crux of our distributed testing
lower bound proofs, both in the case of bandwidth and differential privacy constraints.

Lemma 2.6. Suppose that px1, x2q ÞÑ qupx1, x2q is bounded and that π is a centered
Gaussian distribution on Rd. Then,

ş

Lπpx1qLπpx2qqupx1, x2qdpPX
0 ˆ PX

0 qpx1, x2q
m

Π
j“1

ş

L j
π pxj1qL j

π pxj2qqjupxj1, x
j
2qdpPXpjq

0 ˆ PXpjq

0 qpxj1, x
j
2q

(2.25)

is bounded above by

ş

Lπpx1qLπpx2qdNp0,Σuqpx1, x2q
m

Π
j“1

ş

L j
π pxj1qL j

π pxj2qdNp0,Σj
uqpxj1, x

j
2q

.

The lemma has the following interpretation: the ratio of the second moment of the
Bayes factor of the “global Bayesian hypothesis test” that of the product of second
moments of the “local Bayes factors”, is maximized over the class of forward-backward
channel with covariance Σ when the forward-backward channel is Gaussian.

There is an existing literature on Brascamp-Lieb inequality in relation to information
theoretical problems, in relation to mutual information [56, 145, 146]. The proof
of Lemma 2.25 relies on a different method of proof however, namely that of [143].
The fact that the prior π is Gaussian is vital to the proof technique, which exploits
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the conjugacy between the prior and the model which enables the use of techniques
from [143].

The proof of the lemma is presented at the end of the section. We first describe how
it is of consequence to the testing lower bound, which is the content of Lemma 2.7
below.

Lemma 2.7. Define

Aπ
u :“

ż

ef
J řm

j“1 Ξj
ugdpπ ˆ πqpf, gq (2.26)

and

Bπ
u :“

m

Π
j“1

EY pjq
|U“u

0 E0

„

Lπ

´

Xpjq
¯

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ȷ2

. (2.27)

If px1, x2q ÞÑ qupx1, x2q is bounded and if π is a centered Gaussian distribution on
Rd, it holds that

EY |U“u
0

´

LY |U“u
π pY q

¯2

ď Aπ
u ¨ Bπ

u.

The above lemma describes how the variance of the Bayes factor given U is bounded
by two factors. One factor depends on the Fisher information of the transcripts’
likelihood at f “ 0 given U “ u; Ξu :“

řm
j“1 Ξ

j
u. In this sense, Aπ

u captures how well
the transcript allows for “estimation” of f . The second factor can be seen as the m-
fold product of the local Bayes factors, capturing essentially the power of combining
the locally most powerful test statistics; the likelihood ratios.

Proof of Lemma 2.7. We start by noting that Bπ
u is equal to the denominator of (2.25).

By Lemma 2.6,

EY |U“u
0

´

LY |U“u
π pY q

¯2

ď

ş

Lπpx1qLπpx2qdNp0,Σqpx1, x2q
m

Π
j“1

ş

L j
π pxj1qL j

π pxj2qdNp0,Σjqpxj1, x
j
2q

¨ Bπ
u.

By the block diagonal matrix structure of Σ, the denominator in the first factor of
the right-hand side satisfies

m

Π
j“1

ż

L j
π pxj1qL j

π pxj2qdNp0,Σjqpxj1, x
j
2q “

m

Π
j“1

ż

ep}
?
Σjpf,gq}

2
2´}pf,gq}

2
2qdpπ ˆ πq pf, gq

“
m

Π
j“1

ż

ef
JΞj

ugdpπ ˆ πqpf, gq

ě
m

Π
j“1

e
ş

fJΞj
ug dpπˆπqpf,gq “ 1.

Through the expression for the moment generating function of the Gaussian, the
numerator of Aπ

u is equal to
ż

Lπpx1qLπpx2qdNp0,Σqpx1, x2q “

ż

ef
J řm

j“1 Ξj
ugdpπ ˆ πqpf, gq.
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What is left to show in this step, is that for π “ Np0,Γq, Γ P Rdˆd can be chosen such
that the Aπ

u ¨ Bπ
u is small enough whilst also ensuring that πpHc

ρq is controlled. We

start with the latter. For a given cα ą 0, set ϱ :“ ρc
´1{4
α d´1{2 and Γ :“ ϱ2Γ for some

Γ P Rdˆd to be specified later, separately for the shared- and non-shared randomness
protocols. The remaining mass πpHc

ρq can now be seen to equal

πpf : }f}22 ď ρ2q “ Pr
`

ZJΓZ ď
?
cαd

˘

, (2.28)

where Z is a d-dimensional standard normal vector. If Γ is symmetric, idempotent and
has rank (proportional to) d, the concentration inequality in Lemma 3.28 yields that
the probability on the right-hand side of the above display can be made arbitrarily
small for small enough choice of cα ą 0.

Suppose that for some constant c ą 0,

ϱ2
›

›

›

›

a

Γ
J

Ξu

a

Γ

›

›

›

›

ď c. (2.29)

If Γ P Rdˆd is symmetric, idempotent with rank proportional to d and π “ Np0, ϱ2Γq,
standard results for the Gaussian chaos, e.g. Lemma 6.2.2 in [210] combined with (2.29)

and the fact that }
?
Γ} ď 1, yield that

Aπ
u ď exp

ˆ

Cϱ4Tr

ˆ

p

a

Γ
J

Ξu

a

Γq2
˙˙

,

for a constant C ą 0 depending only on c. As a final step of the testing risk lower
bound technique, we use essentially a geometric argument to sharpen this bound in
case the distributed protocol does not enjoy shared randomness. The d ˆ d matrix
Ξu :“

řm
j“1 Ξ

j
u geometrically captures how well Y allows to “reconstruct” the com-

pressed sample X. When U is degenerate, Ξu is “known” to the prior, and Γ can be
chosen to exploit “direction” in which Ξu contains the least information. This brings
us to the Lemma 2.8 below, which summarizes our testing risk lower bound up to the
data processing step, with which we continue in Section 2.3 for bandwidth constraints
and Section 2.4 for privacy constraints. We finish this section by proving the lemma
below and then, last but not least, by proving the Brascamp-Lieb type inequality of
Lemma 2.6.

Lemma 2.8. Let α P p0, 1q and suppose that the map px1, x2q ÞÑ qupx1, x2q defined
in (2.20) is bounded for all distributed testing protocols in T . Let π “ Np0, ϱ2Γq,
with ϱ :“ ρ

c
1{4
α d1{2

and Γ P Rdˆd a symmetric, idempotent with rankpΓq P rtd{2u, ds.

Assume that ρ is such that ϱ2}Ξu} ď c PU -a.s. for some constant c ą 0. It then holds
that inf

TPT
RpHρ, T q and in particular the Bayes risk

inf
TPT

sup
π

ˆ

P0pT pY q “ 1q `

ż

Pf pT pY q “ 0qdπpfq ´ πpHc
ρq

˙



2.2. The Brascamp-Lieb inequality and testing lower bound 43

are lower bounded by

1 ´ sup
K

d

p1{2q

ż

pAuBπ
u ´ 1q dPU puq ´ sup

Γ

πpHc
ρq, (2.30)

where the supremum is taken over all kernels corresponding to distributed testing
protocols in T , the second supremum over all symmetric, idempotent Γ P Rdˆd with
td{2u ď rankpΓq ď d, Bπ

u is as in (2.27) and

Au “ exp

ˆ

C
ρ4

cαd2
}Ξu}Tr pΞuq

˙

, (2.31)

for some fixed constant C ą 0 depending only on c ą 0. Furthermore, if U is degen-

erate and 2ρ2

?
cαd2TrpΞq ď c, (2.30) holds with

Au “ exp

ˆ

C
ρ4

cαd3
Tr pΞuq

2

˙

, (2.32)

for some fixed constant C ą 0 depending only on c ą 0.

Proof. In case of shared randomness (i.e. U not being degenerate), simply taking
Γ “ Id, noting that TrpΞ2

uq “ }Ξu}TrpΞuq and combining the results earlier in the
section (from (2.17) onwards) leads to (2.30) and (2.31).

Now assume U is degenerate and write Ξu “ Ξ. The matrix Ξ is positive definite
and symmetric, therefore it possesses a spectral decomposition V JDiagpξ1, . . . , ξdqV .
Without loss of generality, assume that ξ1 ě ξ2 ě ¨ ¨ ¨ ě ξd with corresponding eigen-
vectors V “

`

v1 ¨ ¨ ¨ vd
˘

. Let V̌ denote the d ˆ rd{2s matrix
`

vtd{2u`1 ¨ ¨ ¨ vd
˘

.
The choice of prior may depend on Ξ, to see this, note the order of the supremum
and infimum in (2.17) and the fact that Ξ solely depends on the choice of kernel. To
that extent, set Γ “ V̌ V̌ J. It holds that

TrpV̌ V̌ Jq “

d
ÿ

i“1

d
ÿ

k“td{2u`1

pvkq2i “ rd{2s.

The choice Γ is thus seen to satisfy the conditions of symmetry and positive definite-
ness and is idempotent with rank rd{2s.

Since the eigenvalues are decreasingly ordered,

ξtd{2u ď
2

d

td{2u
ÿ

i“1

ξi ď
2

d
TrpΞq.

By orthogonality of the columns of V , V̌ JΞV̌ “ Diagpξtd{2u`1, . . . , ξdq. The condition
of (2.29) reduces to

ϱ2}

a

Γ
J

Ξu

a

Γ} ď ϱ2ξtd{2u ď 2
ρ2

?
cαd2

TrpΞq.
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Note that

Tr
`

p

a

Γ
J

Ξu

a

Γq2
˘

“ Tr
`

pV̌ JΞV̌ q2
˘

“

d
ÿ

i“td{2u`1

ξ2i ď dξ2td{2u ď
4

d
TrpΞq2,

which implies in turn that

ϱ4Tr
`

pV̌ JΞV̌ q2
˘

ď 4
ρ4

cαd3
TrpΞq2.

2.2.1 Proof of the Brascamp-Lieb type inequality

We shall prove Lemma (2.9), which is a slightly more general version of Lemma 2.6.
To see this, note that for k “ 1, 2 in display (2.21), xjk are projections of xk on the
coordinates indexed by tpj ´ 1qdn ` 1, . . . , jdnu, respectively. Since K is a Markov
kernel, the function qu P L1pR2dnm, P0 ˆ P0q is nonnegative and it is bounded by the
assumption of Lemma 2.6. Furthermore,

ż

qupx1, x2q dP0px1q “

ż

dKp¨|x2, uq

dPY |U“u
0

pyq

ż

dKpy|x1, uq dP0px1q

“

ż

dKpy|x2, uq

dPY |U“u
0 pyq

dPY |U“u
0 pyq “ 1,

ş

qupx1, x2q dP0px2q “ 1 and
ż

xiqupx1, x2qdpP0 ˆ P0qpx1, x2q “

ż

xidP0pxiq “ 0 P Rmnd (2.33)

for i “ 1, 2.

Lemma 2.9. For x P Rmk, let xj P Rk, j “ 1, . . . ,m, denote the projection of x on
the coordinates tpj ´ 1qk ` 1, . . . , jku. Let Λ P Rkˆk a positive definite symmetric
matrix and Λbm “ DiagpΛ, . . . .,Λq P Rmkˆmk. For h P Rk, let ph denote the density
of a Nph,Λq distribution with respect to the Lebesgue measure on Rk, let pmh pxq :“
Πm

j“1phpxjq and let Pm
h denote the probability measure corresponding to the Lebesgue

density pmh . Define for M ą 0,

QpM,Σq :“

"

q PL1pRmk, Pm
0 q : q ě 0,

q
ş

qpxqdPm
0 pxq

ď M Pm
0 ´ a.e.,

ż

x qpxqdPm
0 pxq “ 0, and

ş

xxJ qpxqdPm
0 pxq

ş

qpxqdPm
0 pxq

“ Σ

*

.

Furthermore, let H a Np0,Υq-distributed random vector in Rk for some nonnegative
definite matrix ΥRkˆk. Then,

sup
qPQ

ş

EHΠm
j“1

pH

p0

`

xj
˘

qpxqpm0 pxqdx
ş

Πm
j“1EH pH

p0
pxjq qpxqpm0 pxqdx

“

ş

EHΠm
j“1

pH

p0

`

xj
˘

dNp0,Σqpxq
ş

Πm
j“1EH pH

p0
pxjq dNp0,Σqpxq

.
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Proof. We start by introducing some short-hand notations for convenience. Write,
for x P Rvk, v P t1,mu,

ϕvpxq “ EH p
v
H

pv0
pxq “ EHeH

J
p
řv

j“1 Λ´1xj
q´ v

2 }Λ´1{2H}
2
2 ,

with ϕmpxqpm0 pxq “ EHpmHpxq, x “ px1, . . . , xmq, and Πm
j“1ϕ1pxjq “ Πm

j“1EHpHpxjq.

Let λ ” λmk denote the Lebesgue measure on Rmk, define for r P L1pRmk, λq non-
negative,

F prq :“

ş

ϕmpxq rpxqdx
ş

m

Π
j“1

ϕ1pxjq rpxqdx
P r0,8s, (2.34)

and set Gpqq :“ F pqpm0 q. Let Q ” Qp1,Σq. Since Gpcqq “ Gpqq for any constant
c P R, it suffices to show that

G “ sup
qPQ

Gpqq “

ş

ϕmpxq dNp0,Σqpxq

ş

m

Π
j“1

ϕ1pxjq dNp0,Σqpxq

.

We will proceed through the following steps.

1. First, we show that the supremum G is finite and attained in Q, i.e. by the
Banach–Alaoglu theorem there exists q P Q such that Gpqq “ G.

2. We will then consider Q2, the class of all Q P L1pR2km, λq such that x1 ÞÑ

Qpx1, x2q is in Q for Pm
0 -almost every x2 P tx1 ÞÑ Qpx1, x2q ı 0u and x2 ÞÑ

Qpx1, x2q is in Q for Pm
0 -almost every x1 P tx2 ÞÑ Qpx1, x2q ı 0u. It holds that

G2pQq :“

ş

ϕmpx1qϕmpx2q pm0 px1qpm0 px2qQpx1, x2qdpx1, x2q

ş

m

Π
j“1

ϕ1pxj1qϕ1pxj2q pm0 px1qpm0 px2qQpx1, x2qdpx1, x2q

satisfies sup
QPQ2

G2pQq “ G
2
.

3. Next, we show that px1, x2q ÞÑ qpx1´x2?
2

qqpx1`x2?
2

q is a maximizer of G2 whenever

q P Q is a maximizer of G. This is a consequence of the “conjugacy” between
the distribution Pm

H and the distribution of H.

4. Then it will be shown that for any maximizer Q of G2, x1 ÞÑ Qpx1, x2q maxi-
mizes G for Pm

0 -almost every x2.

5. Combining the above steps, we obtain that for any maximizer q, an appropri-
ately rescaled convolution of q with itself is also a maximizer, i.e.

F p
?
2pqpm0 q ˚ pqpm0 qp

?
2 ¨qq “ G,

where ˚ denotes convolution.
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6. By repeated application of Step 5 and the central limit theorem, the result
follows.

Step 1. For q P Q, define the normalizing constant as Cq :“ p
ş

qdPm
0 q´1. As linear

combinations and products of nonnegative convex functions are convex, the mapping

x ÞÑ
m

Π
j“1

EHeH
JΛ´1xj

´ 1
2 }Λ´1{2H}

2
2

is convex. The latter fact and Jensen’s inequality imply that

ş

EHeH
J

p
řm

j“1 Λ´1xj
q´ 1

2 }Λ´1{2H}
2
2qpxqdPm

0 pxq

ş

m

Π
j“1

EHeH
JΛ´1xj´ 1

2 }Λ´1{2H}22 qpxqdPm
0 pxq

ď

Cq

ş

EHeH
J

pΛ´1 řm
j“1 xj

q´ 1
2 }Λ´1{2H}

2
2qpxqdPm

0 pxq
m

Π
j“1

EHeCq

ş

HJΛ´1xjqpxqdPm
0 pxq´ 1

2 }Λ´1{2H}22

.

Since X “ pX1, . . . , Xmq „ qdPm
0 has mean 0, the denominator on the left-hand side

is equal to pEHe´ 1
2 }Λ´1{2H}

2
2qm ą 0. This means that the denominator in the above

display is bounded away from 0 over q. Since qCq ď M a.e., the numerator is bounded
above by M

ş

EHpmHpxqdx “ M . We can conclude that the supremum of (2.34) over
qpm0 , q P Q is finite. It is easy to construct a q˚ P Q such that Gpq˚q ą 0, so we can
conclude that 0 ă G ă 8.

Let qt be a maximizing sequence for G, rescale qt such that
ş

qtP
m
0 “ 1 and note that

qt P Q and qt is contained in the L8pRmkq ball of radius M . By the Banach–Alaoglu
theorem the L8pRmkq ball of radius M is weak-˚-compact (associating the dual of
L1pRmk, λq with L8pRmkq). Therefore, there exists a subsequence, again denoted

by qt, along which qt
wk´˚

Ñ q for some q in the L8pRmkq ball of radius M . Since
x “ px1, . . . , xmq ÞÑ ϕmpxq is in L1pRmk, Pm

0 q, the weak-˚-convergence implies that
ż

ϕm pxq qtpxqdPm
0 pxq Ñ

ż

ϕm pxq qpxqdPm
0 pxq.

Similarly,
ż

Πm
j“1ϕ1

`

xj
˘

qtpxqdPm
0 pxq Ñ

ż

Πm
j“1ϕ1

`

xj
˘

qpxqdPm
0 pxq P p0,8q,

where the boundedness away from 0 has been concluded earlier on in the proof. We
have now obtained that

G “ lim
tÑ8

ş

ϕm pxq qtpxqdPm
0 pxq

ş

Πm
j“1ϕ1 pxjq qtpxqdPm

0 pxq
“

ş

ϕm pxq qpxqdPm
0 pxq

ş

Πm
j“1ϕ1 pxjq qpxqdPm

0 pxq
. (2.35)

Since qt P Q, we have
ż

x qtpxqdPm
0 pxq “ 0 and

ż

xxJ qtpxqdPm
0 pxq “ Σ for all t.
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As x ÞÑ 1, x ÞÑ x and x ÞÑ xxJ are all Pm
0 integrable, the weak-˚-convergence yields

that
ş

qpxqdPm
0 pxq “ 1,

ş

x qpxqdPm
0 pxq “ 0 and Σ “

ş

xxJ qpxqdPm
0 pxq. Since we

have that
ş

ζpxqqtpxqdPm
0 pxq Ñ

ş

ζpxqqtpxqdPm
0 pxq for every continuous and bounded

function ζ : Rmk Ñ Rmk, the Portmanteau lemma yields that
ş

B
qdPm

0 ě 0 for all

open sets B so q ě 0 almost everywhere. We conclude that Gpqq “ G and q P Q.

Step 2. Let Q P Q2 be given. By definition, the marginals x1 ÞÑ Qpx1, x2q, x2 ÞÑ

Qpx1, x2q are in Q Pm
0 -a.e. and EHpHpxqdx “ ϕmpxqpm0 pxqdx is equivalent to the

Lebesgue measure, hence

G2pQq “

ż

ϕmpxqpm0 px1q

ż

ϕmpxq pm0 px2qQpx1, x2qdx2dx1

ď G

ż

ϕmpxqpm0 px1q

ż

Πm
j“1ϕ1pxj2qpm0 px2qQpx1, x2qdx2dx1

ď G
2
ż

Πm
j“1ϕ1pxj2qpm0 px2q

ż

Πm
j“1ϕ1pxj1qpm0 px1qQpx1, x2qdx1dx2.

Let q P Q be a maximizer of G. Then, the above steps hold with equality for
Qpx1, x2q :“ qpx1qqpx2q. For almost every x1 P tq ‰ 0u ” tx2 ÞÑ Qpx1, x2q ı 0u,

Qpx1, x2q
ş

Qpx1, x2qdPm
0 px2q

“
qpx2q

ş

qpx2qdPm
0 px2q

ď M.

By similar calculations, the rescaled marginal has the correct mean and covariance.
By symmetry, we conclude that the marginals of px1, x2q ÞÑ qpx1qqpx2q belong to Q,
and it is a maximizer of G2 over Q2.

Step 3. Consider a maximizer q P Q of G. By a change of variables w1 “ px1´x2q{
?
2

and w2 “ px1 ` x2q{
?
2,

ż

ϕmpx1qϕmpx2qq

ˆ

x1 ´ x2
?
2

˙

q

ˆ

x1 ` x2
?
2

˙

pm0 px1qpm0 px2qdpx1, x2q “

ż

ϕm

´w1 ` w2
?
2

¯

ϕm

´w1 ´ w2
?
2

¯

qpw1qqpw2qpm0

ˆ

w1 ´ w2
?
2

˙

pm0

ˆ

w1 ` w2
?
2

˙

dpw1, w2q.

Since pm0 is a Gaussian density, pm0

´

w1´w2?
2

¯

pm0

´

w1`w2?
2

¯

“ pm0 pw1qpm0 pw2q. This

follows from direct computation, but it characterizes Gaussian functions in general,
see e.g. Theorem 1 in [55]. Likewise, for H 1 an independent copy of the centered

Gaussian random vector H, H´H1
?
2

and H`H1
?
2

are independent and furthermore equal
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in distribution to H. Therefore,

ϕm

´w1 ` w2
?
2

¯

ϕm

´w1 ´ w2
?
2

¯

“ EpH,H1
qe

HJΛ´1 řm
j“1

w
j
1`w

j
2?

2
`pH1

q
JΛ´1 řm

j“1

w
j
1´w

j
2?

2
´ m

2 }Λ´1{2H}
2
2´ m

2 }Λ´1{2H1
}
2
2

“ EpH,H1
qe

´

H`H1
?

2

¯J
Λ´1 řm

j“1 wj
1´ m

2 }Λ´1{2 H`H1
?

2
}
2
2`

´

H´H1
?

2

¯J
Λ´1 řm

j“1 wj
2´ m

2 }Λ´1{2 H´H1
?

2
}
2
2

“ ϕmpw1qϕmpw2q.

Since px1, x2q ÞÑ qpx1qqpx2q was established to be a maximizer of G2 in the second
step, the above establishes that px1, x2q ÞÑ qpx1´x2?

2
qqpx1`x2?

2
q is a maximizer of G2

also.

Step 4. Next, we will show that for a maximizer Q P Q2 of G2, x ÞÑ Qpx,wq is in Q
and is a maximizer of G for almost every w. We prove this by contradiction. Take
an arbitrary measurable set A Ă Rmk s.t. λpAq ą 0. Note that Gaussian measures
are equivalent to the Lebesgue measure, so both EHPm

H pAq and Πm
j“1EHP 1

HpAq are
bounded away from zero. Suppose that for Q P Q2 a maximizer of G2 it holds that

ż

A

ϕmpwq

ż

ϕmpxqQpx,wqdPm
0 pxqdPm

0 pwq

ă G

ż

A

ϕmpwq

ż

Πm
j“1ϕ1

`

xj
˘

Qpx,wqdPm
0 pxqdPm

0 pwq. (2.36)

Since the marginal w ÞÑ Qpx,wq is in Q for almost every x P tw ÞÑ Qpx,wq ı 0u,

G
2
ż

Πm
j“1ϕ1

`

wj
˘

Πm
j“1ϕ1

`

xj
˘

Qpx,wqpdPm
0 ˆ Pm

0 qpx,wq

ě G

ż

Πm
j“1ϕ1

`

xj
˘

ż

ϕmpwqQpx,wqdPm
0 pwqdPm

0 pxq.

Likewise, x ÞÑ Qpx,wq is in Q for almost every u P Ac X tx ÞÑ Qpx,wq ı 0u, so

G

ż

Πm
j“1ϕ1

`

xj
˘

ż

Ac

ϕmpwqQpx,wqdPm
0 pwqdPm

0 pxq

ě

ż

Ac

ϕmpwq

ż

ϕmpxqQpx,wqdPm
0 pxqdPm

0 pwq.

Together with (2.36) and the second to last display, we obtain that

G
2
ż

Πm
j“1ϕ1

`

wj
˘

Πm
j“1ϕ1

`

xj
˘

Qpx,wqpdPm
0 ˆ Pm

0 qpx,wq

ą

ż ż

ϕm pxqϕmpwqQpx,wqdPm
0 pwqdPm

0 pxq,

which contradicts Q maximizing G2.
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Step 5. Let q P Q be a maximizer of G over Q, where q is normalized such that
ş

qdPm
0 “ 1. Define q2 as

q2pxq :“

ż

q

ˆ

x´ w
?
2

˙

q

ˆ

x` w
?
2

˙

dPm
0 pwq.

The map x ÞÑ q
´

x´w?
2

¯

q
´

x`w?
2

¯

:“ Qpx,wq is in Q for almost all w s.t. Qpx,wq ı 0

and as a consequence of the previous step, it is a maximizer of G for such w. Hence,
q2pxq is a maximizer of G:

ż

ϕmpxqq2pxqdPm
0 pxq “

ż ż

ϕmpxqq

ˆ

x´ w
?
2

˙

q

ˆ

x` w
?
2

˙

dPm
0 pxq dPm

0 pwq

“ G

ż

Πm
j“1ϕ1

`

xj
˘

q2pxqdPm
0 pxq.

Let h P L1pRmk, pm0 q. Using again that pm0

´

w1´w2?
2

¯

pm0

´

w1`w2?
2

¯

“ pm0 pw1qpm0 pw2q

and applying a change of variable w “
?
2w ´ x, we get

ż

hpxqq2pxqpm0 pxqdx “

ż ż

hpxqq

ˆ

x´ w
?
2

˙

q

ˆ

x` w
?
2

˙

pm0

ˆ

x´ w
?
2

˙

pm0

ˆ

x` w
?
2

˙

dxdw

“

ż ż

hpxqq
´?

2x´ w
¯

q pwq pm0

´?
2x´ w

¯

pm0 pwq dx
?
2dw

“

ż

hpxq
?
2pqpm0 q ˚ pqpm0 qp

?
2xqdx,

where f ˚ g denotes convolution. Therefore, qpm0 being a probability density with
mean 0 and covariance Σ implies that q2p

m
0 is too. So, q2 P Q and maximizes G.

Step 6. Consider now q4 P Q defined by q4pxq :“
ş

q2

´

x´w?
2

¯

q2

´

x`w?
2

¯

dPm
0 pwq.

Since q2 P Q is a maximizer, the above steps imply that Gpq4q “ G and by a similar
computation as above,

q4pxqpm0 pxq “
?
4

4
˚ pqpm0 qp

?
4xq,

where
4
˚r denotes r ˚ r ˚ r ˚ r. Repeating the above steps, we obtain a maximizer

q2N P Q of G for N P N which satisfies

r2N pxq :“ q2N pxqpm0 pxq “

ż

q2N´1

ˆ

x´ w
?
2

˙

q2N´1

ˆ

x` w
?
2

˙

pm0 pxqpm0 pwqdxdw

“
?
2

ż

q2N´1

´?
2x´ w

¯

pm0

´?
2x´ w

¯

q2N´1 pwq dPm
0 pwq

“
?
2 pq2N´1pm0 q ˚ pq2N´1pm0 q p

?
2xq.
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We conclude that

r2N pxq “ 2N{2
2N

˚ pqpm0 qp2N{2xq

and
ş

ϕmpxqr2N pxqdx
ş

Πm
j“1ϕ1pxjqr2N pxqdx

“ Gpq2N q “ G

for all N P N. Let r “ qpm0 . The characteristic function of r2N equals, for s P Rmk,

Ψr2N psq :“

ż

e´isJxr2N pxqdx “

ż

e
´i sJ

2N{2 x 2N

˚ r pxq dx “

´

ż

e
´i sJ

2N{2 x
rpxqdx

¯2N

“

ˆ
ż
ˆ

1 ´ i
s

2N{2
x´

psJxq2

2N`1
`O

ˆ

psJxq3

23N{2

˙˙

rpxqdx

˙2N

.

Since r has mean 0, covariance Σ and bounded third moment (by the boundedness

of q and pm0 dλ possessing a third moment), Ψr2N psq Ñ e´ 1
2 s

JΣs. Consequently,
r2Ndλ converges weakly to a Gaussian distribution with mean 0 and covariance Σ. In
particular,

ş

ϕr2Ndλ Ñ
ş

ϕdNp0,Σq for all ϕ P C8pRmkq, so

G “ lim
NÑ8

ş

ϕmpxq r2N pxqdx
ş

Πm
j“1ϕ1pxjq r2N pxqdx

“

ş

ϕmpxq dNp0,Σqpxq
ş

Πm
j“1ϕ1pxjq dNp0,Σqpxq

,

which finishes the proof.

2.3 A complete lower bound for testing under band-
width constraints

The main results of this section come in the form of a single theorem describing the
lower bounds for the detection threshold distributed testing protocols that satisfy a
bandwidth constraint, both with and without shared randomness. The optimality of
the theorem is established in Section 3.1, by providing both a shared randomness and
local randomness distributed testing protocol, which attain the respective rates posed
by the lower bounds. Together, these results yield Theorem 1.1.

Theorem 2.3. For each α P p0, 1q there exists a constant cα ą 0 (depending only on
α) such that if

ρ2 ă cα

?
d

n

˜

c

d

b^ d

ľ?
m

¸

, (2.37)

then in the shared randomness protocol case

inf
TPT

pbq

SR

RpHρ, T q ą α for all n,m, d, b P N.
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Similarly, for

ρ2 ă cα

?
d

n

ˆ

d

b^ d

ľ?
m

˙

, (2.38)

we have under the local randomness protocol that

inf
TPT

pbq

LR

RpHρ, T q ą α for all n,m, d, b P N.

Remark 4. The proof of the theorem reveal that the theorem holds for other classes
of alternatives as well. In particular, the lower bounds hold for any Hρ such that

Np0, c
´1{2
α d´1ρ2IdqpHρq ď α for cα ą 0 small enough.

The above theorem implies that if (2.37) holds, no consistent shared randomness
distributed testing protocol with communication budget b bits per machine exists
for the hypotheses H0 : f “ 0 versus the alternative H1 : }f}2 ě ρ. In other
words, no shared randomness distributed test manages to consistently distinguish all
signals from 0 if the signals are smaller than the right-hand side of (2.37). When
considering distributed testing protocols with only local randomness, the detection
threshold (2.38) is more stringent than the shared randomness threshold (2.37) for
certain values of d, m and b. Theorem 3.1 in Section 3.1 affirms that, in these cases,
the best local randomness protocols have a strictly worse performance compared to
the best shared randomness protocols.

Next, we provide a proof of the theorem. As a starting point, we aim to apply
Lemma 2.12. To that extent, we will verify its conditions and as a “data processing”
step, we bound the quantities Au and Bπ

u. To start of, note that if the Markov kernels
tKjumj“1 are bandwidth constraint in the sense of Definition 2, the product kernel

is a measure on the finite space Y :“
Âm

j“1 Ypjq and consequently its corresponding
forward-backward kernel equals

qupx1, x2q “
ÿ

yPY

Kpy|x1, uq

PY |U“u
0 pyq

Kpy|x2, uq,

which is clearly bounded since K ď 1.

Next, we turn to bounding the factor Bπ
u, which functions the same for the shared-

and local randomness classes of distributed protocols. No “strong” data processing
argument is required here: The proof boils down to using the fact that conditional
expectation contracts the L2-norm and straightforward calculations.

Lemma 2.10. Consider Bπ
u as in (2.27) with π “ Np0, ρ2c

´1{2
α d´1Γq as in Lemma 2.8.

It holds that

Bπ
u ď exp

ˆ

C
mn2ρ4

cαd

˙

.



52 2. Impossibility theorems for distributed testing

Proof. Since conditional expectation contracts the L2pP0q-norm,

m

Π
j“1

EY pjq
|U“u

0 E0

„

Lπ

´

Xpjq
¯

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ȷ2

ď
m

Π
j“1

EXpjq

0

„

Lπ

´

Xpjq
¯2
ȷ

.

We now proceed to bound the first factor in the product on the right-hand side of the
display above, which for a positive semi-definite choice of Γ equals

ż

EXpjq

0 exp

˜

p

a

Γpf ` gqqJ

n
ÿ

i“1

X
pjq

i ´
n

2

›

›

›

a

Γf
›

›

›

2

2
´
n

2

›

›

›

a

Γg
›

›

›

2

2

¸

dN

ˆ

0,
ρ2

?
cαd

I2d

˙

pf, gq.

By direct computation involving the moment generating function of the normal dis-
tribution, the latter display equals

ż

exp

ˆ

nρ2
?
cαd

zJΓz1

˙

dNp0, I2dqpz, z1q.

We aim to apply the moment generating function of the Gaussian chaos, e.g. Lemma
6.2.2 in [210] to the above display. Using that ρ2 satisfies (2.37) or (2.38) and since

}Γ} “ 1 by the fact that Γ is idempotent, nρ2

c
1{2
α d

ď
?
cα with cα ą 0 chosen small

enough, the aforementioned result yields that there exists a constant C ą 0

m

Π
j“1

EXpjq
|U“u

0

„

Lπ

´

Xpjq
¯2
ȷ

ď exp

ˆ

Cc´1
α

mn2ρ4

d

˙

, (2.39)

where C ą 0 is universal.

The information lost by compressing a d dimensional observation Xpjq into a b-bit
transcript Y pjq is captured in a data processing inequality for the matrix Ξu and
its trace, which comes in the form of Lemma 2.11. This can be seen as a “matrix
analogue” of the (strong) data processing arguments for the mutual information used
in Section 2.1.1 and Section 2.1.2.

Lemma 2.11. Consider the matrix Ξj
u given in (2.24). It holds that Ξj

u ď nId and

TrpΞj
uq ď 2 logp2qnplog2 |Ypjq|q.

In particular, for log2 |Ypjq| ď b,

TrpΞj
uq ď

ˆ

2 logp2q
b

d

ľ

1

˙

nd.

Both statements of the lemma are known results, see e.g. Lemma 3 in [227] and
Theorem 2 of [30], respectively. The “strong” data processing part of the lemma
concerns the trace of the covariance, where the loss of information due to Y pjq being
constrained to take values in a b-bit sample space is captured. When b ! d, the latter
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data processing inequality is stronger than the data processing inequality implied
by the statement Ξj

u ď nId. We provide a proof that is adapted to our setting in
Section 2.5.3 of the chapter appendix, for the sake of completeness. The proof can be
seen to it crucially rely on sub-Gaussianity, this time of the data, which is reminiscent
of the relationship between sub-Gaussianity of the mixture likelihood and the strong
data-processing inequalities for the mutual information of Section 2.1.

Combining Lemma 2.8 with the above assertions, we obtain the following lower bound.

Lemma 2.12. Let T b denote the class of b-bit bandwidth constrained shared- or
local randomness distributed testing protocols and let ρ satisfy either (2.37) or (2.38),
respectively. For any α P p0, 1q, there exists cα ą 0 such that for all T P T pbq it holds
that

inf
TPT

RpHρ, T q ą α ´ πpHc
ρq,

where π “ Np0, c
´1{2
α d´1ρ2Γq for a symmetric, idempotent matrix Γ P Rdˆd with

d{2 ď rankpΓq ď d.

Remark 5. The lemma, combined with the earlier drawn conclusion that for any
α P p0, 1q there exists cα ą 0 small enough such that πpHc

ρq ď α (recall (2.28))
finishes the proof of Theorem 2.3. The lemma also allows us to derive lower bounds
for other alternative hypotheses Hρ, as long as πpHc

ρq can be shown to be small. For

example, for the class of alternatives tf P Rd : }f}1 ě ρu.

Proof. By Lemma 2.8, what left to show is that, for ρ satisfying (2.37) in the case
of shared randomness and (2.38) in the case of local randomness, with cα ą 0 small
enough, the conditions required to obtain (2.31) and (2.32) hold (respectively) and
the respective expressions for Au and Bπ

u are sufficiently close to 1. The latter follows
from Lemma 2.10. By the first assertion of Lemma 2.11,

}Ξu} ď

m
ÿ

j“1

}Ξj
u} ď mn.

For shared randomness protocols, ρ2 is assumed to satisfy (2.37), which yields

ϱ2}Ξu} ď
mnρ2
?
cαd

ď
?
cα. (2.40)

By the third assertion of Lemma 2.11,

TrpΞuq “

m
ÿ

j“1

TrpΞj
uq ď mint2 log 2 ¨

b

d
, 1umnd. (2.41)

For local randomness protocols, (2.38) and Lemma 2.41 implies

2ϱ2
?
cαd2

TrpΞuq ď
mint2 log 2 ¨ b

d , 1umnρ2
?
cαd

ď 2 log 2
?
cα. (2.42)
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This verifies the conditions of Lemma 2.8. We also can use (2.41) to bound Au in 2.8,
from which we obtain that

inf
TPTpubpbq

RpHρ, T q ě 1 ´

c

2pe
Cp

mn2ρ4

cαd `
m2n2ρ4pb^dq

cαd2
q

´ 1q ´ πpHc
ρq

ě 1 ´

b

2pe2Ccα ´ 1q ´ πpHc
ρq ą α ´ πpHc

ρq,

whenever ρ2 satisfies (2.37) for cα ą 0 small enough. This finishes the proof for the
shared randomness case. In the case of local randomness, we similarly obtain that

inf
TPTprivpbq

RpHρ, T q ě 1 ´

c

2pe
Cp

mn2ρ4

cαd `
m2n2ρ4pb^dq2

cαd3
q

´ 1q ´ πpHc
ρq

ě 1 ´

b

2pe2Ccα ´ 1q ´ πpHc
ρq ą α ´ πpHc

ρq,

for ρ2 satisfying (2.38) and cα ą 0 small enough.

2.4 A complete lower bound for testing under dif-
ferential privacy constraints

The primary outcome of this section is presented as a theorem outlining the lower
bound rate for the detection threshold for distributed testing protocols that adhere
to differential privacy constraints, with and without the use of shared randomness.
The optimality of the lower bounds is confirmed in Chapter 3, by introducing dis-
tributed differentially private testing protocols for both the shared randomness and
local randomness classes that achieve the rates specified by the theorem (up to poly-
logarithmic terms).

The methods constructed in Section 3.2 that attain the rates of the theorem are pϵ, 0q-
differentially private protocols matching the rate (up to poly-logarithmic terms) for
the range pnmq´1 ă ϵ ď n´1{2. Whenever ϵ Á 1{

?
n, within the class of distributed

pϵ, δq-differential privacy protocols, we derive matching upper bounds for Theorem 2.4
for δ satisfying logp1{δq — nmd. Together with the upper bound of Theorem 3.2, the
theorem below yields Theorem 1.2. The lower bound applies to all pϵ, δq-differentially
private protocols where δ is small enough in comparison to m, d, n and ϵ. The range
ϵ considered in the upper bound guarantees that we can set logp1{δq — nmd.

Theorem 2.4. For each α P p0, 1q there exists a constant cα ą 0 (depending only on
α), such that for any n,m, d P N and

0 ă ϵ ď 1 and 0 ď δ ď

´

cαm
´3{2 ^ nd´1ϵ2 ^ n1{2d´1{2ϵ2

¯1`p

for some p ą 0,

(2.43)
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the condition

ρ2 ă cα

˜

d

mn
?
nϵ2 ^ 1

?
nϵ2 ^ d

ľ

˜ ?
d

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

, (2.44)

implies
inf

TPT
pϵ,δq

SR

RpHρ, T q ą α.

Similarly, for any n,m, d P N and ϵ, δ satisfying (2.43), the condition

ρ2 ă cα

˜

d
?
d

mnpnϵ2 ^ dq

ľ

˜ ?
d

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

, (2.45)

implies that
inf

TPT
pϵ,δq

LR

RpHρ, T q ą α.

Remark 6. As in the bandwidth constraint case, the proof of the theorem reveals
that the theorem holds for other classes of alternatives as well. In particular, the

lower bounds hold for any Hρ such that Np0, c
´1{2
α d´1ρ2IdqpHρq ď α for cα ą 0 small

enough, whilst ρ satisfies (2.44) or (2.45).

Next, we provide a proof for the theorem. The first part of the proof follows a
similar structure as that of the bandwidth constrained problem of the previous sec-
tion, whose notation we shall also use here. We aim to use the Brascamp-Lieb
type inequality of Section 2.2, by employing Lemma 2.8. To that extent, consider

π “ Np0, c
1{2
α d´1{2ρ2Γq for a symmetric idempotent matrix Γ P Rdˆd and the corre-

sponding Bayes risk

Pm
0 K̆T `

ż

Pm
f K̆p1 ´ T qdπpfq, (2.46)

where K̆ is the product kernel, suppressing (integrating out) the shared randomness
in the notation, corresponding to a distributed protocol T with pϵ, δq-DP Markov
kernels tK̆jumj“1. A first obstacle to deploying Lemma 2.8 to the Bayes risk above

is that the forward-backward channel corresponding to K̆, px1, x2q ÞÑ q̆upx1, x2q as
defined in (2.20) is not necessarily bounded. This issue is specific to δ ą 0, as for
pϵ, 0q-DP protocols the induced Radon-Nikodym derivatives are always bounded, see
Lemma 2.34. Lemma 2.32 combined with Lemma 2.30 in the chapter appendix yield
that for all α P p0, 1q there exists pϵ, 3δq-DP Markov kernels tK̃jumj“1 such that the
Bayes risk is bounded from below by

Pm
0 K̃T `

ż

Pm
f K̃p1 ´ T qdπpfq ´ α, (2.47)

and with a bounded forward-backward channel.
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Another issue suffered by pϵ, δq-DP Markov kernels with δ ą 0, is that one has very
poor control over the higher moments of the local likelihoods

Lj
π,upyq :“

dPπK
jp¨|Xpjq, uq

dP0Kjp¨|Xpjq, uq
pyq,

which are required to sufficiently bound the corresponding quantity Bu, as defined
in (2.27). In order to overcome this, we will use a coupling argument that allows a
comparison of P0K

j with PπK
j . This lemma forms an essential building block for our

data processing argument for Bu, but also allows us to overcome the aforementioned
hurdles preventing the direct application of Lemma 2.8.

Lemma 2.13. Let Kj satisfy a pϵ, δq-differential privacy constraint for 0 ă ϵ ď 1.

Consider π “ Np0, c
1{2
α d´1{2ρ2Γq, with ρ2 satisfying (2.44) or (2.45), with ϵ ď 1{

?
n

and δ ď cαpm´1 ^ ϵq.

For all measurable sets A it holds that

PπK
j
´

A|Xpjq, u
¯

ď

´

1 ` c1{4
α m´1{2

¯

P0K
j
´

A|Xpjq, u
¯

` 2δ `
cα
m3{2

(2.48)

and

PπK
j
´

A|Xpjq, u
¯

ě

´

1 ´ c1{4
α m´1{2

¯

P0K
j
´

A|Xpjq, u
¯

´ 2δ ´
cα
m3{2

(2.49)

for all cα ą 0 small enough.

We defer the proof of the lemma to Section 2.4.2. The lemma that follows can be
seen as a consequence of the previous lemma.

Lemma 2.14. Let π “ Np0, c
´1{2
α d´1{2ρ2Γq for an arbitrary positive semidefinite

Γ and let tKjumj“1 correspond to a pϵ, δq-DP distributed protocol T for the testing

problem of (2.1) (i.e. Kj satisfies (1.5)). Furthermore, assume that ϵ ď 1{
?
n and

define for j “ 1, . . . ,m the events

Aj,u :“

"

y : |Lj
π,upyq ´ 1| ď

4m1{2

α

*

and define

K̃jpB|x, uq :“ KjpB XAj,u|x, uq `KjpAc
j,u|x, uq

P0K
jpB XAj,u|Xpjq, uq

P0KjpAj,u|Xpjq, uq
.

Suppose in addition that δ ď cα{m. Then,

(a) The collection tK̃jumj“1 are pϵ, 2δq-DP Markov kernels.

(b) It holds P0K̃
jp¨|Xpjq, uq-a.s. that

L̃j
π,upyq :“

ż

dK̃jpy|x, uq

dP0K̃jpy|Xpjq, uq
dPn

π pxq
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satisfies

|L̃j
π,upyq ´ 1| ď

5m1{2

α
. (2.50)

(c) It holds that

Pm
0 KT `

ż

Pm
f Kp1 ´ T qdπpfq ě Pm

0 K̃T `

ż

Pm
f K̃p1 ´ T qdπpfq ´ α,

where K̃ is the product kernel corresponding to tK̃jumj“1.

Applying the lemma above to the Bayes risk in (2.47), (with the roles of Kj and K̃j

swapped) we obtain that the aforementioned expression is lower bounded by

Pm
0 KT `

ż

Pm
f Kp1 ´ T qdπpfq ´ 2α, (2.51)

whereK denotes the product kernel of an pϵ, 6δq-DP distributed protocol tT, tKjumj“1,PUu.
Note that the shared randomness component is still suppressed (integrated out) in
the notation above. Since K̃ has a bounded forward-backward channel, so does K,
also when conditioned on the shared randomness component. That is, Kp¨|x, uq has

a PY |U“u
0 -a.s. uniformly bounded Radon-Nikodym derivative

x ÞÑ
dKp¨|x, uq

dP0Kp¨|X,uq
pyq.

Consequently, the Brascamp-Lieb machinery applies (in particular Lemma 2.8), from
which we obtain that for all pϵ, δq-DP kernels tK̆jumj“1, there exist pϵ, 6δq-DP kernels

tKjumj“1 such that

Pm
0 K̆T ` sup

fPHρ

Pm
f K̆p1´ T q ě 1´

d

p1{2q

ż

pAuBπ
u ´ 1q dPU puq ` πpHc

ρq ´α, (2.52)

where tKjumj“1 satisfies (2.50), with π “ Np0, c
´1{2
α d´1{2ρ2Γq with Γ any symmetric,

idempotent matrix with rank proportional to d. We highlight here that the quantities
Au and Bπ

u correspond to the quantities as defined in (2.26) and (2.27), respectively,
with the underlying kernels tKjumj“1 corresponding to the kernels “approximating”

tK̆jumj“1. Next, we aim to apply Lemma 2.8, for which we need to sufficiently bound
Bπ

u and Au for shared- and local randomness protocols.

We start with the bound on Au, for which we proceed by a data processing argument
for the matrix Ξu under the pϵ, 6δq-differential privacy constraint. This comes in the
guise of Lemma 2.15 below. Its proof is deferred to the end of the section.
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Lemma 2.15. Let 0 ă ϵ ď 1 and let Y pjq be a transcript generated by a pϵ, δq-
differential privacy constraint distributed protocol, with 0 ă ϵ ď 1 and 0 ď δ ď
``

nd´1 ^ n1{2d´1{2
˘

ϵ2
˘1`p

for some p ą 0. The matrix Ξj
u as defined in (2.24)

satisfies
Tr

`

Ξj
u

˘

ď pCn2ϵ2q ^ pndq

for a fixed constant C ą 0.

The lemma, combined with the first assertion of Lemma 2.11 implies in particular
that }Ξj

u} ď pCn2ϵ2q ^ n, as Ξj
u is symmetric and positive definite. Combining this

with (2.44) and the triangle inequality, we obtain

ϱ2}Ξu} ď ϱ2
m
ÿ

j“1

}Ξj
u} ď

m
`

pCn2ϵ2q ^ n
˘

ρ2
?
cαd

ď C
?
cα. (2.53)

Similarly, (2.45) yields

2ρ2
?
cαd2

Tr
`

Ξj
u

˘

ď
m
`

pCn2ϵ2q ^ pndq
˘

ρ2
?
cαd2

ď C
?
cα{

?
d. (2.54)

The last two displays together finish the verification of the conditions of Lemma 2.8.
The above data processing inequalities for Ξj

u and bounds on ρ2 also yield a bound on
Au as defined in Lemma 2.8. In case of shared randomness protocols, using (2.31), (2.53),
Lemma 2.15 and (2.44), we obtain

Au ď exp
`

C2cα
˘

.

In case of local randomness protocols, combining (2.32) with (2.54) and (2.45) yields
the above bound on Au.

Next, we turn to Bπ
u. Lemma 2.10 proven in the previous section implies Bπ

u ď

exppCmn2ρ4

d q. Whenever ϵ ą n´1{2, this bound is actually tight in terms of rate in

the exponent, but whenever ϵ ď n´1{2 a much more involved data processing argument
is needed than the one used in the bandwidth constraint case, in conjunction with
Lemma 2.14. We provide a bound in the form of Lemma 2.16 below. Both proofs are
based on coupling arguments, where the two different couplings constructed result in
the different rates observed in the condition of the theorem.

Lemma 2.16. Let π “ Np0, d´1ρ2Γq, with Γ P Rdˆd a symmetric idempotent matrix,

ρ2 ď cαd
1{2{p

?
mn

3
2 ϵq _ cα{pmn2ϵ2q

and tKjumj“1 correspond to a pϵ, δq-DP distributed protocol with transcripts Y pjq such

that 0 ă ϵ ď 1, δ À cαpm´1 ^ ϵq and

|Lj
π,upyq ´ 1| ď

5m1{2

α
P0K

jp¨|Xpjq, uq-a.s.
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Then, there exists a universal constant C ą 0 such that

Bπ
u ď eC

?
cα . (2.55)

Combining the lemma above with the bound Bπ
u ď exppCmn2ρ4

d q (which follows from
Lemma 2.10), we obtain that (2.55) holds whenever ρ satisfies (2.37) or (2.38). Com-
bining this with the bounds on Au derived earlier, and following a similar calculation
as in the proof of Lemma 2.12, we obtain the lemma below. The proof of Theorem 2.4
is finished by noticing that for the alternative hypothesis in question, πpHc

ρq ď α for
cα small enough (see also (2.28)). After stating Lemma 2.17 below, we finish the
section by providing the proofs for the Lemmas 2.14, 2.15 and 2.16.

Lemma 2.17. Let T denote the class of shared- or local randomness distributed
testing protocols satisfying a pϵ, δq-differential privacy constraint for 0 ă ϵ ď 1,
0 ď δ ď

`

cαm
´1 ^ cαϵm

´1{2 ^ nϵ2 ^ n2d´1ϵ2 ^ n3{2d´1{2ϵ2
˘

and let ρ satisfy ei-
ther (2.37) or (2.38), respectively. For any α P p0, 1q, there exists cα ą 0 such that
for all T P T pϵ,δq it holds that

RpHρ, T q ą α ´ πpHc
ρq,

where π “ Np0, c
´1{2
α d´1ρ2Γq for a symmetric, idempotent matrix Γ P Rdˆd with

rankpΓq — d.

Remark 7. The lemma also allows us to derive lower bounds for other alternative
hypothesesHρ, as long as πpHc

ρq can be shown to be small, e.g. the class of alternatives

tf P Rd : }f}1 ě ρu.

Proof. Putting the results of the section together, the Lemmas 2.15 and 2.16 with
the condition on ρ2, we obtain that in the shared randomness case, there exists a
symmetric, idempotent matrix Γ P Rdˆd with rankpΓq — d such that logAuB

π
u is

bounded by C
?
cα for a universal constant C ą 0, whenever cα ą 0 is small enough.

We conclude that,

inf
TPT

pϵ,δq

SR

RpHρ, T q ě 1 ´
a

2pAuBπ
u ´ 1q ´ πpHc

ρq

ě 1 ´

b

2peC
?
cα ´ 1q ´ πpHc

ρq ą α ´ πpHc
ρq,

whenever ρ2 satisfies (2.37) for cα ą 0 small enough. This finishes the proof for the
shared randomness case. In the case of local randomness, logAuB

π
u is bounded by

C
?
cα when ρ2 satisfies (2.38) for cα ą 0 small enough, yielding

inf
TPT

pϵ,δq

LR

RpHρ, T q ě 1 ´

b

2peC
?
cα ´ 1q ´ πpHc

ρq ą α ´ πpHc
ρq.
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2.4.1 Proof of the differential privacy data processing Lem-
mas 2.14 and 2.16

For some of the results in this section, we suppress the dependence of the Markov
kernels on the draw of the shared randomness u, as it bares no relevance to the results
here.

At the heart of the proofs of Lemmas 2.14 and 2.16, is the Lemma 2.13. A proof of
this lemma is provided in Section 2.4.2.

2.4.1.1 Proof of Lemma 2.14
Proof. The first statement follows by Lemma 2.31 in the chapter appendix. For the
second statement, we first note that by Lemma 2.13

c
1{4
α

m1{2
` δ `

cα
m3{2

ě pPπ ´ P0qKj
´

t|Lj
π,u ´ 1| ě 4m1{2{αu|Xpjq, u

¯

“ P0K
j
´

pLj
π,u ´ 1q1t|Lj

π,u ´ 1| ě 4m1{2{αu|Xpjq, u
¯

ě 4
m1{2

α
P0K

j
´

|Lj
π,u ´ 1| ě 4m1{2{α|Xpjq, u

¯

,

where the second inequality follows from the fact that m1{2{α ě 1 and Lj
π,u ě 0.

Using that δ ď cα{m, we obtain that

P0K
jpAc

j,u|Xpjq, uq ď
αpc

1{4
α ` cαp1 `m´1qq

4m
:“ ηα. (2.56)

Since KjpB|x, uq ď K̃jpB|x, uq for all measurable B Ă Aj,u and P0K̃
jp¨|Xpjq, uq has

no support outside of Aj,u, it holds that

dKjp¨|x, uq

dP0K̃jp¨|Xpjq, uq
pyq ď

dKjp¨|x, uq

dP0Kjp¨|Xpjq, uq
pyq,

for all y P Aj,u (and hence P0K̃
jp¨|Xpjq, uq-a.s.). Similarly, we have for Pπ-a.s. all x’s

that

KjpAc
j,u|x, uq

P0KjpAj,u|Xpjq, uq

dP0K
jp¨ XAj,u|Xpjq, uq

dP0K̃jp¨|Xpjq, uq
pyq ď

KjpAc
j,u|x, uq

P0KjpAj,u|Xpjq, uq
ď

1

1 ´ ηα
,

using that Kj ď 1 and P0K
jpAj,u|Xpjq, uq ě 1´ ηα. By standard arguments and the

above two statements, it follows that

ż

dK̃jpy|x, uq

dP0K̃jpy|Xpjq, uq
dPn

π pxq ď 1Aj,u
pyq

ż

dKjpy|x, uq

dP0K̃jpy|Xpjq, uq
dPn

π pxq `
1

1 ´ ηα

“ 1Aj,upyqLj
π,upyq `

1

1 ´ ηα
.
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Applying the definition of the event Aj,u and using that α ď 1, we obtain that for
cα ą 0 small enough

L̃j
π,u ´ 1 ď

4m1{2

α
`

1

1 ´ ηα
´ 1 ď

5m1{2

α
.

Using that L̃j
π,u ´ 1 ě ´1, we obtain (2.50), proving statement (b).

For the third statement, we will aim to apply Lemma 2.30. By the construction of
K̃j and the triangle inequality,

}P0K
jp¨|Xpjq, uq ´ P0K̃

jp¨|Xpjq, uq}TV ď 2
›

›

›
P0K

jp¨ XAc
j,u|Xpjq, uq

›

›

›

TV
.

The latter is bounded by α{p2mq (see (2.56)). Similarly,

}PπK
jp¨|Xpjq, uq ´ PπK̃

jp¨|Xpjqq}TV ď 2PπK
jpAc

j,u|Xpjq, uq.

By Lemma 2.13,

PπK
jpAc

j,u|Xpjq, uq ď

´

1 ` c1{4
α m´1{2

¯

P0K
jpAc

j |Xpjq, uq ` δ `
cα
m3{2

.

Again using (2.56) and the fact that δ ď cα{m yield that the latter is also bounded
by α{4m for cα ą 0 small enough. The condition and small enough choice of cα ą 0
yields that the conditions of Lemma 2.30 and the conclusion of (c) follows.

2.4.1.2 Proof of Lemma 2.16

Proof. Write Lj
π,upY pjqq ” Lj

π and let Vπ ” V j
π :“ Lj

π´1. Using that E0LπpX̃pjqq “ 1
and that by the law of total probability

EY pjq
|U“u

0 E0

„

LπpX̃pjqq

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ȷ

“ 1,

it follows that EY pjq
|U“u

0 Vπ “ 0 and

EY pjq
|U“u

0

`

Lj
π

˘2
“ 1 ` EY pjq

|U“u
0 Lj

πpLj
π ´ 1q “ 1 ` EY pjq

|U“u
π Vπ.

Define V `
π :“ 0 _ Vπ and let V ´

π “ ´p0 ^ Vπq, which are both nonnegative random
variables, with Vπ “ V `

π ´ V ´
π . We have

EY pjq
|U“u

π V `
π “

ż 8

0

PY pjq
|U“u

π

`

V `
π ě t

˘

dt

“

ż T

0

PY pjq
|U“u

π

`

V `
π ě t

˘

dt`

ż 8

T

PY pjq
|U“u

π

`

V `
π ě t

˘

dt. (2.57)
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Taking T “ 5m1{2

α , the second term is equal to zero as

V `
π ď |Lj

π,upyq ´ 1| ď
5m1{2

α
P0K

jp¨|Xpjq, uq-a.s.

and Pπ „ P0 (which in turn implies PY pjq
|U“u

π „ PY pjq
|U“u

0 ). The integrand of the
first term equals Pn

πK
jptVπ ě tu|Xpjq, uq. By Lemma 2.13, it holds that

PπK
jptVπ ě tu|Xpjq, uq ď

´

1 ` c1{4
α m´1{2

¯

P0K
jptVπ ě tu|Xpjq, uq ` δ `

cα
m3{2

.

It follows that (2.57) is bounded from above by

´

1 ` c1{4
α m´1{2

¯

ż T

0

PY pjq
|U“u

0

`

V `
π ě t

˘

dt` Tδ ` T
cα
m3{2

ď

´

1 ` c1{4
α m´1{2

¯

EY pjq
|U“u

0 V `
π ` Tδ ` T

cα
m3{2

.

Similarly, we have

EY pjq
|U“u

π V ´
π “

ż 8

0

PY pjq
|U“u

π

`

V ´
π ě t

˘

dt

“

ż T

0

PY pjq
|U“u

π

`

V ´
π ě t

˘

dt`

ż 8

T

PY pjq
|U“u

π

`

V ´
π ě t

˘

dt. (2.58)

Choosing T ě 1 here results in the second term being zero, as Lj
π ě 0. Applying

Lemma 2.13, the right-hand side of the above display is further bounded from below
by

´

1 ´ c1{4
α m´1{2

¯

ż T

0

PY pjq
|U“u

0

`

V ´
π ě t

˘

dt´ Tδ ´ T
cα
m3{2

ě

´

1 ´ c1{4
α m´1{2

¯

EY pjq
|U“u

0 V ´
π ´ Tδ ´ T

cα
m3{2

,

where the inequality uses V ´
π ď 1.

Combining the above bounds with the fact that V `
π `V ´

π “ |Vπ| and EY pjq
|U“u

0 Vπ “ 0
yields that

EY pjq
|U“u

π Vπ “ EY pjq
|U“u

π V `
π ´ EY pjq

|U“u
π V ´

π ď
c
1{4
α EY pjq

|U“u
0 |Vπ|

?
m

` 2Tδ ` 2T
cα
m3{2

.

Plugging in the choice of T “ 5m1{2{α and using that δ ď cαm
´3{2, we obtain

EY pjq
|U“u

π Vπ ď
c
1{4
α EY pjq

|U“u
0 |Vπ|

?
m

`
20cα
mα

.
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If EY pjq
|U“u

0 |Vπ| À m´1{2, we obtain EY pjq
|U“u

π Vπ À m´1pc
1{4
α ` cα{αq. Assume next

that EY pjq
|U“u

0 |Vπ| Á m´1{2. Then,

EY pjq
|U“u

π Vπ À
c
1{4
α EY pjq

|U“u
0 |Vπ|

?
m

.

Since EY pjq
|U“u

π Vπ “ EY pjq
|U“u

0 V 2
π and using that by Cauchy-Schwarz EY pjq

|U“u
0 |Vπ|

is bounded above by

b

EY pjq|U“u
0 V 2

π , we obtain that

b

EY pjq|U“u
0 V 2

π À C 1c1{4
α m´1{2

for a universal constant C 1 ą 0 depending only on α. In both cases, we obtain that

Bπ
u “

m

Π
j“1

´

1 ` EY pjq
|U“u

π Vπ

¯

“
m

Π
j“1

´

1 ` EY pjq
|U“u

0 V 2
π

¯

ď eC
?
cα

for universal constant C ą 0, finishing the proof of the lemma.

2.4.2 Proof of Lemma 2.13

We start by proving the following general lemma, which is essentially Lemma 6.1
in [129], but for which we provide a proof that is perhaps easier to verify.

Lemma 2.18. Consider random variables X1, . . . , Xn
i.i.d.
„ P1 and X̃1, . . . , X̃n

i.i.d.
„

P2 defined on the same space. Write X “ pX1, . . . , Xnq, X̃ “ pX̃1, . . . , X̃nq and let K
be a Markov kernel between the sample space of X (equivalently X̃) and an arbitrary
target space, satisfying a pϵ, δq-differential privacy constraint (i.e. (1.5)) with ϵ ď 1.

Suppose that there exists a coupling P of pX̃,Xq such that PX̃ “ Pn
1 , PX “ Pn

2 and

Di :“ 1

!

X̃i ‰ Xi

)

„ Ber ppq , i.i.d. for i “ 1, . . . , n, p P r0, 1s

under P.

Then, it holds that

Pn
1 K

´

A|X̃
¯

ď e4ϵnpPn
2 K pA|Xq ` 2δnpeϵ`2npϵ. (2.59)

Proof. Let E denote expectation with respect to P and write D “ pDiqiPrns, S :“
řn

i“1Di. We start by noting that

E
”

KpA|X̃q|S “ 0
ı

“ E rKpA|Xq|S “ 0s . (2.60)
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Next, we show that for all k P rns,

e´ϵE
”

KpA|X̃q|S “ k ´ 1
ı

´ δ ď E
”

KpA|X̃q|S “ k
ı

ď eϵE
”

KpA|X̃q|S “ k ´ 1
ı

` δ.

(2.61)

Write vp´iq “ pviqrnsztiu for a vector v P Rn. Let k P rns be given and let Vk denote
the set of v P t0, 1un’s such that

řn
i“1 vi “ k. Using the definition of differential

privacy, the integrand in the conditional expectation satisfies

e´ϵKpA|X̃1, . . . , X̆i, . . . , X̃nq´δ ď KpA|X̃q ď eϵKpA|X̃1, . . . , X̆i, . . . , X̃nq`δ, (2.62)

for any random variable X̆i taking values in the sample space of X̃i. In particular, if
vi “ 1 it holds that

E
”

KpA|x1, . . . , Xi, . . . , xnq
ˇ

ˇDi “ vi, X̃p´iq “ xp´iq, Dp´iq “ vp´iq

ı

ď

eϵE
”

KpA|x1, . . . , Xi, . . . , xnq
ˇ

ˇDi “ 0, X̃p´iq “ xp´iq, Dp´iq “ vp´iq

ı

` δ,

for all x in the sample space of X̃. It follows by the law of total probability that

E
”

KpA|X̃q|D “ v
ı

ď eϵE
”

KpA|X̃q|Di “ 0, Dk “ vk for k P rnsztiu
ı

` δ,

for all i P rns. For v P Vk, the event tD “ vu is equal to the event tD “ v, S “ ku

and similarly it holds that

tDk “ vk for k P rnsztiu, Di “ 0u “ tDk “ vk for k P rnsztiu, Di “ 0, S “ k ´ 1u .

Consider now the sets

Vk´1pvq :“
␣

v1 P Vk´1 : vl “ v1
l except for one l P rns

(

for v P Vk,

Vkpv1q :“
␣

v P Vk : vl “ v1
l except for one l P rns

(

for v1 P Vk´1.

By what we have derived so far, it holds that any v P Vk and v1 P Vk´1pvq,

E
”

KpA|X̃q|D “ v, S “ k
ı

ď eϵE
”

KpA|X̃q|D “ v1, S “ k ´ 1
ı

` δ.

Consider tIkpvq : v P Vku independent random variables (on a possibly enlarged
probability space) taking values in rns such that PpIkpvq “ iq “ 1{k whenever vi “ 1.
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Combining the above with the total law of probability we find that

E
”

KpA|X̃q|S “ k
ı

“

1
`

n
k

˘

ÿ

vPVk

E
”

KpA|X̃q|D “ v, S “ k
ı

ď

eϵ
1
`

n
k

˘

ÿ

vPVk

E
”

KpA|X̃q|DIpvq “ 0, D´Ipvq “ v´Ipvq, S “ k ´ 1
ı

` δ “

eϵ
1
`

n
k

˘

1

k

ÿ

vPVk

ÿ

v1PVk´1pvq

E
”

KpA|X̃q|D “ v1, S “ k ´ 1
ı

` δ “

eϵ
1
`

n
k

˘

1

k

ÿ

v1PVk´1

ÿ

vPVkpv1q

E
”

KpA|X̃q|D “ v1, S “ k ´ 1
ı

` δ “

eϵ
1

`

n
k´1

˘

ÿ

v1PVk´1

E
”

KpA|X̃q|D “ v1, S “ k ´ 1
ı

` δ “

eϵE
”

KpA|X̃q|S “ k ´ 1
ı

` δ,

where it is used that |Vk| “
`

n
k

˘

,

PpD1 “ v1, . . . , Dn “ vn|S “ kq “ PpD1 “ ṽ1, . . . , Dn “ ṽn|S “ kq

for all v “ pviqiPrns, ṽ “ pṽiqiPrns P Vk and for any v1 P Vk´1 there are n ´ k ` 1 ways
to obtain v P Vk such that vk “ v1

k except for one i P rns.

By applying the privacy lower bound of (2.62) and repeating the same steps, we also
find that

e´ϵE
”

KpA|X̃q|S “ k ´ 1
ı

´ δ ď E
”

KpA|X̃q|S “ k
ı

.

This proves (2.61), which, applying iteratively, results in the bound

e´ϵkE
”

KpA|X̃q|S “ 0
ı

´ δk ď E
”

KpA|X̃q|S “ k
ı

ď eϵkE
”

KpA|X̃q|S “ 0
ı

` δkeϵk,

(2.63)

for k “ 0, 1, . . . , n. By symmetry of the argument, the same inequalities hold for X
in place of X̃. Using the above inequalities, we can bound

P1KpA|X̃q “ EKpA|X̃q “ ESE
”

KpA|X̃q|S
ı

,

by

ESeSϵE
”

KpA|X̃q|S “ 0
ı

` δESeSϵ.

Similarly, applying (2.61) with X in place of X̃, we find

P2KpA|Xq “ ESE rKpA|Xq|Ss

ě ESe´SϵE rKpA|Xq|S “ 0s ´ EδS. (2.64)
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Combining the two inequalities with (2.60), we obtain that

P1KpA|X̃q ď
ESeSϵ

ESe´Sϵ

`

P2KpA|Xq ` ESδS
˘

` δESeSϵ. (2.65)

In view of the moment generating function of the binomial distribution,

ESeSϵ

ESe´Sϵ
“

ˆ

1 ` ppeϵ ´ 1q

1 ` ppe´ϵ ´ 1q

˙n

ď e4npϵ,

where the inequality follows from 0 ď ϵ, p ď 1, the inequality ex ´ e´x ď 3x for 0 ď

x ď 1 and Taylor expanding logp1 ` xq “ x´ x2{2 ` . . .. By Chebyshev’s association
inequality (e.g. Theorem 2.14 in [36]), ESSESeSϵ ď ESSeSϵ. Consequently, using the
nonnegativity of S,

δ

ˆ

ESeSϵ

ESe´Sϵ
ESS ` ESeSϵ

˙

ď 2δESeSϵ.

Lemma 2.37 (a straightforward calculation) now finishes the proof.

We are now ready to prove the desired result.

Proof of Lemma 2.13. Consider X̃pjq „ Pπ and Xpjq „ P0. We shall construct two
couplings for pX̃pjq, Xpjqq, one for two different regimes of ϵ:

1{
?
n ě ϵ ą 1{

?
mnd and ϵ ď 1{

?
mnd.

That is, for each of the regimes, we derive a joint distribution of pX̃pjq, Xpjqq called

Pπ,0 such that X̃pjq „ PX̃pjq

π,0 “ Pπ and Xpjq „ PXpjq

π,0 “ P0. The specific couplings

that we construct aim at assuring that dHpX̃pjq, Xpjqq is small with high probability.
After the construction of both of the couplings, the result follows by an application
of Lemma 2.18.

Case 1: Consider 1{
?
n ě ϵ ą 1{

?
mnd. In this case, follow a construction similar

to that of Theorem D.6 in [157].

If n “ 1, Pinsker’s inequality (see e.g. Lemma 2.5 in [204]) followed Lemma 2.40 and
Lemma 2.10 applied with m “ 1 yield that

}P0 ´ Pπ}TV ď

c

1

2
Dχ2pP0;Pπq ď C

?
cαρ

2

?
d

for a universal constant C ą 0 (which we let vary from line to line). By Lemma 2.41,

there exists a coupling Pπ,0 such that X̃pjq „ PX̃pjq

π,0 “ Pπ and Xpjq „ PXpjq

π,0 “ P0 and

p :“ P
´

X̃pjq ‰ Xpjq
¯

ď

ˆ

C

?
cαρ

2

?
d

˙

^ 1. (2.66)
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Applying Lemma 2.18, it follows that

Pn
πK

jpA|X̃pjqq “ Eπ,0K
jpA|X̃pjqq

ď e4ϵnpP0K
jpA|Xpjqq ` 2δnpeϵ`2ϵnp.

By applying condition (2.44) or (2.45) and the bound on p of (2.66), we obtain that

e4ϵnp ď e
C

?
cαϵρ2

d1{2 ď 1 ` C
?
cα{

?
m

Similarly, using that δ ď ϵ{
?
m,

δe4ϵnp ď δ ` C 1cα{m3{2.

Hence, the first identity (2.48) follows for n “ 1 and a sufficiently small enough choice
of cα ą 0.

In what follows, consider n ą 1. Consider V a uniform draw from the unit sphere
in Rd and Z „ Np0, Idq, both independent of the other random variables considered.
We have

Xpjq :“
1

n

n
ÿ

i“1

X
pjq

i
d
“

}Z}2
?
n
V

for Xpjq „ PXpjq

0 (see e.g. [210] Exercise 3.3.7). Similarly,

X̃pjq d
“

›

›

›
pId `

nc1{2
α ρ2

d Γq1{2Z
›

›

›

2?
n

V.

Next, we note that for η1, . . . , ηn „ Np0, Idq independent of Xpjq “ pX
pjq

1 , . . . , X
pjq
n q,

we have

Xpjq d
“

˜

Xpjq ` ηi ´
1

n

n
ÿ

i“1

ηi

¸

1ďiďn

. (2.67)

To see this, note that both the left- and right-hand side are mean zero Gaussians and

E

˜

Xpjq ` ηi ´
1

n

n
ÿ

i“1

ηi

¸˜

Xpjq ` ηk ´
1

n

n
ÿ

i“1

ηi

¸J

“

1

n
Id ` 1i“kId ´

2

n
Id `

1

n
Id “ 1i“kId,

which means that the covariances of the left-hand side and right-hand side of (2.67)

are equal too. Noting that X̃pjq d
“ pF ` X

pjq

i qiPrns and X̃pjq d
“ F ` Xpjq, where

F „ Np0,
?
cαd

´1ρ2Γq is independent of Xpjq, it follows that

X̃pjq d
“

˜

X̃pjq ` ηi ´
1

n

n
ÿ

i“1

ηi

¸

1ďiďn



68 2. Impossibility theorems for distributed testing

by similar reasoning. Since the matrix pI ´ V V Jq is idempotent, we have that

ηi “ V V Jηi ` pI ´ V V Jqηi

where V V Jηi is independent of pI ´ V V Jqηi and V Jηi is standard normally dis-
tributed, both conditionally and unconditionally on V . We can write

ηi ´
1

n

n
ÿ

i“1

ηi “ V V Jηi ´
1

n

n
ÿ

i“1

V V Jηi `Gi,

where

Gi :“ pI ´ V V Jqηi ´
1

n

n
ÿ

i“1

pI ´ V V Jqηi

and Gi is independent of V V Jηi ´ 1
n

n
ř

i“1

V V Jηi. Let η̃i be identically distributed to

ηi for i “ 1, . . . , n. Combining the above assertions, we have that

Xpjq d
“

#

V

˜

}Z}2
?
n

` V Jηi ´
1

n

n
ÿ

i“1

V Jηi

¸

`Gi

+

iPrns

“: pCiqiPrns, (2.68)

X̃pjq d
“

$

’

&

’

%

V

¨

˚

˝

›

›

›
pId `

nc1{2
α ρ2

d Γq1{2Z
›

›

›

2?
n

` V Jη̃i ´
1

n

n
ÿ

i“1

V Jη̃i

˛

‹

‚

`Gi

,

/

.

/

-

iPrns

“: pC̃iqiPrns.

(2.69)

As further notations, we introduce

ζi :“ }Z}2{
?
n` V Jηi ´

1

n

n
ÿ

i“1

V Jηi,

ζ̃i :“ }pId ` nc1{2
α ρ2dΓq1{2Z}2{

?
n` V Jη̃i ´

1

n

n
ÿ

i“1

V Jη̃i.

We have that ζi|Z „ N
´

}Z}2?
n
,
`

1 ´ 1
n

˘

¯

and

ζ̃i|Z „ N

¨

˚

˝

›

›

›
pId `

nc1{2
α ρ2

d Γq1{2Z
›

›

›

2?
n

,

ˆ

1 ´
1

n

˙

˛

‹

‚

.
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By e.g. Lemma 6.5, we find that their respective push forward measures Pζi|Z and

Pζ̃i|Z satisfy

}Pζi|Z ´ Pζ̃i|Z}TV ď
1

2
a

1 ´ 1{n
?
n

ˇ

ˇ

ˇ

ˇ

ˇ

}Z}2 ´

›

›

›

›

›

pId `
nc

1{2
α ρ2

d
Γq1{2Z

›

›

›

›

›

2

ˇ

ˇ

ˇ

ˇ

ˇ

ď

?
nc

1{2
α ρ2

d

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ZJΓZ
a

ZJIdZ `

b

ZJpId `
nc

1{2
α ρ2

d ΓqZ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď }Γ}

?
nc

1{2
α ρ2

d
}Z}2,

where the second inequality follows from n ą 1 in addition to the identity p
?
a ´?

bqp
?
a`

?
bq “ a´ b and the final inequality follows from the fact that Γ is positive

semidefinite and Γ ď }Γ}Id. By Lemma 2.41, there exists a coupling of ζi|Z and ζ̃i|Z
such that

P
´

ζi ‰ ζ̃i|Z
¯

ď

?
nc

1{2
α ρ2}Γ}}Z}2

2d
^ 1. (2.70)

By the independence structure, it holds for any joint distribution P of V,Z,C, C̃,
ζ “ pζ1, . . . , ζnq, ζ̃ “ ζ̃1, . . . , ζ̃n, and G “ pGiqiPrns that

dPC,C̃ “ i “ 1
n
â

dPCi,C̃i|Z .

Take Pζi,ζ̃i|Z satisfying (2.70) and set pXpjq, X̃pjqq “ pC, C̃q under Pπ,0. We have that

C
pjq

i |Z “ C̃
pjq

i |Z ðù ζi|Z “ ζ̃i|Z

whilst the random variables 1tCi ‰ C̃iu are independent Bernoulli distributed for
i “ 1, . . . , n.

To summarize, we have now obtained that there exists a joint distribution Pπ,0 of

pZ,Xpjq, X̃pjqq such that
´

Z,Xpjq, X̃pjq

¯

satisfy

p :“ P
´

X
pjq

i ‰ X̃
pjq

i

¯

“ PZP
´

ζi ‰ ζ̃i|Z
¯

ď EZ

?
nc

1{2
α ρ2}Γ}}Z}2

2d
^ 1,

and

S :“
n
ÿ

i“1

1tX̃
pjq

i ‰ X
pjq

i u „ Binpn, pq.

Let Eπ,0 denote the corresponding expectation. Consequently, by applying Lemma 2.18,
we have for any measurable A that

Pn
πK

jpA|X̃pjqq “ Eπ,0K
jpA|X̃pjqq “ EX̃pjq,Xpjq

π,0 KjpA|X̃pjqq

ď e4ϵnpP0K
jpA|Xpjqq ` 2δnpeϵ`2ϵnp.
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By (2.70), }Γ} — 1 and the fact that }Z}2 is
?
d-sub-exponential (using e.g. Proposi-

tion 2.7.1 in [210]), we obtain that

EZpk ď
C̃knk{2pc

1{4
α ρq2kkk

dk{2

for a universal constant C̃ ą 0. It follows that

EZe4ϵnpZ ď 1 `

8
ÿ

k“1

4kC̃kϵkn3k{2pc
1{4
α ρq2kkk

dk{2k!
ď 1 ` C 1 ϵn

3{2ρ2
?
cαd1{2

,

for a universal constant C 1 ą 0, where the second inequality follows from Stirling’s ap-
proximation, the fact that under the assumptions on ρ2 (i.e. condition (2.44) or (2.45))
that

ϵn3{2c
1{2
α ρ2

d1{2
ď

?
cα{

?
m

and a sufficiently small enough choice of cα ą 0, such that the series is dominated by
its first term. Similarly, using that δ ď cα{m,

δEZe4ϵnpZ “ δ ` δ
8
ÿ

k“1

22kϵknkEZpkZ
k!

ď δ ` C 1cα{m3{2.

The first identity we wish to show, i.e. (2.48), now follows. Using the same coupling,
the lower bound of (2.49) readily follows by a similar analysis, which closes the first
case.

Case 2: Consider ϵ ď 1{
?
mnd. We will make use of the total variation coupling

between X̃
pjq

i „ Npf, Idq and X
pjq

i „ Np0, Iq, as given by Lemma 2.41. Since

}Np0, Idq ´Npf, Idq}TV ď

ˆ

1

2
}f}2

˙

^ 2

(see e.g. Lemma 6.5), we can couple the two data sets observation wise independently
(simply taking the product space) such that

n
ÿ

i“1

1tX̃
pjq

i ‰ X
pjq

i u „ Binpn, pf q

where pf “ p}f}2{4q ^ 1. Given k P N, }f}2
d
“ d´1{2c

1{4
α ρ}Np0, Idq}2 and }Np0, Idq}2

is
?
d-sub-exponential we obtain (using e.g. Proposition 2.7.1 in [210])

ż

pkfdπpfq ď

ż

p}f}2{4qkdπpfq ď C̃kkkpc1{4
α ρqk,
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for a universal constant C̃ ą 0. The assumed condition on ρ (i.e. (2.44) or (2.45))
yields

ϵnc1{4
α ρ ď c1{4

α {
?
m,

which by similar arguments as before implies

Efe4ϵnpf ď 1 ` C 1c1{4
α {

?
m,

δEfe4ϵnpf ď δ ` C 1c1{2
α {m3{2,

for a universal constant C 1 ą 0. By applying Lemma 2.18 and using the assumptions
on ρ, we obtain that

Pn
πK

jpA|X̃pjqq “ Eπ,0K
jpA|X̃pjqq “

ż

Ef,0K
jpA|X̃pjqqdπpfq

ď p1 ` Cc1{4
α {

?
mqP0K

jpA|Xpjqq ` 2δ ` Cc1{2
α {m3{2

as desired. Again, (2.49) follows by similar steps.

2.4.3 Proof of Lemma 2.15

Proof. The bound TrpΞj
uq ď nd follows by the fact that conditional expectation con-

tracts the L2-norm, i.e. the same arguments as in the proof of Lemma 2.11. For the

second statement, we start introducing the notations Xpjq “ n´1
řn

i“1X
pjq

i and

Gi “

A

E0

”

nXpjq|Y pjq, U “ u
ı

, X
pjq

i

E

.

For the remainder of the proof, consider versions of Xpjq and Y pjq defined on the same
probability given U “ u, and we shall write as a shorthand

Pj ” PpXpjq,Y pjq
q|U“u

0 and Ej ” EpXpjq,Y pjq
q|U“u

0 .

For random variables V,W defined on the same probability space, it holds that

EWErW |V s “ EErW |V sErW |V s,

since W ´ ErW |V s is orthogonal to ErW |V s. Combining this fact with the linearity
of the inner product and conditional expectation, we see that

TrpΞj
uq “ EY pjq

|U“u
0

›

›

›
E0rnXpjq|Y pjq, U “ us

›

›

›

2

2
“

n
ÿ

i“1

EjGi. (2.71)

Define also

Ği “

A

E0rnXpjq|Y pjq, U “ us, X̆
pjq

i

E

,



72 2. Impossibility theorems for distributed testing

where X̆
pjq

i is an independent copy of X
pjq

i (defined on the same, possibly enlarged

probability space) and note that EjĞi “ 0. Write G`
i :“ 0_Gi and G

´
i “ ´p0^Giq.

We have

EjG`
i “

ż 8

0

Pj
`

G`
i ě t

˘

dt “

ż T

0

Pj
`

G`
i ě t

˘

`

ż 8

T

Pj
`

G`
i ě t

˘

ď eϵ
ż T

0

Pj
´

Ğ`
i ě t

¯

dt` Tδ `

ż 8

T

Pj
`

G`
i ě t

˘

ď

ż T

0

Pj
´

Ğ`
i ě t

¯

dt` 2ϵ

ż T

0

Pj
´

Ğ`
i ě t

¯

dt` Tδ `

ż 8

T

Pj
`

G`
i ě t

˘

ď

ż 8

0

Pj
0

´

Ğ`
i ě t

¯

dt` 2ϵ

ż 8

0

Pj
´

Ğ`
i ě t

¯

dt` Tδ `

ż 8

T

Pj
`

G`
i ě t

˘

,

where in the second to last inequality follows by Taylor expansion and the fact that
ϵ ď 1. Similarly, we obtain

EjG´
i ě

ż T

0

Pj
`

G´
i ě t

˘

ě e´ϵ

ż T

0

Pj
´

Ğ´
i ě t

¯

dt´ Tδ

ě

ż T

0

Pj
´

Ğ´
i ě t

¯

dt´ 2ϵ

ż 8

0

Pj
´

Ğ´
i ě t

¯

dt´ Tδ

ě

ż 8

0

Pj
´

Ğ´
i ě t

¯

dt´ 2ϵ

ż 8

0

Pj
´

Ğ´
i ě t

¯

dt´ Tδ ´

ż 8

T

Pj
´

Ğ´
i ě t

¯

dt.

Putting these together with Gi “ G`
i ´G´

i , we get

EjGi ď

ż 8

0

Pj
´

Ğ`
i ě t

¯

dt´

ż 8

0

Pj
´

Ğ´
i ě t

¯

dt` 2ϵ

ż 8

0

Pj
´

|Ği| ě t
¯

dt

` 2Tδ `

ż 8

T

Pj
`

G`
i ě t

˘

dt`

ż 8

T

Pj
´

Ğ´
i ě t

¯

dt

“ EjĞi ` 2ϵEj |Ği| ` 2Tδ `

ż 8

T

Pj
`

G`
i ě t

˘

dt`

ż 8

T

Pj
´

Ğ´
i ě t

¯

dt.

The first term in the last display equals 0. For the second term, observe that

Ği

ˇ

ˇ

ˇ

ˇ

”

Y pjq, Xpjq, U “ u
ı

„ Np0, }E0rnXpjq|Y pjq, U “ us}22q,

so

Ej |Ği| “ EXpjq,Y pjq

EX̆pjq

|Ği| “ E}ErnXpjq|Y pjq, U “ us}2 ď

b

TrpΞj
uq

where the last inequality is Cauchy-Schwarz. To bound the terms
ż 8

T

Pj
`

G`
i ě t

˘

dt`

ż 8

T

Pj
´

Ğ´
i ě t

¯

dt
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we shall employ tail bounds, which follow after showing thatGi is
?
dn-sub-exponential.

To see this, note that by applying Cauchy-Schwarz and Jensen’s inequality followed
by the law of total probability, we have that

Ejet|Gi| “ Ejet|xE0rnXpjq|Y pjq,U“us,X
pjq

i y|

ď Eje
t
2

ˆ

›

›

›
E0rnXpjq|Y pjq,U“us

›

›

›

2

2
`

›

›

›
X

pjq

i

›

›

›

2

2

˙

ď

c

E0e
t
›

›

›
E0rnXpjq|Y pjq,U“us

›

›

›

2

2

c

E0e
t
›

›

›
X

pjq

i

›

›

›

2

2

ď E0e
t|xnXpjq,X

pjq

i y|,

where the last equality follows from the fact that conditional expectation contracts
the L1-norm and the fact that U is independent of Xpjq.

Next, we bound EXpjq

0 et|xnX
pjq,X

pjq

i y|. By the triangle inequality and Cauchy-Schwarz,

EXpjq

0 et|xnX
pjq,X

pjq

i y| ď

b

EXpjq

0 e2t|x
řn

k‰i X
pjq,X

pjq

i y|

b

EX
pjq

i
0 e2t|xX

pjq

i ,X
pjq

i y|.

The random variable xX
pjq

i , X
pjq

i y is χ2
d-distributed, so by Lemma 2.36 we obtain that

EX
pjq

i
0 e2t|xX

pjq

i ,X
pjq

i y| “

´

Ee2tNp0,1q
2
¯d

ď e2td`8t2d,

whenever t ď 1{8. By Lemma 2.38,

EXpjq

0 e2t|x
řn

k‰i X
pjq,X

pjq

i y|
ď e

4
2 pt2pn´1qd`t4pn´1q

2d{4q,

where the inequality follows by Lemma 2.36 if t2pn´ 1q2 ď 1{8. By the fact that
G`

i ď |Gi| and Markov’s inequality,

PjpG`
i ą T q ď Pjp|Gi| ą T q ď e´tTEjet|Gi|, for all T, t ą 0.

Combining this with the bound for the moment generating function derived above
means that for δ “ 0, the result follows from letting T Ñ 8. If δ ą 0, take T “

32pd_
?
ndq logp1{δq to obtain that

ż 8

T

Pj
`

G`
i ě t

˘

dt ď e´ logp1{δq.

It is easy to see that the same bound applies to
ş8

T
Pj
0

´

Ğ´
i ě t

¯

dt. We obtain that

n
ÿ

i“1

EjGi ď 2nϵ

b

TrpΞj
uq ` 64δpd_

?
ndq logp1{δq ` 2nδ.
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If

b

TrpΞj
uq ď nϵ, the lemma holds (there is nothing to prove). So assume instead

that

b

TrpΞj
uq ě nϵ. Combining the above display with (2.71), we get

b

TrpΞj
uq ď 2nϵ` 64δ

d_
?
nd

nϵ
logp1{δq `

2

ϵ
δ.

Since xp logp1{xq tends to 0 as x Ñ 0 for any p ą 0, the result follows for δ ď
´´

n
d ^ n1{2

?
d

¯

ϵ2
¯1`p

for some p ą 0 as this implies that the last two terms are Opnϵq.

Chapter acknowledgements: We would like to thank Elliot H. Lieb for a helpful
comment regarding the proof of Lemma 2.9.

2.5 Appendix

2.5.1 Mutual information, entropy and data processing

For a discrete random variable X and arbitrary random variable Y , define the entropy
of X as

HpXq “ ´
ÿ

x

PpX “ xq logPpX “ xq

and the conditional entropy of X given Y as

HpX|Y q :“ ´

ż

ÿ

x

PpX “ x|Y “ yq logPpX “ x|Y “ yqdPY pyq.

The function x ÞÑ ´x log x is concave, so by Jensen’s inequality we have HpXq ě 0
and HpX|Y q ě 0. Similarly, we have HpXq ě HpX|Y q, i.e. conditioning reduces
entropy. Following from this conditioning, for an arbitrary random vector Z, we
similarly can conclude that conditioning also reduces conditional entropy:

HpX|Y q “

ż

HpX|Y “ yqdPY pyq ě

ż

HpX|Y “ y, ZqdPY pyq “ HpX|Y,Zq.

If X and Y are independent, it is easy to see that HpX|Y q “ HpXq. Furthermore,
if X Ñ Y Ñ Z form a Markov chain, HpX|Y,Zq “ HpX|Y q. For random variables
X,Y, Z we define the mutual information between X and Y and conditional mutual
information between X and Y given Z as

IpX;Y q “ DKLpPpX,Y q}PX ˆ PY q,

IpX;Y |Z “ zq “ DKLpPpX,Y q|Z“z}PX|Z“z ˆ PY |Z“zq,

IpX;Y |Zq “

ż

IpX;Y |Z “ zqdPZpzq.
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Next we recall some properties of the mutual information. First we note that IpX,Y q “

0 if and only if X is independent from Y . The chain rule for the mutual information
between the random vector Y “ pY p1q, . . . , Y pmqq and V is

IpV ;Y q “

m
ÿ

j“1

IpV ;Y pjq|Y p1q, . . . , Y pj´1qq, (2.72)

which follows from straightforward algebra. For a discrete random variable X and an
arbitrary random variable Y , we obtain the following relationship with entropy:

IpX;Y q “ EpX,Y q log
dP pX,Y q

dPXdPY

“ EpX,Y q log
1

dPX
´ EpX,Y q log

1

dPpX|Y “yq

“ HpXq ´HpX|Y q. (2.73)

By similar arguments, for an arbitrary random variable Z, we have

IpX;Y |Zq “ HpX|Zq ´HpX|Y,Zq. (2.74)

Next, we prove three lemmas that that reveal themselves as valuable for proving the
data processing bounds of Sections 2.1 and 2.1.2. The first is a well known result
that states says that mutual information is necessarily decreasing as we move further
along a Markov chain, making it a type of data processing inequality.

Lemma 2.19 (Mutual information data processing inequality). Let and X,Z be
discrete random variables and let Y an arbitrary random variable such that X Ñ

Y Ñ Z forms a Markov chain. It holds that

IpX;Zq ď IpX;Y q and IpX;Zq ď IpY ;Zq.

Proof. This is a straightforward consequence of (2.74) combined with the fact that
conditioning reduces entropy, which yields

IpX;Zq “ HpXq ´HpX|Zq ď HpXq ´HpX|Y,Zq “ HpXq ´HpX|Y q “ IpX;Y q,

where the second equality follows from the fact that HpX|Y,Zq “ HpX|Y q by fact
that X Ñ Y Ñ Z forms a Markov chain. Similarly,

IpX;Zq “ HpZq ´HpZ|Xq ď HpZq ´HpZ|Y,Xq “ HpXq ´HpX|Y q “ IpY ;Zq.

The next lemma is well known: it shows that mutual information cannot exceed the
logarithm of the cardinality of the sample space.
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Lemma 2.20. Let X be a discrete random variable taking values in X and let Z be
an arbitrary random variable. It holds that

IpX;Zq ď HpXq ď log |X |.

Proof. The first inequality follows by (2.74) and the fact that HpX|Y q ě 0. For the
second inequality, by concavity of the log we have

HpXq “ ´
ÿ

x

PpX “ xq logPpX “ xq ď log

˜

ÿ

x

PpX “ xq

PpX “ xq

¸

“ log |X |.

The next lemma is especially useful in the distributed setup. It allows us to exploit
the independent nature of the machines in order to obtain an additive bound over
the “local” mutual information for each machine. In our setup, we take into account
the possible presence of a shared source of randomness and therefore it merits its own
proof. A variation of the lemma excluding shared randomness is given for instance
in [169].

Lemma 2.21 (Tensorization of the mutual information). Let us assume that the
discrete random variable V and the discrete random vector W are such that the
pair pV,W q is independent from the random variable U and the discrete random vec-
tor Y “ pY1, . . . , Ymq satisfies that Yj is conditionally independent from Y1:j´1 :“
pY1, . . . , Yj´1q given U and pV,W q, then

IpV ;Y q ď

m
ÿ

j“1

IpV ;Yj |Uq`

m
ÿ

j“1

IpW ;Yj |U, V q.

Proof. First note that in view of (2.73) and since conditioning reduces entropy

I
`

pY,Uq;V
˘

“ HpV q ´HpV |Y,Uq ě HpV q ´HpV |Y q “ IpY ;V q.

Furthermore, by the chain rule (2.72) and the independence of U and V ,

I
`

pY,Uq;V
˘

“ I
`

Y ;V |U
˘

` IpU ;V q “ IpY ;V |Uq.

Similarly, by the chain rule and nonnegativity of mutual information,

I
`

V ;Y |U
˘

“ I
`

pV,W q;Y |U
˘

´ I
`

W ;Y |U, V
˘

ď I
`

pV,W q;Y |U
˘

.

By the identity (2.74) and the chain rule (2.72),

I
`

pV,W q;Y |U
˘

“ HpY |Uq ´HpY |V,W,Uq

“

m
ÿ

j“1

HpYj |Y1:j´1, Uq ´HpYj |V,W, Y1:j´1, Uq.
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Since conditioning reduces entropy we have HpYj |Y1:j´1, Uq ď HpYj |Uq. Further-
more, by the conditional independence of Y1:j´1 and Yj given pU, V,W q results in
HpYj |V,W, Y1:j´1, Uq “ HpYj |V,W,Uq. Using these two facts, we obtain that

I
`

pV,W q;Y |U
˘

ď

m
ÿ

j“1

HpYj |, Uq ´HpYj |V,W,Uq

“

m
ÿ

j“1

I
`

pV,W q;Yj |U
˘

.

Combining the above displays and again applying the chain rule we now obtain that

IpY ;V q ď

m
ÿ

j“1

I
`

pV,W q;Yj |U
˘

“

m
ÿ

j“1

“

I
`

V ;Yj |U
˘

` I
`

W ;Yj |U, V
˘‰

.

The following lemma is Proposition 1 in the technical note [76]. It can be seen as a
“distance-based” version of the original Fano’s inequality. We provide a proof based
on [76] for completeness.

Lemma 2.22. Let V, V̂ ,W be random variables forming a Markov chain V Ñ W Ñ

V̂ , where V and V̂ take values in a metric space pV, dq with |V| ă 8 and V is
uniformly distributed on V. Let

N˚ptq :“ max
vPV

|
␣

v1 P V : dpv, v1q ď t
(

|, N˚ptq :“ min
vPV

|
␣

v1 P V : dpv, v1q ď t
(

|.

If |V| ´N˚ptq ą N˚ptq, it holds that

Pr
´

dpV̂ , V q ě t
¯

ě 1 ´
IpV ;W q ` log 2

log p|V|{N˚ptqq
. (2.75)

Remark 8. For the Hamming distance, the above reduces to the classical Fano’s
inequality of e.g. [97]. The advantage of employing this particular expression of Fano’s
inequality resides in its applicability without the necessity of delineating the packing
set. Rather, one may choose to designate a prior distribution over a subset of finite
cardinality and subsequently selecting a distribution for V that minimizes the mutual
information.

Proof. Define the random variable S “ 1tdpV, V̂ q ă tu. By the chain rule for entropy,

HpS, V |V̂ q “ HpV |V̂ q `HpS|V, V̂ q.

The last term equals 0 as S is σpV, V̂ q-measurable. Conversely, since conditioning
reduces entropy

HpS, V |V̂ q “ HpS|V̂ q `HpV |S, V̂ q ď HpSq `HpV |S, V̂ q.
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The second term equals

PpS “ 1qHpV |S “ 1, V̂ q ` PpS “ 0qHpV |S “ 0, V̂ q.

Since conditionally on S “ 1, V is with probability 1 in a set of cardinality at most
N˚ptq, it follows from the fact that conditioning reduces entropy and Lemma 2.20
that HpV |S “ 1, V̂ q ď HpV |S “ 1q ď logN˚ptq. Similarly, HpV |S “ 0, V̂ q ď

logp|V| ´N˚ptqq. We now have that

HpV |V̂ q ď HpSq ` p1 ´ PpS “ 0qq logN˚ptq ` PpS “ 0q logp|V| ´N˚ptqq.

For a Markov chain V Ñ W Ñ V̂ , HpV |W q “ HpV |W, V̂ q ď HpV |V̂ q since condi-
tioning reduces the entropy. Furthermore, since S equals either 0 or 1, HpSq ď log 2
by Lemma 2.20. We obtain that

HpV |W q ď log 2 ` p1 ´ PpS “ 0qq logN˚ptq ` PpS “ 0q logp|V| ´N˚ptqq,

which after rearranging yields

Pr
´

dpV̂ , V q ě t
¯

“ PpS “ 0q ě
HpV |W q ´ logN˚ptq ´ log 2

log
´

|V|´N˚ptq
N˚ptq

¯ .

Since V is assumed to be uniform on V, HpV q “ logV. By (2.73), IpV ;W q “

logV ´HpV |W q, which yields

Pr
´

dpV̂ , V q ě t
¯

ě
log

´

|V|

N˚ptq

¯

log
´

|V|´N˚ptq
N˚ptq

¯ ´
IpV ;W q ` log 2

log
´

|V|´N˚ptq
N˚ptq

¯ .

Since it is assumed that |V| ´N˚ptq ą N˚ptq, the result now follows by monotonicity
of the logarithm.

The following lemma is included for completeness, it can be seen as continuous version
of Theorem 3.7 in [170] which concerns discrete sample spaces.

Lemma 2.23. Consider random variables V,W, V̂ forming a Markov chain V Ñ

W Ñ V̂ taking values in a Radon space. Suppose that PW |V “v ! PW and that the
random variables

dPW |V “v

dPW
pW q

are
a

γ{2-sub-Gaussian for 0 ă γ ă 1, PV -almost surely. Then, the Markov chain

V Ñ W Ñ V̂ satisfies the γ-strong data-processing inequality,

IpV ; V̂ q ď γIpW ; V̂ q.
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Proof. By Lemma 2.40 below,

IpV ; V̂ q “ DKL

´

PV |V̂ }PV
¯

ď EV̂ EpV |V̂ q

˜

dPV |V̂

dPV
pV, V̂ q ´ 1

¸2

. (2.76)

By subsequently using the Markov chain structure V Ñ W Ñ V̂ and Bayes rule
(using that V,W, V̂ possess regular conditional probability distributions),

dPV |V̂

dPV
pv, v̂q “ EW |V̂ “v̂

„

dPV |W

dPV
pv,W q

ȷ

“ EW |V̂ “v̂

„

dPW |V “v

dPW
pW q

ȷ

“ EW

«

dPW |V “v

dPW
pW q

dPW |V̂ “v̂

dPW
pW q

ff

.

Define for s P R,

Gs,vpW q “ s

ˆ

dPW |V “v

dPW
pW q ´ 1

˙

, Hv̂pW q “
dPW |V̂ “v̂

dPW
pW q.

By Lemma 2.39, we have that

EGH ď EH logH ` logEeG

for any random variables G,H with EH “ 1 and EeG ă 8. Therefore, using the
sub-Gaussianity of Gs,vpW q,

s

˜

dPV |V̂

dPV
pv, v̂q ´ 1

¸

“ EW rGs,vpW qHv̂pW qs ď EWHv̂pW q logHv̂pW q `
s2γ

2
,

for all s P R. Choosing

s “ γ´1

˜

dPV |V̂

dPV
pv, v̂q ´ 1

¸

,

we obtain

1

2

˜

dPV |V̂

dPV
pv, v̂q ´ 1

¸2

ď γEWHv̂pW q logHv̂pW q.

Putting things together, we obtain that

EV̂ EpV |V̂ q

«

EW

˜

dPV |V̂

dPV
pV, V̂ q ´ 1

¸ff2

ď 2γEV̂ EWHV̂ pW q logHV̂ pW q

“ 2γDKLpPW |V̂ }PW q “ 2γIpW ; V̂ q.
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2.5.2 Sub-Gaussianity of likelihoods

The following lemma is the key technical lemma enabling the data processing argu-
ment in the mutual information lower bound for testing in Section 2.1.2. First we
recall some notations from Section 2.1.2. Let us denote by π the distribution of the
random vector ϱR, where R “ pR1, . . . , Rdq has independent Rademacher marginals
and ϱ ą 0 is small (it is taken to be ϱ “ ρ{

?
d). We take V „ Berp1{2q and set

X|pV “ 0q „ Np0, σ2Idq and X|pV “ 1q „ Pπ, where Pπ “
ş

Pfdπpfq and Pf is a
multivariate Gaussian distribution with mean f and σ2 times the identity variance.
Let PX and PX|V denote the corresponding distributions of X and X|V .

The lemma below shows that the likelihood ratios dPX|V “0

dPX pXq and dPX|V “1

dPX pXq are
sub-Gaussian.

Lemma 2.24. The likelihood ratios

dPX|V “0

dPX
pXq and

dPX|V “1

dPX
pXq

are
?
Cβ-sub-Gaussian with

β “

#

dϱ4{σ4, if σ2{ϱ2 ă d{2,

2ϱ2{σ2, if σ2{ϱ2 ě d{2
(2.77)

and C ą 0 a universal constant.

Proof. Using the notation

LvpXq :“
dPX|V “v

dPX
pXq, v P t0, 1u,

we show below that for all t P R, for some constant C ą 0,

EXe
tpLvpXq´EXLvpXqq ď eCβt2{2.

This is implied by

PX p|Lv ´ EXLv| ě sq ď 32 exp

ˆ

´
s2

2β

˙

for all s ą 0, (2.78)

where the equivalence is well known, but a proof can be found in Lemma 2.35. Since
|LvpXq ´ EXLvpXq| “ |LvpXq ´ 1| ď 1, it is enough to consider 0 ă s ă 1. Since
the bound in the display above is vacuous for β ą 1{4, consider β ď 1{4.

To prove (2.78), let us first introduce the notation L :“ dPπ

dP0
, and note that

L0 “
2

1 ` L
and L1 “

2

1 ` L´1
.
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Then for x P tL0 ´ 1 ě su we have

2

1 ` L
pxq “ L0pxq ě s` 1 and 0 ď

2L

1 ` L
pxq “ 1 ´

1 ´ L

1 ` L
pxq ď 1 ´ s,

where the last inequality follows from L0 ´ 1 “ 1´L
1`L . Consequently, L´1pxq ě s`1

1´s .
Similarly, for x P tL0 ´ 1 ď ´su,

0 ď
2

1 ` L
pxq ď 1 ´ s and

2L

1 ` L
pxq ě 1 ` s

and thus Lpxq ě s`1
1´s . Combining the above bounds results in for x P t|L0 ´ 1| ě su

that

| logLpxq| ě log

ˆ

1 ` s

1 ´ s

˙

ě
2s

1 ` s
ě s,

where the last two inequalities follow from log x ě 1 ´ 1
x and 0 ă s ă 1.

Through the same computation, the above display is also true for x P t|L1 ´ 1| ě su.
Consequently, for v “ 0, 1,

PX p|Lv ´ ELv| ě sq ď PX p| logL| ě sq

“
1

2
P0 p| logpLq| ě sq `

1

2
Pπ p| logpLq| ě sq .

Using Markov’s inequality the terms on the right-hand side can be further bounded
as

P0 p| logpLq| ě sq ď e´νspEX|V “0Lν ` EX|V “0L´νq ν ą 0 and

Pπ p| logpLq| ě sq ď e´λ1sEX|V “1Lλ1 ` e´λ2sEX|V “1L´λ2 for λ1, λ2 ą 0.

Noting that EX|V “1Lλ “ EX|V “0Lλ`1, we obtain that

PX p|Lv ´ ELv| ě sq ď
1

2
e´νspEX|V “0Lν ` EX|V “0L´νq

`
1

2
e´λ1sEX|V “0Lλ1`1 `

1

2
e´λ2sEX|V “0L´pλ2´1q.

We proceed by bounding the expectations in the above display after which minimizing
in ν gives us the result of the lemma. Recall that X|pV “ 0q „ N p0, σ2Idq and

Xi|pV “ 1q
i.i.d.
„ 1

2N pϱ, σ2q ` 1
2N p´ϱ, σ2q, i “ 1, . . . , d. Consequently,

LpXq “
d

Π
i“1

«

exp
`

´ 1
2σ2 pXi ´ ϱq2

˘

` exp
`

´ 1
2σ2 pXi ` ϱq2

˘

2 expp´ 1
2σ2X2

i q

ff

“
d

Π
i“1

expp´
1

2
ϱ2{σ2q coshpXiϱ{σ2q. (2.79)
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Then by independence of Xi, i “ 1, . . . , d

EX|V “0L
ν “

´

e´ ν
2 ϱ

2
{σ2

E coshν
´ ϱ

σ
Z
¯¯d

,

where Z „ Np0, 1q.

In view of Lemma 2.26, whenever |ν|ϱ2{σ2 ă 1{2,

e´sνpE0L
ν ` E0L

´νq ď exp

ˆ

ν2
dϱ4

2σ4
´ sν

˙

´

1 ` ep3{2qνdϱ4
{σ4

¯

.

By the same lemma, if |λ1 ` 1|ϱ2{σ2 ă 1{2,

EX|V “0L
λ1`1 ď exp

ˆ

3{8 ` λ21
dϱ4

2σ4
` 2λ1

dϱ4

2σ4

˙

,

where it is used that β ď 1{4. Similarly,

E0L
´λ2`1 ď exp

ˆ

3{8 ` λ22
dϱ4

2σ4
`

7

2
λ2
dϱ4

2σ4

˙

.

Next we distinguish two cases. Suppose first that 2{d ď ϱ2{σ2. Let us take ν “ λ1 “

λ2 “ sσ4{pdϱ4q. Then νϱ2{σ2 ă 1{2, as 0 ă s ă 1, which in turn gives that

e´sνpE0L
ν ` E0L

´νq ď exp

ˆ

´
s2

2

σ4

dϱ4

˙

´

1 ` ep3{2qs
¯

.

Similarly,

e´sλ1E0L
λ1`1 ď exp

ˆ

3{8 ´
s2

2

σ4

dϱ4
`

7

2
s

˙

,

and

e´sλ2E0L
´λ2`1 ď exp

ˆ

3{8 ´
s2

2

σ4

dϱ4
` 2s

˙

.

The remaining case is when 2{d ą ϱ2{σ2. Choosing ν “ sσ2{p2ϱ2q results in νϱ2{σ2 ă

1{2, which in turn implies

e´sνpE0L
ν ` E0L

´νq ď exp

ˆ

ν2
dϱ4

2σ4
´ sν

˙

´

1 ` ep3{2qνdϱ4
{σ4

¯

ď exp

ˆ

´
s2

2

σ2

2ϱ2

˙

´

1 ` ep3{2qs
¯

.

The bounds on e´sλ1EX|V “0L
λ1`1 and e´sλ2EX|V “0L

´λ2`1 follow similarly. Hence,
by combining the above bounds and noting that for 0 ă s ă 1 we have

1

2

´

1 ` ep3{2qs ` ep3{8q`p7{2qs ` ep3{8q`2s
¯

ď 32,

we arrive at (2.78), for β given in (2.77), concluding the proof of the lemma.
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The following has been established in previous literature (see e.g. [39] or [46]) and
proves useful for obtaining estimation rates in distributed setting through mutual
information based data processing.

Lemma 2.25. Let R denote a Rademacher random variable, let for σ ą 0, X|R „

NpϱR, σ2q distributed. Then,

dPX|R“r

dPX

is
?
Cϱ{σ-sub-Gaussian for r P t´1, 1u and a universal constant C ą 0.

Proof. This follows by Lemma 2.24 (taking d “ 1), applying it to X 1 “ X ` ϱ which
follows X 1|R „ Np2ϱR, σ2q.

Lemma 2.26. Let Z „ Np0, 1q and let ν P R such that |ν|ϱ2{σ2 ă 1{2. It holds that

E coshν
´ ϱ

σ
Z
¯

ď exp

ˆ

ν
ϱ2

2σ2
` ν2

3ϱ4

2σ4
´ 1tνă0u

3

2
ν
ϱ4

σ4

˙

. (2.80)

Proof. First assume that ν ě 0. Using coshpxq ď ex
2

{2 we find

E coshν
´ ϱ

σ
Z
¯

ď Eeν
ϱ2

2σ2 Z2

.

In view of Lemma 2.36,

EeλpZ2
´1q ď e2λ

2

for all 0 ď λ ď 1{4.

Applying this to the second last display yields (2.80).

Consider now the case that ν ă 0. We have

d

dx
coshν

´ ϱ

σ
x
¯

“ ν
ϱ

σ
coshν

´ ϱ

σ
x
¯

tanh
´ ϱ

σ
x
¯

,

d2

dx2
coshν

´ ϱ

σ
x
¯

“ ν
ϱ2

σ2
coshν

´ ϱ

σ
x
¯ ”

pν ´ 1q tanh2
´ ϱ

σ
x
¯

` 1
ı

“: τpxq

Since coshp0q “ 1 and tanhp0q “ 0, a second order Taylor expansion of x ÞÑ coshν
`

ϱ
σx

˘

about 0 yields

E coshν
´ ϱ

σ
Z
¯

“ E
„

1 `
Z2

2!
τprZZq

ȷ

, for some rZ P r0, 1s.

Since tanh2pxq ď x2 and coshpxq ě 1 for all x P R,

E
Z2

2!
τprZZq ď ν

ϱ2

2σ2

„

pν ´ 1q
ϱ2

σ2
Er2ZZ4 ` 1

ȷ

ď ν
ϱ2

2σ2

„

pν ´ 1q
3ϱ2

σ2
` 1

ȷ

.
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Then by combining the above two displays

E coshν
´ ϱ

σ
Z
¯

ď exp

ˆ

ν
ϱ2

2σ2
` ν2

3ϱ4

2σ4
´

3

2
ν
ϱ4

σ4

˙

,

which concludes the proof of the lemma.

2.5.3 Auxiliary lemmas for Section 2.2

For the following lemmas, assume the setting of Section 2.2.

Lemma 2.27. Consider a sample space X and a distributed protocol with Markov
kernels Kj : Y pjqˆXˆU Ñ r0, 1s for j “ 1, . . . ,m and shared randomness distribution
PU . Writing Y “

Âm
j“1 Y pjq for the product sigma-algebra, consider K “

Âm
j“1K

j :
Y ˆ Xm ˆ Um Ñ r0, 1s. It holds that

Kp¨|x, uq ! PY |U“u
f p¨q, PpX,Uq

f ´ almost surely,

for all f P Rd.

Proof. Let A P Y pjq. We have that

B :“
␣

px, uq : KjpA|x, uq ą 0
(

“
ď

lPN

"

px, uq : KjpA|x, uq ą
1

l

*

,

so if PpX,Uq

f pBq ą 0 for some L P N it holds that PpX,Uq

f

`

px, uq : KjpA|x, uq ą 1
L

˘

ą 0.

Since Kj is nonnegative, by Markov’s inequality,

PY pjq
|U“u

f pAq “

ż

KjpA|x, uqdPXpjq

f ˆ PU px, uq

ě

ż

B

KjpA|x, uqdPXpjq

f ˆ PU px, uq

ě
1

L
PpX,Uq

f

ˆ

px, uq : KjpA|x, uq ą
1

L

˙

ą 0.

Since given U , Y p1q, . . . , Y pmq, the statement for K follows as Kp¨|x1, . . . , xm, uq :“
Âm

j“1K
jp¨|xj , uq and PY |U“u

f “
Âm

j“1 P
Y pjq

|U“u
f .

Lemma 2.28. [Distributed Le Cam / chi-square divergence bound] Let T be a set
consisting of distributed testing protocols. It holds that

inf
TPT

˜

PY
0 T ` sup

fPHρ

PY
f p1 ´ T q

¸

ě inf

ˆ

sup
π

p1 ´ }PY
0 ´ PY

π }TVq ´ πpHc
ρq

˙

, (2.81)

where the supremum on the right-hand side is over all probability distributions π on
Rd with PY

π :“
ş

PY
f dπpfq and the infimum on the right-hand side is over all Markov
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kernels corresponding to a distributed testing protocol in T . Furthermore, (2.81) is
further lower bounded by

1 ´ sup
TPT

inf
π

˜

d

p1{2q

ż

EY |U“u
0

´

L
Y |U“u
π pY q ´ 1

¯2

dPU puq ` πpHc
ρq

¸

,

the infimum on the right-hand side is over all probability distributions π on Rd and

LY |U“u
π pY q “

dPY |U“u
π

dPY |U“u
0

pY q.

Proof. It trivially holds that for any distributed protocol T 1 ” tT 1, tKjumj“1, pU ,U ,PU qu P

T that
˜

PY
0 T

1pY q ` sup
fPHρ

EY
f p1 ´ T 1pY qq

¸

ě inf
TPT

˜

PY
0 T pY q ` sup

fPHρ

PY
f p1 ´ T pY qq

¸

.

Furthermore, for any prior distribution π on Rd it holds that

sup
fPHρ

PY
f p1 ´ T pY qq ě

ż

tfPHρu

PY
f p1 ´ T pY qqdπpfq

ě

ż

PY
f p1 ´ T pY qqdπpfq ´ πpHc

ρq. (2.82)

Hence the right-hand side of the second last display is further bounded from below
by

inf
T

`

PY
0 T pY q ` PY

π p1 ´ T pY qq ´ πpHc
ρq
˘

for all prior distributions π on Rd. For any T , write AT “ T´1pt0uq and note that

PY
0 T pY q ` PY

π p1 ´ T pY qq “ 1 ´
`

PY
0 pY P AT q ´ PY

π pY P AT q
˘

.

By combining the above two displays we get that

inf
TPT

˜

PY
0 T pY q ` sup

fPHρ

PY
f p1 ´ T pY qq

¸

ě 1 ´ sup
A

|PY
0 pAq ´ PY

π pAq| ´ πpHc
ρq.

Since the above is true for any distribution π on Rd, the statement is true after taking
the supremum over π also. This proves the first statement of the lemma.

Using that the measure dPY
f disintegrates as dPY |U“u

f dPU
f puq, and the fact that U is

independent of the prior π, we find by Jensen’s inequality that

}PY
0 ´ PY

π }TV ď

ż

}PY |U“u
0 ´ PY |U“u

π }TVdPU puq.
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Combining the first statement of the lemma with Pinsker’s second inequality and the
above inequality gives

inf
TPT

RpHρ, T q ě 1 ´ sup
TPT

inf
π

ˆ
ż

c

p1{2qDKL

´

PY |U“u
0 ;PY |U“u

π

¯

dPU puq ` πpHc
ρq

˙

.

By applying Jensen’s inequality once more and using Lemma 2.40, we can further
bound the above display from below by

1 ´ sup
TPT

inf
π

˜

ż

d

p1{2q

ż

EY |U“u
0

´

L
Y |U“u
π pY q ´ 1

¯2

dPU puqdPU puq ` πpHc
ρq

¸

,

where

Dχ2pPY |U“u
0,K ;PY |U“u

π,K q “ EY |U“u
0,K

˜

dPY |U“u
π

dPY |U“u
0

pY q

¸2

´ 1.

2.5.4 Auxiliary lemmas for Section 2.3

Let Ξj
u denote the matrix

Ξj
u “ EY pjq

0 EY pjq
|U“u

0

«

n
ÿ

i“1

X
pjq

i

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ff

EY pjq
|U“u

0

«

n
ÿ

i“1

X
pjq

i

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ffJ

,

as in Section 2.2, (2.24). The following lemma is a (strong) data processing inequality;
the covariance matrix of X|Y is dominated by the covariance of the original process
X, strongly so for the trace of the matrix if b{d “ op1q.

Lemma 2.29. It holds that Ξj
u ď nId and

TrpΞj
uq ď 2 logp2qnplog2 |Ypjq|q.

In particular, for log2 |Ypjq| ď b,

TrpΞj
uq ď

ˆ

2 logp2q
b

d

ľ

1

˙

nd.

Proof. Let v P Rd, then

vJΞj
uv “ EY pjq

0 EY |U“u
0

«

vJ

n
ÿ

i“1

X
pjq

i

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ff

EY |U“u
0

»

–

˜

n
ÿ

i“1

X
pjq

i

¸J

v

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

fi

fl

“ EY pjq

0 EY |U“u
0

«

vJ

˜

n
ÿ

i“1

X
pjq

i

¸

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ff2

.
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Since the conditional expectation contracts the L2-norm, we obtain that the latter is
bounded by

E0v
J

˜

n
ÿ

i“1

X
pjq

i

¸˜

n
ÿ

i“1

X
pjq

i

¸J

v “ n}v}22,

which completes the proof of the statement “Ξj
u ď nId”.

The second and third statement of the lemma, we start by noting that under P0,
řn

i“1X
pjq

i follows a Np0, nIdq distribution. For any unit vector v P Rd and s P R this
means that

E0e
sx
řn

i“1 X
pjq

i ,vy ď e
s2n
2 .

Furthermore, for arbitrary y P Y,

ÿ

y

PY pjq
|U“upyqE0

”

esx
řn

i“1 X
pjq

i ,vy
ˇ

ˇY pjq “ y, U “ u
ı

ě

PY pjq
|U“upyqE0

”

esx
řn

i“1 X
pjq

i ,vy
ˇ

ˇY pjq “ y, U “ u
ı

ě

PY pjq
|U“upyqe

sE0

”

x
řn

i“1 X
pjq

i ,vy

ˇ

ˇY pjq
“y,U“u

ı

,

where the last line follows by Jensen’s inequality. By combining the above displays
we obtain that

sE0

«

x

n
ÿ

i“1

X
pjq

i , vy
ˇ

ˇY pjq “ y, U “ u

ff

ď
s2n

2
´ logPY pjq

|U“upyq

for all s P R. Choosing s “ nE0

”

x
řn

i“1X
pjq

i , vy
ˇ

ˇY pjq “ y, U “ u
ı

, we have for any

unit vector v P Rd,

E0

«

x

n
ÿ

i“1

X
pjq

i , vy
ˇ

ˇY pjq “ y, U “ u

ff2

ď ´2n logPY pjq
|U“upyq.

Next, define for y P Ypjq,

w1,y “
1

}E0p
řn

i“1X
pjq

i |Y pjq “ y, U “ uq}2

E0

«

n
ÿ

i“1

X
pjq

i |Y pjq “ y, U “ u

ff

. (2.83)
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Choose now w2,y, . . . , wd,y such that together with w1,y the vectors form an orthonor-
mal basis for Rd. We then have

TrpΞj
uq “

ÿ

yPYpjq

PY pjq
|U“upyq

d
ÿ

i“1

E0

«

xwi,y,
n
ÿ

i“1

X
pjq

i y|Y pjq “ y, U “ u

ff2

“
ÿ

yPYpjq

PY pjq
|U“upyqE0

«

xw1,y,
n
ÿ

i“1

X
pjq

i y|Y pjq “ y, U “ u

ff2

ď ´2n
ÿ

yPYpjq

PY pjq
|U“upyq logPY pjq

|U“upyq ď 2n log |Ypjq|,

where the last inequality follows from the fact that the uniform distribution on Ypjq

maximizes the entropy on the left-hand side (see Lemma 2.20). In view of Ξj
u ď nId,

TrpΞj
uq ď dn. Combining the above upper bound with the one for log |Ypjq| leads to

the final statement of the lemma.

2.5.5 Auxiliary lemmas for Section 2.4

This section contains some results applying to the setting of Section 2.4, but some also
apply to general Markov kernels Kj satisfying pϵ, δq-differential privacy constraints.
For simplicity of the presentation, we simply assume the setting of the aforementioned
section, except for suppressing the dependence on the shared randomness conditioning
U “ u in certain places, whenever it bares no relevance to the results in this section.

The first lemma shows that, if we can approximate the Markov kernels of a distributed
protocol sufficiently in terms of total variation by other Markov kernels, the testing
risk corresponding to the distributed protocol can be considered in terms of the former.

Lemma 2.30. Let α P p0, 1q be given. Let pT, tKjumj“1,PU q be a distributed protocol

for the testing problem (2.1) and suppose that there exist kernels tK̃jumj“1 such that
for j “ 1, . . . ,m,

}P0pKjp¨|Xpjq, uq ´ K̃jp¨|Xpjq, uqq}TV ď
α

2m
PU -a.s

and
}PπpKjp¨|Xpjq, uq ´ K̃jp¨|Xpjq, uqq}TV ď

α

2m
, PU -a.s

for a collection of distributions π on Rd. Then,

PUPm
0 KpT pY q|X,Uq ` PU

ż

Pm
f Kp1 ´ T pY q|X,Uqdπpfq ě

PUPm
0 K̃pT pY q|X,Uq ` PU

ż

Pm
f K̃p1 ´ T pY q|X,Uqdπpfq ´ α,

for the same collection of distributions.
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Proof. We omit the dependence of u in the proof, as it is of no consequence to the
arguments below. Using standard arguments,

Pm
0 KpT pY q “ 1|Xq `

ż

Pm
f KpT pY q “ 0|Xqdπpfq ě

Pm
0 K̃pT pY q “ 1|Xq `

ż

Pm
f K̃pT pY q “ 0|Xqdπpfq´}Pm

0 pKp¨|Xq ´ K̃p¨|Xqq}TV

´ }Pm
π pKp¨|Xq ´ K̃p¨|Xqq}TV.

By Lemma 6.8,

}Pm
π pKp¨|Xq ´ K̃p¨|Xqq}TV ď

m
ÿ

j“1

}PπpKjp¨|Xpjqq ´ K̃jp¨|Xpjqqq}TV.

By applying the same lemma to }Pm
0 pKp¨|Xq ´ K̃p¨|Xqq}TV, combined with what is

assumed in this lemma, we obtain the result.

The next lemma gives a construction that allows for a pϵ, δq-DP Markov kernel to be
restricted to a set and “rebalanced” in order to result in pϵ, 2δq-DP Markov kernel.

Lemma 2.31. Let K be a Markov kernel from pX ,X qn to pY,Y q satisfying an
pϵ, δq-DP constraint (i.e. (1.5)) and define for a A P Y and a probability measure µ
on Y

K̃pB|xq :“ KpB XA|xq `KpAc|xqµpBq, for x P X , B P Y .

Then, K̃ is a Markov kernel pX ,X q to pY,Y q satisfying an pϵ, 2δq-DP constraint.

Proof. First of, K̃ can be seen to be a Markov kernel, as the necessary measurability
assumptions hold by construction and

K̃pY|xq “ KpY XA|xq `KpAc|xq “ 1,

where it is used that µ is a probability measure. Furthermore, for arbitrary B and
x, x1 P Xn such that dHpx, x1q ď 1, it holds that

K̃pB|xq ď eϵKpB XA|x1q ` δ ` eϵKpAc|x1qµpBq ` µpBqδ

ď eϵK̃pB|x1q ` 2δ.

The following lemma allows approximation of a pϵ, δq-DP collection of kernels, which
may have unbounded densities, with a pϵ, 3δq-DP collection of kernels that have
bounded densities. The construction of the approximating kernel is similar to that of
Lemma 2.31. The approximation is in terms of total variation distance, which allows
the comparison of the testing risks corresponding to both collections of kernels by
using Lemma 2.30.
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Lemma 2.32. For any pϵ, δq-DP collection of kernels tKjumj“1, there exists a collec-

tion of pϵ, 3δq-DP kernels tK̃jumj“1 such that for a fixed constant C ą 0,

sup
xPRnˆd

dK̃jp¨|xq

dP0K̃jp¨|Xpjqq
pyq ă C, P0K̃

jp¨|Xpjqq-almost surely,

whilst
}Pf pKjp¨|Xpjqq ´ K̃jp¨, Xpjqqq}TV ď

α

2m
.

Proof. For any x P Rnˆd and set A P Y pjq, we have that

KjpA|xq “

ż

A

dKjp¨|xq

dP0Kjp¨|Xpjqq
pyqdP0K

jpy|Xpjqq ď 1.

So, by Markov’s inequality, there exists a set AM
x P Y pjq such that

dKjp¨|xq

dP0Kjp¨|Xpjqq
pyq ď M on AM

x ,

whilst
Kj

`

pAM
x qc|x

˘

ď 1{M. (2.84)

Define for all x P Rnˆd,

K̃jpB|xq :“ Kj
`

B XAM
x |x

˘

`Kj
`

pAM
x qc|x

˘ KjpB XAM
x |xq

KjpAM
x |xq

. (2.85)

Then, K̃j is pϵ, 3δq-DP whenever M ą 4δ´1; for any x, x1 P pRdqn that are Hamming
distance 1-apart and B P Y pjq,

K̃jpB|xq ď Kj pB|xq `Kj
`

pAM
x qc|x

˘ Kj
`

B XAM
x |x

˘

Kj pAM
x |xq

“ Kj
`

B XAM
x1 |x

˘

`Kj
`

B X pAM
x1 qc|x

˘

`Kj
`

pAM
x qc|x

˘ Kj
`

B XAM
x |x

˘

Kj pAM
x |xq

ď eϵKj
`

B XAM
x1 |x1

˘

` eϵKj
`

B X pAM
x1 qc|x1

˘

` 2δ `
1

M

ď eϵK̃j
`

B|x1
˘

` p1 ` eϵqM´1 ` 2δ,

where the second to last inequality follows by (2.84) and the last inequality follows by
simply adding the nonnegative second term in (2.85). Its Radon-Nikodym derivative
satisfies

dK̃jp¨|xq

dP0K̃jp¨|Xpjqq
pyq ď 21AM

x

dKjp¨|xq

dP0Kjp¨|Xpjqq
pyq ď 2M
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P0K̃
jp¨|Xpjqq-almost surely. Furthermore, it holds for any f P Rd that

}Pn
f pKjp¨|Xpjqq ´ K̃jp¨, Xpjqqq}TV ď

ż

}Kjp¨|xq ´ K̃jp¨|xq}TVdP
n
f pxq

ď 2

ż

|Kj
`

pAM
x qc|x

˘

|dPn
f pxq ď

2

M
.

Since a choice M ą δ´1 _ 2m{α yields the bound uniformly in x P Rnˆd, the result
follows.

Lemma 2.33 below is very well known, but included for completeness.

Lemma 2.33. Let Kj be a pϵ, δq-DP Markov kernel, k P N, 0 ď k ď n, xi, x̃i P X ,
i “ 1, . . . , n such that xi “ x̃i for all but k i P rns and let x “ px1, . . . , xnq, x̃ “

px̃1, . . . , x̃nq. It holds that

KjpA|xq ď eϵkKjpA|x̃q ` δkeϵk

for all measurable A.

Proof. If k “ 1, the inequality follows by the definition of differential privacy. By
applying the definition iteratively,

KjpA|xq ď eϵkKjpA|x̃q `

k
ÿ

l“1

δeϵpk´lq.

The statement now follows by a trivial inequality for the second term.

The following lemma translates pϵ, 0q-differential privacy in the sense of (1.5) to the
corresponding densities. In particular, densities corresponding to such kernels are
bounded. It is well known and only included for completeness.

Lemma 2.34. Let ϵ ě, k P N, 0 ď k ď n, xi, x̃i P X , i “ 1, . . . , n such that xi “ x̃i
for all but k i P rns and let x “ px1, . . . , xnq, x̃ “ px̃1, . . . , x̃nq. Suppose that Kj

satisfies an pϵ, 0q-differential privacy constraint in the sense of (1.5) and that it is
dominated by some probability measure µ for all x P X . It holds µ-a.s. that

dKjp¨|x, uq

dµ
pyq ď eϵk

dKjp¨|x̃, uq

dµ
pyq. (2.86)

Furthermore, if µpyq “
ş

Kjpy|x, uqdPpxq for some probability measure P, it holds

µ-a.s. that sup
xPXn

dKj
p¨|x,uq

dµ pyq ď enϵ.
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Proof. Let x, x̃ be at most distance 1-apart in Hamming distance. By the definition
of pϵ, 0q-differential privacy that, for any A P Y , we have that

ż

A

dKjp¨|x, uq

dµ
pyqdµpyq “

ż

A

dKjpy|x, uq

ď eϵ
ż

A

dKjpy|x̃, uq “ eϵ
ż

A

dKjp¨|x̃, uq

dµ
pyqdµpyq.

Applying this step k-times leads to the first statement of the lemma. For the second
statement, k “ n yields

dKjp¨|x, uq

dµ
pyq “

ż

dKjp¨|x, uq

dµ
pyqdPpx̃q ď eϵn, µ´ a.s.

2.5.6 Distributed estimation under privacy constraints

The data processing results for differential privacy derived earlier in the chapter,
yield (up to logarithmic factors) optimal rates for estimation in the distributed set-
ting under differential privacy constraints as well. In particular, the data processing
bound for the trace of the Fisher information of the distributed protocol derived in
Lemma 2.15. We describe the resulting rates and provide a proof here.

The estimation results come in the form of Theorems 2.5 and 2.6. Together, they
imply the minimax distributed estimation rate under pϵ, δq-differential privacy con-
straints (see Section 1.2 and Definition 3) is (up to logarithmic factors)

ˆ

d

mn
`

d2

mn2ϵ2

˙

ľ

d, (2.87)

whenever logp1{δq — logpmnq.

Theorem 2.5. Let M ě 1 be given. Let Y “ pY p1q, . . . , Y pmqq be generated by a
pϵ, δq-differential privacy constrained distributed estimation protocol. It holds that

sup
fPRd:}f}8ďM

Ef }f̂pY q ´ f}22 Á

ˆ

d

mn
`

d2

mn2ϵ2

˙

ľ

d for all d, n,m P N

for all 0 ă ϵ ă 1 and δ ď min
´

n
d ,

?
n

?
d

¯p

ϵ2 for any constant p ą 1.

Proof. Consider a differentiable prior for the parameter f with associated prior density
π with respect to the Lebesgue measure that is of the form πpfq “

śd
k“1 πkpfkq and

let Jpπq denote the “Fisher information” associated with π,

Jpπq :“
d
ÿ

k“1

ż

π1
kpfkq2

πkpfkq
dfk.



2.5. Appendix 93

Furthermore, let IY p1q,...,Y pmq pfq be the Fisher information of the model at f . A
multivariate version of the van Trees inequality due to [105] (Theorem 1), bounds the
Bayes-risk corresponding to π as follows;

ż

}f}8ďM

Ef }f̂ ´ f}22πpfqdf ě
d2

ş

Rd TrpIY p1q,...,Y pmq pfqqπpfqdf ` Jpπq
. (2.88)

Taking πkptq “ cos2pπt{2q1t|t| ď 1u for k “ 1, . . . , d, Jpπq equals dπ2 (see e.g. [204])
and π has support contained in the sup-norm ball of radius 1 ď M around zero. The
Fisher information of the model is equal to the matrix Ξ, where we recall the notation
of Section 2.2;

Ξ :“
m
ÿ

j“1

Ξj :“
m
ÿ

j“1

EY pjq

0 E0

«

n
ÿ

i“1

X
pjq

i

ˇ

ˇ

ˇ

ˇ

Y pjq

ff

E0

«

n
ÿ

i“1

X
pjq

i

ˇ

ˇ

ˇ

ˇ

Y pjq

ffJ

. (2.89)

Hence, we have that the L2-risk is lower bounded as follows

sup
fPRd:}f}8ďM

Ef }f̂pY q ´ f}22 ě
d2

TrpΞq ` dπ2
.

By employing the bound of Lemma 2.15 and the standard data processing bound
TrpΞq ď dmn, we obtain that

sup
fPRd

Ef }f̂pY q ´ f}22 ě
d2

mnd
Ź

mn2ε2 ` dπ2
,

which gives the rate of the theorem.

The upper bound on the estimation risk Ef }f̂pY q ´f}22 À d follows from the fact that

}f}8 ď M implies that }f}22 ď dM2 and the estimator f̂ ” 0 does not require any
sharing of information on the data.

Next, we provide a pϵ, δq-differentially private procedure which attains the rate of the
previous theorem up to additional logarithmic factors whenever ϵ Á

?
d{

?
mn2. The

resulting estimator can be seen as the average of private means of the m-data sets.
Define for x P R its clipping between a and b as

rxsba :“

$

’

&

’

%

b if x ą b,

x if a ď x ď b,

a otherwise.

As transcripts, we let machine j release

Y pjq “
1

n

n
ÿ

j“1

rX
pjq

i sτ´τ `W pjq, where W pjq „ N

ˆ

0, 4τ2d log

ˆ

1

δ

˙

1

n2ε2
Id

˙

.

(2.90)
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By Lemma 3.27, this results in a pϵ, δq-differentially private distributed protocol, with
the central machine being able to compute the estimator

f̂pY q “
1

m

m
ÿ

j“1

Y pjq. (2.91)

Theorem 2.6. Let M ą 0 be given and let f P Rd satisfy }f}8 ď M . Then, the
pϵ, δq-differentially private distributed protocol generated by (2.90) with estimator as
given in (2.91) with τ “

?
2 logmn satisfies

Ef }f̂pY q ´ f}22 À
d

mn
`

d2

mn2ε2
¨ logpmnq log

ˆ

1

δ

˙

(2.92)

for all m,n, d P N, 0 ă ϵ ď 1 such that τ ě M and ϵ Á
?
d{

?
mn2.

Proof. Using Cauchy-Schwarz and the inequality 2ab ď a2 ` b2, we have that

Ef

›

›

›

›

›

1

m

m
ÿ

j“1

Y pjq ´ f

›

›

›

›

›

2

2

“ Ef

›

›

›

›

›

1

m

m
ÿ

j“1

1

n

n
ÿ

i“1

rX
pjq

i sτ´τ ´ f `
1

m

m
ÿ

i“1

W pjq

›

›

›

›

›

2

2

ď 2Ef

›

›

›

›

›

1

m

m
ÿ

j“1

1

n

n
ÿ

i“1

rX
pjq

i sτ´τ ´ f

›

›

›

›

›

2

2

` 2E

›

›

›

›

›

1

m

m
ÿ

j“1

W pjq

›

›

›

›

›

2

2

.

Next, observe that asW pjq’s are centered independent random variables with variance
given by (2.90), we have

E

›

›

›

›

›

1

m

m
ÿ

j“1

W pjq

›

›

›

›

›

2

2

“
1

m2

m
ÿ

j“1

E
›

›

›
W pjq

›

›

›

2

2
“ 8

d2

mn2ε2
¨ logpmnq log

ˆ

1

δ

˙

.

Furthermore, it holds that

Ef

›

›

›

›

›

1

m

m
ÿ

j“1

1

n

n
ÿ

i“1

rX
pjq

i sτ´τ ´ f

›

›

›

›

›

2

2

“

d
ÿ

k“1

Ef

˜

1

m

m
ÿ

j“1

1

n

n
ÿ

i“1

´

rX
pjq

i sτ´τ

¯

´ fk

¸2

“

d
ÿ

k“1

E

˜

1

m

m
ÿ

j“1

1

n

n
ÿ

i“1

r

´

Z
pjq

i

¯

k
s
τ´fk
´τ`fk

¸2

,

where we use that τ ě M ě }f}8 for mn large enough. Using that EV 2 “ VarpV q `

pEV q2 for any random variable V , the above display is further bounded by

d
ÿ

k“1

Var

˜

1

m

m
ÿ

j“1

1

n

n
ÿ

j“1

r

´

Z
pjq

i

¯

k
s
τ´fk
´τ`fk

¸

`

d
ÿ

k“1

˜

1

m

m
ÿ

j“1

1

n

n
ÿ

j“1

Er

´

Z
pjq

i

¯

k
s
τ´fk
´τ`fk

¸2

.
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By Lemma 3.22,

d
ÿ

k“1

Var

˜

1

m

m
ÿ

j“1

1

n

n
ÿ

j“1

r

´

Z
pjq

i

¯

k
s
τ´fk
´τ`fk

¸

ď dVar

˜

1

m

m
ÿ

j“1

1

n

n
ÿ

j“1

´

Z
pjq

i

¯

k

¸

“
d

mn
.

Furthermore, by a standard tail bound for the normal distribution,

ˇ

ˇ

ˇ
Er

´

Z
pjq

i

¯

k
s
τ´fk
´τ`fk

ˇ

ˇ

ˇ
ď 2pτ `MqPr

´

|Z
pjq

i | ě τ ´M
¯

ď
?
2
τ `M

?
πτmn

.

Putting everything together, the result of the theorem follows.

2.5.7 Folklore

The next lemma gives a well-known sufficient (and necessary) condition for the sub-
Gaussian distribution. In the literature we did not find the present, required form of
the lemma, hence for completeness we also provide its proof.

Lemma 2.35. Let X a mean-zero random variable satisfying

P p|X| ě sq ď C exp

ˆ

´
s2

2β

˙

for some C ě 2, β ą 0 and for all s P r0,8q. Then,

EesX ď e2βCs2{2.

Proof. For k P N, we have

E|X|k “

ż 8

0

P
`

|X|k ą t
˘

dt ď C

ż 8

0

exp

ˆ

´
t2{k

2β

˙

dt.

Changing coordinates to u “ t2{k{p2βq yields that the right-hand side display equals

C

2
p2βqk{2k

ż 8

0

e´uuk{2´1du “
C

2
p2βqk{2kΓpk{2q.

By the dominated convergence theorem, EX “ 0, and C ě 2,

EesX “ 1 `

8
ÿ

k“2

skEXk

k!
ď 1 `

C

2

8
ÿ

k“2

p2βs2qk{2Γpk{2q

pk ´ 1q!

ď 1 `

8
ÿ

k“1

„

pCβs2qkΓpkq

p2k ´ 1q!
`

pCβs2qk`1{2Γpk ` 1{2q

p2kq!

ȷ

.



96 2. Impossibility theorems for distributed testing

Since Γpk ` 1{2q ď Γpk ` 1q “ kΓpkq “ k! and p2kq! ě 2kpk!q2, the latter is further
bounded by

1 `

´

1 `
a

Cβs2
¯

8
ÿ

k“1

pCβs2{2qk

k!
“ eCβs2{2 `

a

Cβs2peβCs2{2 ´ 1q.

Since pex ´ 1qpex ´
?
xq ě 0, we obtain that

EesX ď e
2Cβs2

2 .

The following lemma is a well known result and follows from standard calculus, but
we included it as we did not find a stand-alone proof.

Lemma 2.36. Let Z be Np0, 1q, 0 ď λ ď 1{4. Then,

EeλpZ2
´1q ď e2λ

2

.

Proof. Using the change of variables u “ z
?
1 ´ 2λ,

EeλpZ2
´1q “

1
?
2π

ż

eλpz2
´1qe´ 1

2 z
2

dz

“
e´λ

a

2πp1 ´ 2λq

ż

e´ 1
2 z

2

dz “
e´λ

a

p1 ´ 2λq
.

The MacLaurin series of ´ 1
2 logp1 ´ 2λq reads

1

2

8
ÿ

k“1

p2λqk

k
,

which yields that the second last display equals

exp

˜

3

2
λ2 `

1

2

8
ÿ

k“3

p2λqk

k

¸

.

If λ ď 1{4,
8
ÿ

k“3

p2λqk

k
ď

p2λq3

1 ´ 2λ
ď λ2,

from which the result follows.

The following lemmas are straightforward calculations used multiple times in Sec-
tion 2.4.2.



2.5. Appendix 97

Lemma 2.37. Let S „ Binpp, nq for p P r0, 1s and let 0 ď ϵ ď 1. It holds that

ESeϵS ď npeϵ`2ϵnp.

Proof. Write S “
řn

i“1Bi, with B1, . . . , Bn
i.i.d.
„ Berppq.

ESeϵS “

n
ÿ

i“1

EBie
ϵS

“

n
ÿ

i“1

peϵEeϵ
ř

k‰i Bk

“ npeϵ
`

EeϵB1
˘n´1

“ npeϵ p1 ` ppeϵ ´ 1qq
n´1

ď npeϵ`2ϵnp,

where the inequality follows from the fact that ex ´ 1 ď 2x for 0 ď x ď 1.

Lemma 2.38. Let a P R and let Z,Z 1 i.i.d.
„ Np0, Idq for d P N.

Then, axZ,Z 1y is Ca
?
d-sub-exponential for a universal constant C ą 0 and

Eet|axZ,Z1
y| ď 2et

2a2d,

whenever |t| ď p2a2q´1.

Proof. Since xZ,Z 1y|Z 1 „ Np0, }Z 1}2q,

EetaxZ,Z1
y “ EZ1

EZ|Z1

etaxZ,Z1
y “ EZ1

e
t2a2

2 }Z1
}
2
2 .

By Lemma 2.36, the latter is further bounded by

e
t2a2d

2 ` t4a4d
2 ď et

2a2d,

whenever t2a2 ď 1{2. The conclusion then follows by e.g. Proposition 2.7.1 in [210],
since xZ,Z 1y is mean zero. For the last statement,

xZ,Z 1y|Z 1 d
“ ´xZ,Z 1y|Z 1.

Consequently,

EZ|Z1

et|axZ,Z1
y| “ EZ|Z1

1txZ,Z1yą0ue
taxZ,Z1

y ` EZ|Z1

1txZ,Z1yď0ue
´taxZ,Z1

y

ď 2EZ|Z1

etaxZ,Z1
y,

and the proof follows by what was shown above.
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The following lemma is a well known result, essentially one side of the Donsker-
Varadhan duality (see e.g. Theorem 4.13 in [36]).

Lemma 2.39. Consider a nonnegative random variable H with EH “ 1 and a ran-
dom variable Z satisfying logEeZ ă 8. It holds that

EHZ ´ EH logH ď logEeZ .

Proof. We have

EHZ ´ EH logH “ EH logp
eZ

H
q.

The result now follows by Jensen’s inequality, using that A ÞÑ E1AH defines a prob-
ability measure.

The next lemma is a standard bound for the KL-divergence, see for instance Lemma
2.7 of [204].

Lemma 2.40. Let P,Q probability measures on some measure space such that Q ! P .
Then,

DKLpP }Qq ď

ż
ˆ

dP

dQ
´ 1

˙2

dQ.

Definition 5. Consider probability measures P and Q on a measurable space pX ,X q.
A coupling of P and Q is any probability measure P on pX ˆ X ,X b X q such that
P has marginals P and Q:

P “ P ˝ π´1
1 , Q “ P ˝ π´1

2

where πi : X ˆ X Ñ X is the projection onto the i-th coordinate (i.e. πipx1, x2q “ xi
for i “ 1, 2).

Lemma 2.41 below is a well known result showing that, for random variables X and X̃
defined on a Polish space, a small total variation distance between their correspond-
ing laws guarantees the existence of a coupling such that they are equal with high
probability.

Lemma 2.41. For any two probability measures P and Q on a measurable space
pX ,X q with X a Polish space and X its Borel sigma-algebra. There exists a coupling

PX,X̃ such that
}P ´Q}TV “ 2PX,X̃

´

X ‰ X̃
¯

.

For a proof, see e.g. Section 8.3 in [201].



Chapter 3

Optimal distributed testing
protocols under bandwidth
and privacy constraints

“An algorithm must be seen to be believed.” - Donald E. Knuth

In this chapter, we exhibit algorithms / methods attaining the lower bounds as de-
scribed by the impossibility results of the previous chapter. Specifically the exhibited
methods are optimal in the sense that they attain the lower bound rates of Theo-
rem 3.1 and Theorem 3.2. Section 3.1 is concerned with constructing methods for the
b-bit bandwidth constrained signal detection problem. In Section 3.2, methods are
constructed that are optimal under differential privacy constraints.

There are similarities between the flavor of the testing strategies. The most important
commonality is the contention between combining the locally optimal tests versus
sharing information that allows to “reconstruct” the underlying full data. This second
approach is more similar to the optimal approach typically followed in estimation
problems. What is also similar, is that the “phase transitions” exhibited in the lower
bound theorems typically correspond to different testing strategies (but not in all
cases). Another parallel is the importance of shared randomness in cases where the
“reconstruction” strategy is followed. The chapter closes with an in-depth discussion
of this phenomenon in Section 3.3.

3.1 Testing protocols under bandwidth-constraints

“There is a whole book of readymade, long and convincing, lavishly com-
posed telegrams for all occasions. Sending such a telegram costs only

99
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twenty-five cents. You see, what gets transmitted over the telegraph is
not the text of the telegram, but simply the number under which it is listed
in the book, and the signature of the sender. This is quite a funny thing,
reminiscent of Drugstore Breakfast #2. Everything is served up in a ready
form, and the customer is totally freed from the unpleasant necessity to
think, and to spend money on top of it.” – Ilya Ilf & Yevgeny Petrov

In this section, we exhibit three distributed testing procedures that attain the rates
posed by the lower bounds of Theorem 2.3. Together, they yield Theorem 3.1, which
shows that the lower bounds in Theorem 2.3 are attainable and therefore tight. The
first distributed testing procedure TI communicates only a single bit per machine
and can detect signals with a squared Euclidean norm of larger or equal order than?
d{p

?
mnq and does not need a shared randomness. As a second procedure, we con-

sider a test using the shared randomness protocol TII that achieves the rate d
nm

?
b^d

.

The third procedure is a local randomness protocol and achieves the corresponding
slower rate d{pnmpb^ dqq. The existence of such distributed testing protocols proves
the theorem below.

Theorem 3.1. For each α P p0, 1q there exists a constant Cα ą 0 (depending only
on α) such that if

ρ2 ě Cα

?
d

mn

˜

c

d

b^ d

ľ?
m

¸

,

there exists T P T
pbq

SR such that

RpHρ, T q ď α for all n,m, d, b P N.

Similarly, for

ρ2 ě Cα

?
d

mn

ˆ

d

b^ d

ľ?
m

˙

there exists T P T
pbq

LR such that

RpHρ, T q ď α for all n,m, d, b P N.

Sections 3.1.1, 3.1.2 and 3.1.3 describe distributed testing protocols that attain the
rates in the above theorem. Combining Lemmas 3.2, 3.3 and 3.4, the proof of the
theorem follows as an immediate consequence of these lemmas.

A common denominator in the construction of the three protocols is that the tran-
scripts Y pjq are generated as vector of pjf -Bernoulli random variables taking values

in t0, 1ub where pjf P r0, 1sb depends on the underlying signal f , in a manner that

ensures that pjf “ p1{2, . . . , 1{2q under the null hypothesis (i.e. when f “ 0). The
concentration inequality for groups of Bernoulli random variables given in Lemma 3.1
provides a recipe for the construction of a central test for each of the three regimes.
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The Type I error can be controlled since the distribution under the null hypothesis
is known. The Type II error is small whenever the vectors of probabilities p1f , . . . , p

m
f

are sufficiently separated from p1{2, . . . , 1{2q in Euclidean norm.

Below we design a testing procedure for l observations on the binary hypercube t0, 1uk.
That is, given independent observations Bi for i “ 1, . . . , l taking values in t0, 1uk

with probability distribution p “ pp1, . . . , pkq P r0, 1sk and
řk

i“1 pi “ 1. The test aims
to distinguish the hypothesis

H0 : p “
1

2
ιk versus H1 : p ‰

1

2
ιk,

where we use ιk “ p1, 1, . . . , 1q P Rk. Multiple algorithms exist that achieve this, we
propose the following test.

Lemma 3.1. For k, l P N, consider for i “ 1, . . . , k j “ 1, . . . , l independent draws
Bj

i taking values in t0, 1u with mean pi. The test

T :“ 1

$

&

%

ˇ

ˇ

ˇ

ˇ

1
?
kl

k
ÿ

i“1

˜

l
ÿ

j“1

pBj
i ´

1

2
q

¸2

´
?
k{4

ˇ

ˇ

ˇ

ˇ

ě κα

,

.

-

has at most level α for the null hypothesis pi “ 1{2 for i “ 1 . . . , k. Furthermore, if
for p “ pp1, . . . , pkq P r0, 1sk it holds that

ηp,k,l :“
l ´ 1

2
?
k

}p´ 1{2ιk}22 ě κα, (3.1)

then it also holds that

Ep1 ´ T q ď
1{2 ` 16k´1{2ηp,k,l

η2p,k,l
. (3.2)

The lemma gives us a test that distinguishes between “strings” of bits generated
by the machines depending on their stochastic behavior under the null hypothesis
versus the anticipated behavior under the alternative. Bits under the null hypothesis
are “fair coin flips”. When they sufficiently deviate from fair flips in the sense that
}p´1{2ιk}2 is large under the alternative hypothesis, the underlying signal that causes
such a deviation can be detected with large power.

The proof of the lemma can be found in Section 3.4.1 of the chapter appendix where
it is restated as Lemma 3.16.

3.1.1 Low communication budget: construction of TI

We first compute the local test statistic S
pjq

I “ n}Xpjq}22 at every machine j “

1, . . . ,m. Under the null hypothesis, S
pjq

I follows a chi-square distribution with d de-

grees of freedom, i.e. S
pjq

I „ χ2
d. Letting Fχ2

d
denote χ2

d-cdf, the quantity Fχ2
d

´

S
pjq

I

¯
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can be seen as the p-value for the local test statistic S
pjq

I . Based on these “local p-

values”, we then generate the randomized transcript Y
pjq

I for every j using Bernoulli
random variables:

Y
pjq

I |S
pjq

I „ Ber
´

Fχ2
d

´

S
pjq

I

¯¯

.

For a given α P p0, 1q, we can construct the test

TI “ 1

!
ˇ

ˇ

ˇ

1

m

´

m
ÿ

j“1

pY
pjq

I ´ 1{2q

¯2

´ 1{4
ˇ

ˇ

ˇ
ě κα

)

(3.3)

at the central machine. In applications, one could set for instance κα such that

P0TI « α by considering that
řm

j“1 Y
pjq

I is pm, 1{2q-binomially distributed under
the null. Lemma 3.2 below yields that for each α P p0, 1q, there exist constants
κα, Cα,Mα, D0 ą 0 such that for m ě Mα and d ě D0 it holds that RpHρ, TIq ď α,

whenever ρ2 ě Cα

?
d?

mn
.

The casem ď Mα corresponds essentially to the non-distributed setting and is treated
separately for technical reasons. In practice, one would simply use the test given
in (3.3) also for m ď Mα. Furthermore, if one allows for a slightly larger amount of
bits (e.g. log2pmnq bits), one could opt to transmit an (approximation of) the test

statistics S
pjq

I themselves, see e.g. Lemma 2.3 in [188], for which it is easy to prove

that the rate of
?
d?

mn
is achieved without requiring any assumptions on m. For the

sake completeness: by considering ρ2 ě Cα

?
Mα

?
d

mn , we see that the optimal rate of
?
d?

mn
can be achieved in the m ď Mα case by simply taking

T 1
I :“ Y

p1q

I :“ 1

"

1
?
d

´

S
p1q

I ´ d
¯

ě κα

*

(3.4)

for an appropriately large choice of the constant κα. Similarly, the requirement that
d is larger than some constant D0 (which is independent of α) appears for technical
reasons. The case where d ď D0 is covered by the local randomness protocol TIII in
Section 3.1.3.

Lemma 3.2. For each α P p0, 1q, there exist constants κα, Cα,Mα, D0 ą 0 such that
for m ě Mα and d ě D0 it holds that

RpHρ, TIq ď α,

whenever ρ2 ě Cα

?
d?

mn
.

Proof. Under the null hypothesis the random variables Y
pjq

I „i.i.d. Bernp1{2q. Next
we shall apply Lemma 3.1 with k “ 1, and l “ m. By the first statement of the
lemma, we obtain that there exists κα ą 0 such that P0TI ď α{2.



3.1. Testing protocols under bandwidth-constraints 103

We give an upper bound for the Type II error by using the second statement of the
lemma, but before that we show that condition (3.1) holds. Note that the law of total
expectation yields

EfY
pjq

I “ EfEf

”

Y
pjq

I

ˇ

ˇS
pjq

I

ı

“ EfFχ2
d

´

S
pjq

I

¯

“ PrpS
pjq

I ě Wdq,

where S
pjq

I is noncentral chi-square distributed under Pf with d-degrees of freedom
and noncentrality parameter n}f}22 and Wd is an independent chi-square distributed
random variable with d-degrees of freedom. Then Lemma 3.19 in the chapter appendix
yields that

ηp,m,1 “
m´ 1

2

ˆ

EfY
pjq

I ´
1

2

˙2

ě
m´ 1

3200

ˆ

n}f}22?
d

ľ 1

2

˙2

. (3.5)

whenever d ě D0 for some universal constant D0 ą 0. Consequently, as }f}22 ě ρ2 ě

Cα

?
d?

mn
, we obtain that condition (3.1) is satisfied whenever m ě Mα for some large

enough Cα ą 0 and Mα ą 0. Hence, the Type II error is bounded by the right-hand
side of (3.2), which is monotone decreasing in ηp,m,1 hence also in Cα. Therefore, by
large enough choice of Cα the Type II error is bounded from above by α{2.

3.1.2 Public coin, high communication budget: construction
of TII

We now switch our attention to exhibiting a testing procedure that is optimal when
bm Á d and b À d, in the shared randomness case. The rate to attain in this
case is ρ2 Á d{pnm

?
bq. That a shared source of randomness in distributed settings

can be strictly better than private ones in terms of “communication complexity”, is
an idea that goes back to [222]. Essentially, the use of shared randomness allows
for the machines coordinate their efforts in “covering” each of the d dimensions of
the data even though all communication happens in just one round. We explore
this phenomenon in Section 3.3, giving various explanations on top of the proof of
Lemma 3.3 below. We adopt ideas proposed by [12], who consider the setting where
n “ 1 with asymptotics in m. This testing protocol is exhibited below and we provide
a full proof covering also the case where m ‰ n. To that extent, let U be a random
rotation, i.e. U is drawn from the Haar measure (see e.g. Theorem F.13 in [24]) on
the set of orthonormal matrices in Rdˆd. At each machine, for b ď d, we can compute

the b-bit transcript Y
pjq

II P t0, 1ub conditionally on the shared randomness draw U ,
where each of the 1 ď i ď b components is defined through

pY
pjq

II qi|U,X
pjq “ 1

!´?
nUXpjq

¯

i
ą 0

)

,

where pvqi denotes the projection onto the i-th coordinate of the vector v P Rd.
The random rotation fulfills a similar purpose as the random reweighting algorithm
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proposed in [192], but leads to an easier proof in the d-dimensional case because of
rotational invariance of the Gaussian distribution.

Centrally, after transmitting pY
p1q

II , . . . , Y
pmq

II q, we compute the aggregated test statis-

tics SII “
řm

j“1 Y
pjq

II and define the corresponding test as

TII “ 1

!
ˇ

ˇ

ˇ

1
?
bm

b
ÿ

i“1

´

pSIIqi ´
m

2

¯2

´
?
b{4

ˇ

ˇ

ˇ
ą κα

)

. (3.6)

Lemma 3.3 below shows that this test achieves the shared randomness lower bound
when mb Á d and m ě Mα.

Lemma 3.3. For each α P p0, 1q, there exist constants κα, Cα,Mα ą 0 such that for
m ě Mα

RpHρ, TIIq ď α,

whenever ρ2 ě Cα
d

mn
?
d^b

.

Proof of Lemma 3.3. First note that it is sufficient to consider the case b ď d as one

can simply take b “ b^d. Then note that under Pf ,
?
nUXpjq|U „ Ndp

?
nUf, Idq by

the rotational invariance of the Gaussian distribution. By linearity of the coordinate
projection, conditionally on U ,

1

!´?
nUXpjq

¯

i
ą 0

)

d
“ 1

␣?
npUfqi ` Z ą 0

(

,

where Z „ Np0, 1q. As a consequence, the vector SII is conditionally on U coordinate
wise independent binomially distributed with parameters m and pf,U P r0, 1sb under

PY |U
f , where

ppf,U qi “ Φp
?
npUfqiq,

with Φ the standard normal CDF. Under the null hypothesis, pSIIqi is Binpm, 1{2q

distributed since p0,U “ p1{2, . . . , 1{2q P r0, 1sb. Next we apply Lemma 3.1 with k “ b
and l “ m. By the first statement of the lemma, it follows that for κα large enough,
P0TII ď α{2.

In order apply the second statement of the lemma, which yields that the Type II error
is bounded by α{2, it suffices to show that the event

A “

!m´ 1

2
?
b

b
ÿ

i“1

´

ppf,U qi ´
1

2

¯2

ě Nα

)

,

where Nα :“ κα _ 16
α , occurs with PU -probability greater than 1´α{4. Note that for

this choice of Nα, (3.1) is satisfied on the event A and the right-hand side of (3.2) is
smaller than α{4. The Type II error is then bound by PfTII ď PfTII1A`Pf1Ac ď α{2.
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We proceed to show that Pf1Ac ď α{4. By a standard bound on the Gaussian error
function x ÞÑ 2Φpxq ´ 1 (see Lemma 3.26),

ˆ

Φp
?
npUfqiq ´

1

2

˙2

ě
1

12
min

␣

npUfq2i , 1
(

,

which in turn implies that

PU

˜

m´ 1

2
?
b

b
ÿ

i“1

ˆ

ppf,U qi ´
1

2

˙2

ď Nα

¸

ď PU

˜

m´ 1

24
?
b

b
ÿ

i“1

min
␣

npUfq2i , 1
(

ď Nα

¸

.

Note that Uf
d
“ }f}2pZ1, . . . , Zdq{}Z}2, where Z “ pZ1, . . . , Zdq „ Np0, Idq (see e.g.

Section 3.4 of [210]). Using that }f}2 ě ρ and ρ2 ě Cα
d

mn
?
b
, the previous display is

further bounded by

Pr

˜

m´ 1

24
?
b

b
ÿ

i“1

min

"

Cα
dZ2

i

m
?
b}Z}22

, 1

*

ď Nα

¸

.

Considering the intersection with the event t}Z}22 ď kdu for some k ą 0, the above
display can be bounded by

Pr

˜

b
ÿ

i“1

mintZ2
i , C

´1
α m

?
bku ď

24bmk

Cαpm´ 1q
Nα

¸

` Pr
`

}Z}22 ě kd
˘

.

For k large enough (independent of d), the second term is less than α{8. By Lemma 3.27,

Pr

ˆ

max
1ďiďb

Z2
i ě C´1

α m
?
bk

˙

ď
2b

eC
´1
α m

?
bk{4

.

For large enough Mα ě Cα, the condition m ě Mα implies that the right-hand side
is less than α{8. The first term in the second to last display is consequently bounded
by

Pr
´

b
ÿ

i“1

Z2
i ď

24bmk

Cαpm´ 1q
Nα

¯

` Pr

ˆ

max
1ďiďb

Z2
i ě C´1

α m
?
bk

˙

ď Pr

˜

b
ÿ

i“1

Z2
i ď

24bmk

Cαpm´ 1q
Nα

¸

` α{8.

For m ě Mα ě 25 and by choosing Cα large enough such that the Chernoff–Hoeffding
bound on the left tail of the chi-square distribution (see Lemma 3.28) can be applied
to the first term of the preceding display we get that

Pr

˜

b
ÿ

i“1

Z2
i ď

25kNα

Cα
b

¸

ď exp

¨

˝´b

25kNα

Cα
´ 1 ´ log

´

25kNα

Cα

¯

2

˛

‚ď α{8, (3.7)

finishing the proof of the lemma.
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3.1.3 Private coin, high total communication budget: con-
structing TIII

Finally, we consider the case of not having access to shared randomness, but having a
relatively large communication budget (b2m Á d2). Note that we can assume without
loss of generality that m ě Mαd

2{b2 for a constant Mα ą 0, as otherwise the optimal
rate is

?
d{p

?
mnq, obtained by the 1-bit local randomness test described by (3.3) (see

Section 3.1.1). This case is the most involved one, and we construct a test consisting
two sub-tests optimal in different sub-regimes.

The most obvious approach in this case is to divide the communication budget of each
machine over the d coordinates as uniformly as possible. That is to say, to partition
the coordinates t1, . . . , du into approximately d{b sets of size b (we assume without
loss of generality that b ď d, as we can always throw away excess budget and b “ d
bits suffices for achieving the minimax rate). The machines are then equally divided
over each of these partitions and communicate the coefficients corresponding to their
partition. More formally, such a strategy entails taking sets Ii Ă t1, . . . ,mu such that
|Ii| “ tmb

d u and each j P t1, . . . ,mu is in Ii for b different indexes i P t1, . . . , du. For
i “ 1, . . . , d and j P Ii, generate the transcripts according to

Y
pjq

i |X
pjq

i “ 1tX
pjq

i ą 0u. (3.8)

Centrally, a natural test based on these transcripts is

T 1
III :“ 1

!
ˇ

ˇ

ˇ

1

|I1|
?
d

d
ÿ

i“1

´

ÿ

jPIi

pY
pjq

i ´ 1{2q

¯2

´
?
d{4

ˇ

ˇ

ˇ
ą κα

)

. (3.9)

It turns out that such a test does not cover all regimes wherem Á d2{b2, because, there
is a certain amount of information loss due to the nonlinearity of the quantization
step (3.8), i.e. the test induces soft thresholding for the signal components which is
suboptimal for (relatively) large signal components. For the exact statement on the
testing error of this test, see Lemma 3.17 below.

For detecting signals including large coordinates we propose an adaptation of test
T 1
III. We start by assuming that b ě 2 logpd ` 1q otherwise we do not construct the

test. Then for i “ 1, . . . , d and j “ 1, . . . ,m, let us generate

B
pjq

li
i.i.d.
„ Ber

´

Fχ2
1

´

`?
nX

pjq

i

˘2
¯¯

, l P t1, . . . , Cb,d “ t2b{pd` 1quu.

Note that Cb,d ě 1 by assumption. Then machine j communicate the transcripts

Y
pjq

count “

Cb,d
ÿ

l“1

d
ÿ

i“1

B
pjq

li P t0, 1, . . . , Cb,ddu, (3.10)
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which can be done using log2pCb,dd` 1q ď b bits in total. Based on these transcripts,
we compute the test

T 2
III “ 1

$

&

%

ˇ

ˇ

ˇ

ˇ

1

dmCb,d

˜

m
ÿ

j“1

pY
pjq

count ´ Ld{2q

¸2

´
1

4

ˇ

ˇ

ˇ

ˇ

ě κα

,

.

-

(3.11)

centrally. The testing risk bound for the above test is given in Lemma 3.18 in the
appendix.

Finally, we construct our test by combining the above ones. We construct both partial
tests T 1

III and T
2
III if b ě 2 logpd ` 1q by transmitting b1 “ tb{2u bits per machine for

each, otherwise we just construct T 1
III. Then we merge them by taking

TIII “ T 1
III _ T 2

III1tbě2 logpd`1qu, (3.12)

where the indicator should be understood to rule out cases in which the transcripts
for T 2

III cannot necessarily be communicated. This case, as shown below, is covered
by the first test T 1

III. Lemma 3.4 below shows that TIII has sufficiently small testing
risk in all cases where m ě Mαd

2{b2.

Lemma 3.4. For α P p0, 1q, there exist constants Mα, Cα ą 0 such that when m ě

Mαd
2{b2, the b-bit distributed private testing protocol TIII given in (3.12) satisfies

RpHρ, TIIIq ď α,

whenever ρ2 ě Cα
d

?
d

mnpb^dq
.

Proof. Fix an arbitrary f P Hρ and define

J “ ti : 1 ď i ď d,
n

m
f2i ě 1u. (3.13)

By Lemma 3.17 in the appendix, the test T 1
III given in (3.9) with κα, Cα,Mα ą 0

large enough satisfies

E0T
1
III ď α{6, and Ef p1 ´ T 1

IIIq ď α{6,

whenever
ÿ

iRJ
f2i ě ρ2{2 or

mb

d
?
d

ą Mα. (3.14)

Next we consider the case where (3.14) does not hold. Then Mα ě mb
d

?
d

ě Mα

?
d
b ,

where the second inequality follows from the assumption of the lemma. This implies
that b ě

?
d. Since mb

d
?
d

ď Mα and m can be taken to be larger than arbitrary

constant (otherwise we are in the non-distributed regime in which the minimax rate
can be achieved locally), we can without loss of generality assume d is larger than
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an arbitrary constant (depending only on α), hence b ě
?
d ě 2 logpd ` 1q and

the test T 2
III and the corresponding transcripts can be constructed. Furthermore,

ř

iPJ c f2i ă ρ2{2 implies J ‰ H in view of
ř

i f
2
i ě ρ2. Consequently, the conditions

of Lemma 3.18 are satisfied, yielding that there exists a test T 2
III such that E0T

2
III ď α{6

and Ef p1 ´ T 2
IIIq ď α{6. We note that in case mb

d
?
d

ą Mα, the test T 2
III cannot

necessarily be computed (not enough communication budget), but this is not required
as this case is covered by T 1

III.

We now have that for any f P Hρ, whenever
mb
d

?
d

ď Mα, the test TIII can be computed

and using that for nonnegative x, y ě 0, x_ y ď x` y and x_ y ě x, we obtain that

RpHρ, TIIIq ď E0T
1
III ` E0T

2
III1tbě2 logpd`1qu

` sup
fPHρ

min
␣

Ef p1 ´ T 1
IIIq,Ef p1 ´ T 2

III1tbě2 logpd`1quq
(

ď 2α{6 ` α{6 “ α{2.

3.2 Testing protocols under privacy constraints

“An interesting thing about differential privacy is that it needs theorems
even in practice. You can implement heuristic algorithms that are fast
on your data, but ‘heuristic privacy’ does not exist. A mechanism isn’t
private without a theorem.” – Jelani Nelson

In this section, we exhibit distributed differentially private testing procedures achiev-
ing (up to log factors) the rates posed by the lower bounds of Theorem 2.4 in Chap-
ter 2. Together, they yield Theorem 1.2. We consider the test of hypotheses

H0 : f “ 0 versus the alternative hypothesis f P Hρ “
␣

f P Rd :M ě }f}2 ě ρ
(

.
(3.15)

The restriction to signals of bounded norm is standard in privacy and does not change
the conclusion of the lower bound, Theorem 2.4, see Remark 6. The rates attained
by the procedures in this section are summarized by the theorem below.

Theorem 3.2. Consider for some constant M ą 0 the test of hypotheses in (3.15).
For all α P p0, 1q, there exists a constant Cα ą 0 such that for all n,m, d P N and
pmnq´1 ă ϵ ď 1, δ ě 1tϵěn´1{2upmndq´2, there exists a pϵ, δq-differentially private
distributed testing protocol T using shared randomness such that RpHρ, T q ď α when-
ever

ρ2 ą Cα log6p1 `mndq

˜

d

mn
?
nϵ2 ^ 1

?
nϵ2 ^ d

ľ

˜ ?
d

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

,

(3.16)
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Similarly, for all α P p0, 1q, there exists a constant Cα ą 0 such that for all n,m, d P N,
pmnq´1 ă ϵ ď 1 and δ Á 1tϵěn´1{2upmndq´2, there exists a pϵ, δq-differentially private
local randomness distributed testing protocol T such that RpHρ, T q ď α whenever

ρ2 ą Cα log6p1 `mndq

˜

d
?
d

mnpnϵ2 ^ dq

ľ

˜ ?
d

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

. (3.17)

Just as it was the case in the bandwidth constraint setting, the different rates, de-
pending on ϵ comparatively to n, d and m, correspond to different testing “regimes”.
We shall coin these regimes using similar terminology. We start in Section 3.2.1 by
designing a differentially private testing protocol that uses only local randomness and
that is optimal in the “small ϵ regime”; ϵ À

?
d{

?
nm or ϵ À d{

?
nm for shared-

and local randomness, respectively. Then, in Section 3.2.2, we design two local ran-
domness protocols attaining the rates for the “in-between” and “large” ϵ regimes,
where ϵ Á

?
d{

?
nm or ϵ Á d{

?
nm for shared- and local randomness, respectively.

As remarked in Section 1.3.2, there are certain values of d,m, n, where some of these
regimes do not occur.

The first distributed differentially private testing procedure TI is pϵ, 0q-differentially
private for any ϵ ą 0 and can detect signals with a squared Euclidean norm of a (poly-
logarithmic) factor larger than

?
d{p

?
mn

?
nϵ2 ^ 1q, whenever pmnq´1 ă ϵ ď 1. This

first procedure does not need a shared randomness.

As a second procedure, we consider a distributed differentially private testing pro-
tocol using shared randomness, that achieves the rate d

mn3{2ϵ
?
nϵ2^1

(again up to

log-factors). Whenever ϵ ď 1{
?
n, this procedure can be implemented with a pϵ, 0q-

differential privacy guarantee, in which case we shall denote it as T ϵ
II. For the range

of values 1{
?
n ă ϵ ď 1, we shall consider a version of this protocol that employs

pϵ, δq-differential privacy, which we denote T ϵ,δ
II .

The third procedure, is a distributed differentially private testing protocol that uses
only local randomness and achieves the rate d

?
d{pmn2ϵ2q (up to log-factors). When-

ever ϵ ď 1{
?
n, the procedure satisfies pϵ, 0q-differential privacy constraints, and shall

be denoted by T ϵ
III. For the range of values 1{

?
n ă ϵ ď 1, we shall construct a

pϵ, δq-differentially private version, T ϵ,δ
III .

The approximate differentially private tests T ϵ,δ
II and T ϵ,δ

III employed when ϵ ą 1{
?
n

attain the respective lower bound rates (up to logarithmic factors) for values of δ as
small as pmnq´C for an arbitrary constant C ą 0. The existence of such distributed
testing protocols proves Theorem 3.2.

Before delving into the construction of these specific protocols for the different regime,
we cover the general strategy for the design of these protocols. Similarly to how
the bandwidth constraint protocols essentially boil down to testing uniformity of a
sequence of bits, which are generated from the local data, the distributed privacy
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protocols can be seen as combining noisy versions of statistics of the data. The
“type” and “amount” of noise added depends on the sensitivity of the statistics.

Formally, consider a metric d on Rk. Given n elements x “ px1, . . . , xnq in a sample
space X , the d-sensitivity at x of a map S : Xn Ñ Rk is

∆Spxq :“ sup
x̆PXn:dHpx,x̆qď1

d pSpxq, Spx̆qq ,

where dH is the Hamming distance on Xn,

dHpx, x̆q :“
n
ÿ

i“1

1 txi ‰ x̆iu . (3.18)

The d-sensitivity of S is defined as ∆S :“ supx ∆Spxq.

In our case, the sample space under consideration is Rd. In this section, the noise
mechanisms under consideration are Laplace mechanism and the Gaussian mecha-
nism. These can be used to generate differentially private transcripts by adding
either Laplacian or Gaussian noise to statistics under consideration. The Laplace
mechanism yields ϵ-differentially private transcripts for statistics x ÞÑ Spxq that have
bounded L1-sensitivity, where the variance of the Laplace noise scales with the L1-
sensitivity. The Gaussian mechanism yields pϵ, δq-differentially private transcripts for
statistics that have bounded L2-sensitivity, with the noise variance scaling with the
L2-sensitivity.

The following lemma shows the way in which adding appropriately scaled Laplace
noise can be used to guarantee ϵ-differential privacy. The result is well known (see
e.g. [86]), but since the proof is short and instructive it is included below.

Lemma 3.5. Suppose that the map S : pRdqn Ñ Rk has } ¨ }1-sensitivity ∆S P p0,8q.
Let W “ pW1, . . . ,Wkq be a vector of i.i.d. centered Laplace random variables with
scale parameter ϵ´1∆S. Then, the transcript

T pxq “ Spxq `W

is ϵ-differentially private.

Proof. By the triangle inequality, the ratio of densities of the random variables Spxq`

W and Spx1q `W satisfies

e
´ ϵ

∆S
}Spxq`w}1` ϵ

∆S
}Spx1

q`w}1
ď e

ϵ
∆S

}Spxq´Spx1
q}1

ď eϵ.

Consequently, Definition 3 can be seen to be satisfied:

Pr pSpxq `W P Aq ď eϵPr
`

Spx1q `W P A
˘

.
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The next lemma shows how appropriately scaled Gaussian noise provides pϵ, δq-differential
privacy for mappings with bounded L2-sensitivity. This result is also well known, and
a proof can be found in e.g. Appendix A of [86].

Lemma 3.6. Suppose that the map S : pRdqn Ñ Rk has } ¨ }2-sensitivity ∆S P p0,8q.
Let W “ pW1, . . . ,Wkq be a vector of i.i.d. standard Gaussian random variables.
Then, the transcript

T pxq “ Spxq `
a

3 log p1{δqϵ´1∆SW

is pϵ, δq-differentially private.

In order to obtain statistics with (uniformly) bounded sensitivity with respect to
the L1 and L2-norms, it shall prove particularly useful to bound quantities between
thresholds, which we shall refer to as clipping. Formally, for a, b, x P R with a ă b, let
rxsba denote x clipped at a and b, that is

rxsba :“

$

’

&

’

%

b if x ą b,

x if a ď x ď b,

a otherwise.

For x P Rd, let pxqi denote the projection onto the i-th coordinate and let rxsba “

trpxqis
b
a : i “ 1, . . . , du.

In estimation, clipping and averaging (functionals of) the observations is a common
strategy that enjoys good sensitivity. For x1, . . . , xn P Rd, xi “ pxi1, . . . , xidq, the
combination of clipping at τ and ´τ and averaging over i “ 1, . . . , n yields sensitivity
of the order 2τd{n for the L1-norm and 2τ

?
d{n for the L2-norm, uniformly over

the sample space. That is, the map S : Rnˆd Ñ Rd defined by Spx1, . . . , xnq :“
n´1

řn
i“1rxis

τ
´τ satisfies

|Spx1, . . . , xnqk ´ Spx̆1, . . . , x̆nqk| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

rxiksτ´τ ´
1

n

n
ÿ

i“1

rx̆iksτ´τ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2τ

n
,

for x̆1, . . . , x̆n P Rd such that x̆i “ xi for all but one i P rns. The larger L1-sensitivity
when d ą 1 implies that the variance of the Laplace noise added will be larger than
that of the Gaussian mechanism, which typically leads to a less powerful test.

Functions of the data that are superlinear on the entire sample space will typically
have worse sensitivity than sublinear functions, such as the average. One technique
that we will employ, that allows the use of e.g. a quadratic function is Lipschitz
extension. The idea being that for S : X Ñ R, if x ÞÑ Spxq is D-Lipschitz on C Ă X
and we expect that most of our observations will be in C, we can define S on C only
and consider a Lipschitz extension S̃ of S to the whole space. This way, S̃ enjoys
“sublinear sensitivity” on the whole space. In particular, if S is D-Lipschitz with
respect to the Hamming distance, we have |Spxq ´ Spx̆q| ď D for all x, x̆ P Xn such
that dHpx, x̆q ď 1, so S̃ has sensitivity D.
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The existence of such a Lipschitz extension is guaranteed by a version of the McShane–
Whitney Extension Theorem. In particular, we use the construction of McShane. We
provide our own proof which accounts for potential measurability issues stemming
from the discrete topology of the Hamming distance in the construction.

Lemma 3.7. Let C Ă Rnˆd and S : C Ñ R be a (Borel) measurable D-Lipschitz
map with respect to the Hamming distance on pRdqn as defined in (3.18). Then, there
exists a map S̃ : Rnˆd Ñ R measurable with respect to the Borel sigma algebra such
that it is D-Lipschitz with respect to the Hamming distance on its entire domain and
S̃ “ S on C.

We provide a proof of the lemma in Section 3.4.2.1 of the chapter appendix. In
the next section, we leverage the Lipschitz-extension above to create a differentially
private version of the chi-square test that would be locally optimal, but which has
poor sensitivity on the entire sample space.

3.2.1 Testing using aggregated locally optimal private test statis-
tics

In this section, we construct a test statistic that is locally optimal, in the sense that
it reaches the local minimax rate under ϵ-differential privacy as established (up to
poly-log factors) in [157]. That is, if m “ 1, the ϵ-differentially private test statistic
reaches the minimax rate of the local problem. When m ą 1, in the central machine,
combining m of these locally optimal tests results in a test which is optimal in the
regime where ϵ À

a

d{pmnq in case of shared randomness or ϵ À d{
?
mn in case of

local randomness.

Given τ ą 0 and V pjq „ χ2
d independent of Xpjq, let

Spjq
τ pXpjqq :“

„

n
?
d

ˆ

›

›

›
Xpjq

›

›

›

2

´
V pjq

n

˙ȷτ

´τ

. (3.19)

For any τ , this test statistic can be seen to be mean zero under the null hypothesis,

since }
?
nXpjq}2 „ χ2

d under P0. Under the alternative hypothesis, the test statistic

picks up a positive “bias” since }
?
nXpjq}2 „ χ2

dp}f}22q under Pf .

We will use that for “typical” data, i.e. data that occurs with relatively high probabil-

ity, x ÞÑ S
pjq
τ pxq has relatively good sensitivity. However, because of the nonlinearity

of the squared Euclidean norm, the sensitivity of the statistic x ÞÑ S
pjq
τ pxq is large for

certain data x P Rdˆn. To mitigate this, we follow a similar strategy to that proposed

in [54] and improved upon by [157]. That is, we define x ÞÑ S
pjq
τ pxq (as in (3.19))

only on a set on which the sensitivity is good. Lemma 3.10 below shows that on a set

Cτ Ă Rdˆn depending on n, d, α,M and τ , the map x ÞÑ S
pjq
τ pxq is Dτ -Lipschitz with

respect to the Hamming distance. Specifically, for x, x̆ P Cτ ,

|Sτ px1, . . . , xnq ´ Sτ px̆1, . . . , x̆nq| ď DτdHpx, x̆q
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with Dτ,n,d,m,γτ
” Dτ “ γτ {n

?
d and

γτ ” γτ,n,d,m “ κ̃α logp1 `mq

ˆ

b

log2p1 ` nqn
?
dτ _

?
nd

˙

, (3.20)

for a constant κ̃α ą 0. Then, in order to obtain a Dτ -Lipschitz statistic which is well-

defined on the full sample space, we compute a Lipschitz extension of x ÞÑ S
pjq
τ pxq to

Rdˆn. Such a Lipschitz extension exists by the McShane–Whitney Extension theo-
rem, but the construction as applied in [54, 157] is not necessarily Borel measurable.
A Borel-measurable Lipschitz extension of the map that is guaranteed to exist by
Lemma 3.7, for which we provide a proof in the chapter appendix, Section 3.4.2.1.
In addition, our construction differs from that of [54, 157], in order to allow easier
combination of the test statistics and improving performance by several log-factors
(which is due to a slightly sharper analysis). We denote the Lipschitz extension of

S
pjq
τ by S̆

pjq
τ , which then satisfies S

pjq
τ pxq “ S̆

pjq
τ pxq on Cτ and is Dτ -Lipschitz on the

entirety of Rdˆn. The set Cτ is constructed such that Xpjq takes values in it with high

probability. This results in S̆
pjq
τ pXpjqq exhibiting similar probabilistic behavior as the

original test S
pjq
τ pXpjqq, whilst assuring it has a much smaller sensitivity is greatly

improved over the whole parameter space. The explicit construction of Cτ is given at
the end of this section, as well as the proofs of the aforementioned lemmas. Consider
for τ ą 0 J ” Jm,n :“ logpr1 ` 2 log2pmnMqsq the (partial) transcript

Y pjq
τ “

ϵ

DτJ
S̆pjq
τ pXpjqq `W pjq

τ (3.21)

with W
pjq
τ „ Lapp1q independent for j “ 1, . . . ,m and τ ą 0. Since x ÞÑ ϵ

JDτ
S̆

pjq
τ pxq

can be seen to have sensitivity ϵ{J by the fact that S̆
pjq
τ is Dτ -Lipschitz and conse-

quently the partial transcript is ϵ{J-differentially private by Lemma 3.5. The lemma
below shows that the test

φϵ
τ :“ 1

#

1
?
m

m
ÿ

j“1

Y pjq
τ ě

ˆ

ϵ

DτJ
_ 1

˙

?
Jκα

+

(3.22)

has Type I error less than or equal to α{J for κα ą 0 large enough and detects signals
that are “close” to the clipping τ .

Lemma 3.8. The test φϵ
τ defined in (3.22) satisfies P0φ

ϵ
τ ď α{J . Furthermore,

whenever

τ{4 ď
n}f}22?

d
ď τ{2,

and f satisfies (3.25) for Cα ą 0 large enough, it holds that Pf p1 ´ φτ q ď α for
J “ logpr1 ` 2 log2pmnMqsq.

A proof of the lemma is given later on in the section. Essentially, the above test is
calibrated for the detection of signals with signal size between τ{4 and τ{2. In order
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to detect signals of any size larger than the right-hand side of (3.25), we follow what
is essentially a multiple testing procedure. For large signals, we need a larger clipping
to detect them, as well as a larger set Cτ to assure that the data is in Cτ with high
probability, as larger signals increase the probability of “outliers” from the perspective
of sensitivity of the Euclidean norm. The additional J “ r1 ` 2 log2pmnMqs “blow
up” can be seen as a Bonferroni correction.

Since 1{mn2 ď }f}2 ď M , it suffices to compute tests for partial transcripts for

τ P T :“

"

2´k`2nM
2

?
d

: k “ 1, . . . , J

*

. (3.23)

For each τ P T, the machine transfers (3.21), yielding as a full transcript Y pjq “ tY
pjq
τ :

τ P Tu. Since each partial transcript Y
pjq
τ is ϵ{J-differentially private with independent

Laplacian noise, the full transcript Y pjq is ϵ-differentially private by Lemma 3.5. The
test

T ϵ
I :“ max

τPT
φτ (3.24)

then satisfies P0T
ϵ
I ď α via a union bound. Furthermore, for f P Rd such that

M ě }f}2 ě ρ, we have a τ˚ P T such that τ˚{4 ď
?
dn}f}22 ď τ˚{2 and

Pf p1 ´ T ϵ
I q ď Pf p1 ´ φτ˚ q ď α{2.

Given what we have thus far, we obtain the following statement.

Lemma 3.9. For all M ą 0, α P p0, 1q there exists κα ą 0 and Cα ą 0 such that the
test T ϵ

I defined by (3.24) and (3.22) satisfies

P0T
ϵ
I ` Pf p1 ´ T ϵ

I q ď α

for all f P Rd such that

M2 ě }f}22 ě Cα log6p1 `mnq

˜ ?
d

?
mnp

?
nϵ^ 1q

¸

ł

ˆ

1

mn2ϵ2

˙

. (3.25)

Next, we discuss the construction of Cτ and finish by proving the aforementioned
lemmas. Define for τ ą 0 the sets

Aτ “

"

pxiq P pRdqn :

ˇ

ˇ

ˇ

ˇ

›

›

ř

iPJ xi
›

›

2

2
´ kd

ˇ

ˇ

ˇ

ˇ

ď kγτ @J Ă rns, |J | “ k ď K

*

, (3.26)

Bτ “

!

pxiq P pRdqn :
ˇ

ˇ

ˇ

A

xi,
ř

kPrnsztiu xk

E
ˇ

ˇ

ˇ
ď γτ , @i “ 1, . . . , n

)

,

with K “ r2τD´1
τ s and let Cτ “ Aτ XBτ . Lemma 3.10 below tells us that x ÞÑ Spjqpxq

is Lipschitz on Cτ with Lipschitz constant Dτ “
8γ

n
?
d
.
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Lemma 3.10. The map x ÞÑ S
pjq
τ pxq defined in (3.19) is Dτ -Lipschitz with respect

to pRdqn-Hamming distance on Cτ .

Proof. Consider x “ pxiqiPrns, x̆ “ px̆qiPrns P Cτ with k :“ dHpx, x̆q. If k ą r2τD´1
τ s,

we have |S
pjq
τ pxq ´ S

pjq
τ px̆q| ď 2τ ď Dτk. If k ď r2τD´1

τ s, let J Ă rns denote the
indexes of columns in which x and x̆ differ. Define the sum of the elements that x
and x̆ have in common as

v “
ÿ

iPrnszJ

xi, such that
n
ÿ

i“1

xi “ v ` w and
n
ÿ

i“1

x̆i “ v ` w̆.

We have

Spjq
τ pxq ´ Spjq

τ px̆q “
n

?
d

ˆ

›

›n´1pv ` wq
›

›

2
´
V pjq

n

˙

´
n

?
d

ˆ

›

›n´1pv ` w̆q
›

›

2
´
V pjq

n

˙

“
1

n
?
d

´

2 xw, vy ´ 2 xw̆, vy ` }w}
2
2 ´ }w̆}

2
2

¯

.

The last two terms are bounded by 2kγτ {pn
?
dq since x, x̆ P Aτ . The first two terms

equal

2

n
?
d

´

xw, v ` wy ´ xw̆, v ` w̆y ` }w̆}
2
2 ´ }w}

2
2

¯

,

where the last two terms are bounded by 4kγτ {pn
?
dq. It holds that

xw, v ` wy ´ xw̆, v ` w̆y “
ÿ

iPJ

¨

˝

C

xi,
ÿ

iPrnszJ

xi

G

´

C

x̆i,
ÿ

iPrnszJ

x̆i

G

` }xi}
2
2 ´ }x̆i}

2
2

˛

‚,

which is bounded by 2kγτ for x P Aτ X Bτ . Putting it all together and by symmetry
of the argument, we obtain that

ˇ

ˇ

ˇ
Spjq
τ pxq ´ Spjq

τ px̆q

ˇ

ˇ

ˇ
ď

8kγτ

n
?
d

“ Dτk.

Under the null hypothesis, the observations the Xpjq’s are in Cτ for every τ with high
probability. For each element f from the alternative hypothesis, there exists a τ˚ such
that the Xpjq’s are in Cτ˚ with high probability. This is the content of the following
lemma.

Lemma 3.11. Whenever n}f}22d
´1{2 ď τ{2, τ ď nM2{

?
d and κ̃α in (3.20) is taken

large enough, it holds that

Pf

´

Xpjq R Cτ
¯

ď
α

2m
.
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We now finish the proof of Lemma 3.9 by providing a proof for Lemma 3.8. Lemma 3.11
is proven in Section 3.4.2.3 in the chapter appendix.

Proof of Lemma 3.8. On the event that Xpjq P Cτ for all j P rms, we have that

m
ÿ

j“1

Y pjq
τ “

m
ÿ

j“1

ˆ

ϵ

DτJ
S̆τ pXpjqq `W pjq

τ

˙

“

m
ÿ

j“1

ˆ

ϵ

DτJ
Sτ pXpjqq `W pjq

τ

˙

. (3.27)

Consequently, P0φτ is bounded above by

P0

˜

1
?
m

m
ÿ

j“1

ˆ

ϵ

DτJ
Sτ pXpjqq `W pjq

τ

˙

ě

ˆ

ϵ

DτJ
_ 1

˙

?
Jκα

¸

` P0

´

Dj : Xpjq R Cτ
¯

.

By Lemma 3.11 and a union bound, the second term is bounded above by α{2.
Under P0, the terms in (3.27) are independent mean zero. By Lemma 3.22 and a
straightforward computation, the variance of each term in (3.27) is bounded above by
4ϵ2

D2
τJ

2 ` 2. By Chebyshev’s inequality, the first term in the display above is therefore

bounded by
`
?
Jκαpϵ{pDτJq _ 1q

˘´2
´

4ϵ2

D2
τJ

2 ` 2
¯

, so choosing κα large enough yields

the first statement of the lemma. For the second statement, note that the same union
bound as above yields that Pf p1 ´ φτ q is bounded above by

Pf

˜

1
?
m

m
ÿ

j“1

ˆ

ϵ

DτJ
Sτ pXpjqq `W pjq

τ

˙

ă

ˆ

ϵ

DτJ
_ 1

˙

?
Jκα

¸

` α{2, (3.28)

also using Lemma 3.11. Under the alternative hypothesis,

n
?
d

ˆ

›

›

›
Xpjq

›

›

›

2

2
´
V pjq

n

˙

d
“
n}f}22?

d
` 2

?
n

?
d

xZ, fy `
}Z}22 ´ V pjq

?
d

. (3.29)

By assumption,
n}f}

2
2?

d
ď τ{2, Varp

?
n

?
d

xZ, fyq “ n}f}22{d ď τ{2 and p}Z}22 ´ V pjqq{
?
d

tends to a Gaussian with variance 4 for large d. The second and third term in (3.29)
are symmetric in distribution about 0, have uniformly bounded densities (since the
chi-square and normal densities are bounded, and the third term tends weakly to a
Gaussian in d) and d´1{2n}f}22 ď τ{2, which means that the conditions of Lemma 3.21
are satisfied. Applying said lemma (with µ “ d´1{2n}f}22), we get that there exists a
uniform constant c ą 0 such that

Ef
1

?
m

m
ÿ

j“1

ˆ

ϵ

DτJ
Sτ pXpjqq `W pjq

τ

˙

ě c

?
mn}f}22ϵ?
dDτJ

.

Under Pf , by independence of the data and the Laplacian noise,

Varf

˜

1
?
m

m
ÿ

j“1

ϵ

DτJ
Sτ pXpjqq `W pjq

τ

¸

“ 1 ` Varf

ˆ

ϵ

DτJ
Sτ pXp1qq

˙

.
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Since

Ef
n

?
d

ˆ

›

›

›
Xpjq

›

›

›

2

2
´
V pjq

n

˙

“
n}f}22?

d
ď τ{2,

Lemma 3.22 yields

Varf

ˆ

ϵ

DτJ
Sτ pXp1qq

˙

ď
ϵ2

D2
τJ

2
Varf

ˆ

n
?
d

ˆ

›

›

›
Xpjq

›

›

›

2

2
´
V pjq

n

˙˙

ď
ϵ2

D2
τJ

2

ˆ

4n}f}22

d
` 4

˙

.

Assume now that for all Cα ą 0 large enough,

ˆ

ϵ

DτJ
_ 1

˙

?
Jκα ď c

?
mn}f}22ϵ

2
?
dDτJ

, (3.30)

which is a claim we shall prove later on. Then, the first term in (3.28) is bounded
above by

Pf

˜

1
?
m

m
ÿ

j“1

ˆ

ϵ

DτJ
Sτ pXpjqq `W pjq

τ ´ Ef pSτ pXpjqq `W pjq
τ q

˙

ă ´c

?
mn}f}22ϵ

2
?
dDτJ

¸

,

(3.31)
which, by Chebyshev’s inequality is bounded by

ˆ

c

?
mn}f}22ϵ

2
?
dDτJ

˙´2ˆ

1 `
ϵ2

D2
τJ

2

ˆ

4n}f}22

d
` 4

˙˙

À

ˆ ?
mn}f}22ϵ?

dDτ logpnmq

˙´2

`
`

mn}f}22

˘´1
`

ˆ?
mn}f}22?

d

˙´2

.

For f satisfying (3.25), the last two terms are easily seen to be smaller than α{6 for
a large enough to choice for Cα. To see that this is also true for the first term, recall
that Dτ “ p8γτ q{pn

?
dq with γτ as defined in (3.20), which yields that the square

root of the first term equals

?
mn2}f}22ϵ

8κ̃α logp1 `mq

ˆ

b

log2p1 ` nqn
?
dτ _

?
nd

˙

logpnmq

,

which is larger than Cαlogpmnq when the maximum is taken in
?
nd. When the

maximum is taken in
b

log2p1 ` nqn
?
dτ , using that 4n}f}22{

?
d ě τ yields that the

above display is bounded by

?
mn}f}2ϵ

16κ̃α logp1 `mq logp1 ` nq logpnmq
ě Cα.
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In either case, it follows that the Type II error (i.e. (3.31)) can be made arbitrarily
small per large enough choice of Cα ą 0.

We return to the claim of (3.30). First, we note that

?
mn}f}22ϵ?
dDτJ

“

?
mn2}f}22ϵ

κ̃α

b

log2p1 ` nqn
?
dτ _

?
nd logp1 ` nmq

Á 1

is what we have shown above. The inequality
?
mn}f}22ϵ?
dDτJ

ě
ϵ

DτJ

follows immediately for f satisfying (3.25).

3.2.2 Tests using coordinate wise strategies under differential
privacy

This section presents four different protocols, all aiming at the “high” and “medium”
privacy budget regimes, which occur whenever ϵ Á

?
d{p

?
mnq in the case of shared

randomness strategies, or

ϵ Á
d

?
mn

if ϵ Á
1

?
n

or
d

?
mn

À ϵ À
1

?
n
,

in case of only local randomness.

A common element in these four strategies is that they try to reconstruct or approxi-
mate the aggregated data by combining a noisy and clipped version of the local data.
This is in contrast to the aggregated statistics corresponding to the locally optimal
private tests as considered in Section 3.2.1. These “coordinate wise reconstruction”
strategies are similar to those typically employed in estimation [86], i.e. “clipping”
statistics and adding appropriately scaled noise.

Where the strategies differ from estimation, is firstly in the dimensionality of the
transcripts. There is interplay between the optimal number of coordinates that a
transcript contains information on and the severity of the privacy constraint. When
ϵ À 1{

?
n, the cost of transmitting information on each of the observations is very

costly. To mitigate this, the rate optimal strategies in this ϵ regime transmit no
more than a single coordinate of (a linear transformation of) the data. Laplacian
noise is added to the clipped coordinate in order to obtain pϵ, 0q-differentially privacy
guarantee, resulting in the pϵ, 0q-differentially private protocols. Such a regime or
optimal strategy is not observed in the equivalent estimation problem, where it seems
always optimal to transmit information on all coordinates, as described by the results
Section 2.5.6. The shared randomness test corresponding to this strategy shall be
denoted by T ϵ

II and its construction is given in Section 3.2.2.1, whereas the local
randomness counterpart, T ϵ

III, shall be described in Section 3.2.2.2.
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When ϵ Á 1{
?
n, strategies that communicate information on more than one coordi-

nate (of a linear transformation) of the data become viable, in the sense that they
perform equally well or better than the ones that communicate just one coordinate.
For these strategies, we shall employ Gaussian noise, which scales better in dimension
than the Laplacian noise. The Gaussian mechanism results in pϵ, δq-differentially pri-

vate protocols. The corresponding shared randomness test shall be denoted by T ϵ,δ
II ,

its local randomness counterpart by T ϵ,δ
III , which are constructed in Sections 3.2.2.3

and 3.2.2.4, respectively. The optimal number of coordinates transmitted / dimen-
sionality of the transcript depends on the privacy budget ϵ, n and d. The choice of
δ could be as small as pnmq´p, where p ě 1 is a constant; we opt for the rather
arbitrary choice of δ — pnmq´2.

3.2.2.1 Pure differential privacy using shared randomness in the “in-
between regime”

We now bring our attention to constructing a shared randomness distributed ϵ-DP

testing protocol T ϵ
II that is rate-optimal up to a logarithmic factor whenever

?
d?

mn
ď

ϵ ď 1{
?
n.

Let U denote a draw from the Haar measure on Rdˆd. For machine j “ 1, . . . ,m,
generate

Y pjq ” Y pjqpXpjq, Uq “
ϵ

2τ

n
ÿ

i“1

rpUX
pjq

i q1sτ´τ `W pjq,

where W pjq is independent centered Laplace noise with scale parameter 1. We also
recall the notation pvqk, which denotes the projection of a vector v P Rd onto the

k-coordinate. The map x ÞÑ 1
2τ

řn
i“1rpux

pjq

i q1sτ´τ has sensitivity 1 for any u P Rdˆd,

which makes Y pjq ϵ-differentially private by Lemma 3.5.

In contrast to the multiple clippings used in the test of Section 3.2.1, we consider a
single level of clipping:

τ :“ κ̃α
a

logp1 ` dmnq. (3.32)

Using these transcripts, the central machine computes the test

T ϵ
II “ 1

$

&

%

˜

1
?
m

m
ÿ

j“1

Y pjq

¸2

´ 2 ´
nϵ2

4τ2
ě κα

?
nϵ2 _ 1

,

.

-

.

Applying Lemma 3.23 with γ “ ϵ{p2τq and L “ 1, choosing κα ą 0 and κ̃α ą 0 large
enough yields that P0T

ϵ
II ď α{2. Furthermore, this choice of γ reduces the condition

of (3.67) to

ˆ

d

mn}f}2

˙

_

ˆ

dκ̃2αΛd,n,m

mn2ϵ2}f}22

˙

_

ˆ

κ2αd
2

m2n2}f}42

˙

_

˜

κ2ακ̃
4
αΛ

2
d,n,m

m2n4ϵ4}f}42

¸

ď cα, (3.33)
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where Λd,n,m :“ logp1 ` dnmq. Since nϵ2 À 1, the condition

}f}22 ě Cα
d

logp1 ` dmnqmn2ϵ2
(3.34)

for Cα ą 0 large enough yields that the maximum of (3.33) is taken in the last
argument, which is in turn bounded by κ2ακ̃

4
α{C2

α. We obtain that the Type II error
condition of Lemma 3.23 is satisfied and Pf p1 ´ T ϵ

IIq ď α{2. In conclusion, we obtain
the following result.

Lemma 3.12. Let
?
d?

mn
ď ϵ ď 1{

?
n. There exists a distributed pϵ, 0q-differentially

private testing protocol T ϵ
II such that T ϵ

II is of level α and has Type II error probability
Pf p1 ´ T ϵ

IIq ď α whenever f P Hρ satisfies (3.67) for a constant Cα ą 0 depending
only on α.

3.2.2.2 Pure differential privacy strategy using only local randomness in
the “in-between regime”

In this section, we shall prove the following lemma by constructing a distributed
testing protocol T ϵ

III that is ϵ-differentially private, uses only private randomness and
attains the lower bound rate of Theorem 2.4 up to log-factors whenever

?
nϵ ď 1 and

ϵ ě d?
mn

.

For τ ą 0, j P rms and l “ 1, . . . , d, consider transcripts of the form

Y
pjq

l pXpjqq “
ϵ

2Lτ

n
ÿ

i“1

rpX
pjq

i qls
τ
´τ `W

pjq

l , (3.35)

where the W
pjq

l ’s are i.i.d. Laplace noise on the line with scale parameter 1 and L P N
such that d ě L. Since x ÞÑ ϵ

2Lτ

řn
i“1rpx

pjq

i qls
τ
´τ has sensitivity ϵ{L for l “ 1, . . . , L,

releasing

Y pjqpXpjqq “ pY
pjq

i1
pXpjqq, . . . , Y

pjq

iL
pXpjqqq

for one il P rds satisfies the ϵ-DP guarantee by Lemma 3.5 as that Y pjq has L1-
sensitivity 1.

The clipping τ :“ κ̃α
a

logp1 ` dmnq is taken similarly to that of T ϵ
II in the previous

section, where κ̃α ą 0 is a constant depending on the desired level of the test only.
This assures that “typical” observations under the null hypothesis are within the
clipping, whilst only in rare cases outliers are required to be clipped. This clipping
is the cause of the log-optimality of the testing procedure: with significantly more
technical effort, we believe it can be shown that a large enough constant clipping
attains the optimal rate.

The test statistic x ÞÑ Y pjqpxq requires the 1{L rescaling to have sufficiently bounded
L1-sensitivity and choosing L too large means a possible loss of power. An approach
in this case is to divide each machine over the d coordinates as uniformly as possible.



3.2. Testing protocols under privacy constraints 121

That is to say, to partition the coordinates t1, . . . , du into approximately d{L sets of
size L. The machines are then equally divided over each of these partitions and com-
municate the sum of clipped Xpjq coefficients corresponding to their partition. More
formally, such a strategy entails taking sets Il Ă t1, . . . ,mu such that |Il| “ tmL

d u and
each j P t1, . . . ,mu is in Il for L different indexes l P t1, . . . , du. For l “ 1, . . . , d and
j P Il, generate the transcripts according to (3.35). Interestingly, the optimal choice
of L turns out to be rd{ms, which entails L being of constant order for the regime
where d{

?
mn ď

?
nϵ ď 1 (as this implies that m ě d2). In other words, the optimal

rate in this regime is achieved by each machine communicating information about
just one (or an Op1q selection) of the d coordinates. The information gained by com-
municating more than a constant number of coordinates is not worth the increased
noise needed to guarantee differential privacy.

As a test, the central machine computes

T ϵ
III “ 1

$

&

%

1
?
d

d
ÿ

k“1

»

–

˜

1
a

|Jk|

ÿ

jPJk

Y
pjq

k

¸2

´
nϵ2

4L2τ2
´ 2

fi

fl ě κατ

,

.

-

,

which, by applying Lemma 3.24 with γ “ ϵ
2Lτ , satisfies P0T

ϵ
III ď α{2 for κ̃α, κα ą 0

large enough.

Since ϵ ď n´1{2, we have γ2 ď plogpdnmqnq´1. Combining this with the fact that L —

1, ϵ À 1{
?
n and the required condition (3.71) of the second statement of Lemma 3.24

reduces to showing that, for some constant cα ą 0,

d

mn}f}22
_

logp1 ` dnmqd2

m2n2ϵ2}f}22
_

log2p1 ` dnmqd3

m2n4ϵ4}f}42
ď cα. (3.36)

Whenever f satisfies (3.37) below, the first term is of the order 1{Cα (again using
ϵ À 1{

?
n). Furthermore, using m Á d2 yields that the second term in the maximum

is of the order 1{pCα

?
mq and for the third term we obtain

log2p1 ` dnmqd3

m2n4ϵ4}f}42
ď

1

C2
α

,

which can be made arbitrarily small for per choice of Cα ą 0. The second statement
of Lemma 3.24 consequently yields that Pf p1 ´ T ϵ

IIIq ď α{2. We consequently have
proven Lemma 3.13 below.

Lemma 3.13. Take α P p0, 1q. Whenever d{
?
mn ď

?
nϵ ď 1, the distributed pϵ, 0q-

differentially private testing protocol T ϵ
III of level α has Type II error Pf p1 ´ T q ď α

whenever

}f}22 ě Cα
d3{2

logp1 ` dmnqmn2ϵ2
, (3.37)

for a constant Cα ą 0 depending only on α.
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3.2.2.3 Shared randomness in the “large” ϵ regime

When ϵ Á n´1{2, better rates can be achieved by communicating more than a constant
number of clipped coordinates with added noise. In order to obtain a rate matching
the lower bound in Theorem 2.4 (up to a log factor), the noise used for this strategy is
Gaussian. The Gaussian noise requires the sensitivity to be small in L2-norm, which
means that the scaling of the Gaussian noise has a better dimensional dependency.
This also means that the protocol is pϵ, δq-differentially private. For this strategy to
attain the optimal rate, one can take δ À pnmdq´p for any fixed p ą 1 is deemed
fit, so arguably the “impure” differentially private protocol is still “close” to being ϵ-
differentially private, especially in terms a plausible deniability guarantee (see (1.6)).
The protocol below does not require ϵ ě n´1{2. The approach leads to a test attaining
that attains the (log-optimal) rate and Type I and Type II guarantees laid out in the
lemma below.

Lemma 3.14. Let pmnq´1 ď ϵ ď 1. There exists a distributed pϵ, δq-differentially pri-

vate testing protocol T ϵ,δ
II , with level α and has corresponding Type II error probability

Pf p1 ´ T ϵ,δ
II q ď α whenever

}f}22 ě Cα
d logp1{δq log2p1 ` dnmq

mn
?
nϵ2 ^ d

?
nϵ2 ^ 1

(3.38)

for a constant Cα ą 0 depending only on α.

Consider for L “ rnϵ2 ^ ds, l “ 1, . . . , L and j “ 1, . . . ,m the transcripts

Y
pjq

l |pXpjq, Uq “ γϵ,τ,n,m

n
ÿ

i“1

rpUX
pjq

i qls
τ
´τ `W

pjq

l , (3.39)

with γϵ,τ,n,m “ ϵ

6
?

2L logp1{δqτ
, τ “ κ̃α

a

logp1 ` dmnq, U a random rotation (drawn

uniformly) and pW
pjq

l qj,l i.i.d. centered standard Gaussian noise. For any rotation
u P Rdˆd,

sup
x̆PpRdqn:dHpx,x̆qď1

›

›

›

›

›

›

γϵ,τ,n,m

˜

n
ÿ

i“1

rpuxiqls
τ
´τ ´

n
ÿ

i“1

rpux̆iqls
τ
´τ

¸

l:jPJl

›

›

›

›

›

›

2

ď

ϵ

2
?
Lτ

g

f

f

e

L
ÿ

l“1

˜

sup
x̆PpRdqn:dHpx,x̆qď1

rpxiqlsτ´τ ´ rpx̆iqlsτ´τ

¸2

ď 1,

so by an application of Lemma 3.6, the transcript Y pjq :“ pY
pjq

l qlPrLs is pϵ, δq-differentially
private. The test

T ϵ,δ
II “ 1

$

&

%

1
?
d

d
ÿ

l“1

»

–

˜

1
?
m

m
ÿ

j“1

Y
pjq

l

¸2

´ nγ2ϵ,τ,n,m ´ 1

fi

fl ě κα
`

nγ2ϵ,τ,n,m _ 1
˘

,

.

-

(3.40)
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satisfies P0φ ď α{2 by Lemma 3.23 applied with γ “ γϵ,τ,n,m, for κα ą 0 large enough.
Plugging in γϵ,τ,n,m, we see that (3.67) is satisfied whenever the quantity

ˆ

d

mnL}f}22

˙

_

ˆ

dΛd,n,mκ̃
2
α

mn2ϵ2}f}22

˙

_

ˆ

κ2αd
2

m2n2L}f}42

˙

_

˜

κ2ακ̃
4
αΛ

2
d,n,md

2L

m2n4ϵ4}f}42

¸

, (3.41)

where Λd,n,m :“ logp1 ` dnmq logp1{δq can be made arbitrarily small per choice of
Cα ą 0 in (3.38). When ϵ À 1{

?
n, the same steps used to prove Lemma 3.12

(see (3.33)) show that the condition is satisfied. For 1{
?
n À ϵ À d, L — nϵ2 ^ d Á 1

and (3.41) reduces further to

κ2ακ̃
4
αΛ

2
d,n,md

2

m2n3ϵ2}f}42
À cα.

This can also be seen to hold whenever f is such that (3.38). Lastly, when nϵ2 Á

d, (3.33) reduces to κ2αd
2{pm2n2L}f}42q À cα, which also holds for Cα ą 0 large

enough for f satisfying (3.38). Consequently, we obtain that Pf p1 ´ T ϵ,δ
II q ď α{2 for

Cα large enough, as desired.

3.2.2.4 Private randomness protocol in the “large” ϵ regime

Similarly to the case of shared randomness, we can combine the coordinate wise (local
randomness) approach with Gaussian noise to allow for a larger amount of coordinates
to be sent. Similarly to the shared randomness Gaussian mechanism, the protocol
below does not require ϵ ě n´1{2, but the rate that is attained is a factor logp1{δq

larger. We shall take δ “ pdnmq´p with p “ 2, but p can be taken any constant larger
than one, which only affects the constant Cα ą 0 in (3.42).

Lemma 3.15. Let pmnq´1 ď ϵ ď 1 and δ “ pdnmq´2. There exists a distributed

pϵ, δq-differentially private testing protocol T ϵ,δ
III such that T ϵ,δ

III is of level α and has

Type II error probability Pf p1 ´ T ϵ,δ
IIIq ď α whenever

}f}22 ě Cα
d3{2 logp1{δq logp1 ` dmnq

mnpnϵ2 ^ dq
(3.42)

for a constant Cα ą 0 depending only on α.

Let L “ rnϵ2^ds and take sets Il Ă rms such that |Il| “ tmL
d u and each j P t1, . . . ,mu

is in Il for L different indexes l P t1, . . . , du. For l P rds, j P Il, generate the transcripts
according to

Y
pjq

l |Xpjq ” Y
pjq

l pXpjqq “
ϵ

6
a

2L logpdmnqτ

n
ÿ

i“1

rpX
pjq

i qls
τ
´τ `W

pjq

l (3.43)
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with τ “ κ̃α
a

logp1 ` dmnq and pW
pjq

l qj,l i.i.d. standard Gaussian noise. The clipped
and 1

2
?
Lτ

-rescaled sums have at most L2-sensitivity less than or equal to one:

sup
x̆PpRdqn:dHpx,x̆qď1

1

2
?
Lτ

›

›

›

›

›

›

˜

n
ÿ

i“1

rpxiqls
τ
´τ ´

n
ÿ

i“1

rpx̆iqls
τ
´τ

¸

l:jPJl

›

›

›

›

›

›

2

ď (3.44)

1

2
?
Lτ

g

f

f

e

L
ÿ

l“1

˜

sup
x̆PpRdqn:dHpx,x̆qď1

rpxiqlsτ´τ ´ rpx̆iqlsτ´τ

¸2

ď 1.

Consequently, the transcript Y pjq :“ pY
pjq

l ql:jPJl
is pϵ, pnmq´2q-differentially private

as a result of Lemma 3.6. The test

T ϵ,δ
III “ 1

$

&

%

1
?
d

d
ÿ

l“1

»

–

˜

1
a

|Jl|

ÿ

jPJl

Y
pjq

l

¸2

´
nϵ2

4Lτ2
´ 1

fi

fl ě κα

ˆ

nϵ2

4Lτ2
_ 1

˙

,

.

-

(3.45)

satisfies P0T
ϵ,δ
III ď α by Lemma 3.24 applied with γ “ ϵ{p6

a

2L logp1{δqτq whenever
κ̃α ą 0 and κα ą 0 are chosen large enough. In order to fulfill the condition of (3.71)
in the same lemma, it suffices that

d

mnpnϵ2 ^ dq}f}22
_
dΛm,n,dκ̃

2
α

mn2ϵ2}f}22
_

κ2αd
3

m2n2pnϵ2 ^ dq2}f}42
_
d3Λ2

m,n,dκ̃
4
ακ

2
α

m2n4ϵ4}f}42
ď cα

where Λm,n,d “ logp1{δq logp1 ` dmnq. When nϵ2 À d, the maximum is taken in the
fourth argument, which can be seen to satisfy the inequality for Cα ą 0 whenever
f satisfies (3.42). Whenever nϵ2 Á d, the maximum is taken in the third argument,
which means the inequality is also satisfied in this case.

3.3 On the benefit of shared randomness in dis-
tributed decision problems

In this chapter and Chapter 2, we encounter the (in some cases strictly) better per-
formance of shared randomness distributed testing protocols under privacy and band-
width constraints. What drives this intriguing phenomenon? We will delve into this
question in this section.

We approach the phenomenon from two different perspectives. In Section 3.3.1 below,
we provide one approach, which is to study it abstractly in the framework of statistical
decision theory as outlined in Section 1.2. Here, we shine a light on how it relates to
the risk formulation of a statistical decision problem. In addition, we show that shared
randomness offers no benefit in the distributed estimation settings considered in this
thesis and offer some contemplation on what separates these distributed estimation
problems from the distributed testing problem. As a second approach, in Section 3.3.2,
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we explore an example of a simple minimax detection game which bears parallels with
distributed hypothesis testing under communication constraints.

Both of these approaches provide insight into the potential benefit of access to shared
randomness. For the reader who is further interested, we refer to Chapter 3 in [171] for
a broad treatment of this phenomenon, in the context of how many bits two or more
parties need to exchange to compute a specific function whose inputs are distributed
among the parties.

3.3.1 Shared randomness for general decision problems

In this section, we will contemplate why access to shared randomness can have demon-
strable benefit in distributed testing under bandwidth and privacy constraints, whilst
it demonstrably does not in their minimax distributed estimation counterparts. That
is, the distributed estimation problem under bandwidth constraints considered in Sec-
tion 2.1.1 and the distributed estimation problem under privacy constraints studied
in Section 2.4 exhibit the same minimax rate for shared randomness distributed pro-
tocols as for local randomness protocols. This is not explicitly established in those
respective sections, so we aim to do so here in a general setting, in the form of Theo-
rem 3.3 below. Whilst the result is straightforward and probably well known among
experts, we did not find a proof of the following explicit statement in the literature.
Related to the result, we then highlight how the specification of the minimax risk
relates to the possibility of performance benefit from access to shared randomness.

Consider a sequence of models Pν “ tPf,ν : f P Fu defined on a measurable space
pX ,X q, indexed by a measurable space F , a decision space pD,Dq and a sequence
of (measurable) loss functions ℓν : D ˆ F Ñ r0,8q. We recall the distributed setting
of Section 1.2, in which j “ 1, . . . ,m machines each observe an independent draw
Xpjq from Pf,ν . Denote the full data as X :“ pXp1q, . . . , Xpmqq. Consider distributed

decision protocols f̂ ” f̂ν ” tf̂ , tKjumj“1,PUu where Kj : Y pjq ˆ X Ñ r0, 1s is a

Markov kernel for j “ 1, . . . ,m and f̂ : bm
j“1Ypjq Ñ D is a measurable function,

for measurable spaces pYpjq,Y pjqq. Let J ” Jν denote the class of all such dis-
tributed protocols such that tKjumj“1 satisfy either a b-bit bandwidth constraint or a
pϵ, δq-differential privacy constraint and let K Ă J denote the class of distributed
protocols where U „ PU is degenerate (i.e. the subset of local randomness protocols).
Let Ef ” Ef,ν denote expectation with respect to the joint distribution of Y with the
data which is given by

PfPU bm
j“1 K

jp¨|Xpjq, Uq “ PUPf bm
j“1 K

jp¨|Xpjq, Uq,

where the interchange of Pf ” Pm
f,ν and PU follows from the independence of the

shared randomness and the data. We shall consider the risk for the loss function ℓ
over the model P;

sup
fPF

Ef,ν ℓνpf̂pY q, fq. (3.46)
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This setup encapsulates the estimation and testing settings considered in the thesis.
The following theorem shows that, if there exists a “sufficiently adversarial prior”,
there is no benefit to having access to shared randomness.

Theorem 3.3. Suppose that, for some sequence of distributions π ” πν on F and
sequences γν , ϱν ą 0, it holds that

inf
f̂PK

sup
fPF

Ef ℓνpf̂pY q, fq ď γν and inf
f̂PK

ż

Ef ℓνpf̂pY q, fqdπpfq ě ϱν .

Then,

ϱν ď inf
f̂PJ

sup
fPF

Ef,ν ℓνpf̂pY q, fq ď γν . (3.47)

In particular, if γν — ρν ,

inf
f̂PJ

sup
fPF

Ef ℓνpf̂pY q, fq — inf
f̂PK

sup
fPF

Ef ℓνpf̂pY q, fq.

Proof. The right-hand side inequality of (3.47) follows from the fact that K Ă J ,
which means

inf
f̂PJ

sup
fPF

Ef ℓνpf̂pY q, fq ď inf
f̂PK

sup
fPF

Ef ℓνpf̂pY q, fq.

To obtain the other inequality, consider an arbitrary shared randomness distributed
protocol tf̂ , tKjumj“1,PUu P J . By the independence of U with the data X, it holds
for any f P F that

Ef ℓνpf̂pY q, fq “

ż

EY |U“u
f ℓνpf̂pY q, fqdPU puq.

The triplet tf̂ , tKjumj“1, δuu, where δu denotes the Dirac measure at u, is a local ran-

domness distributed testing protocol, noting that pA, xq ÞÑ KjpA|x, uq for any u in the
sample space of U indeed defines a local randomness Markov kernel satisfying its orig-
inal constraint (i.e. its bandwidth or differential privacy constraint). Consequently,
we have that

sup
fPF

Ef ℓνpf̂pY q, fq ě

ż

EY
f,ν ℓνpf̂ 1pY q, fqdπpfq

“

ż ż

EY |U“u
f ℓνpf̂ 1pY q, fqdπpfqdPU puq

ě

ż

inf
f̂PK

Ef,νℓνpf̂ 1pY q, fqdπpfq ě ϱν .

The conclusion of the theorem follows because tf̂ , tKjumj“1,PUu P J was taken ar-
bitrarily.



3.3. On the benefit of shared randomness in distributed decision
problems 127

Essentially, the theorem states that the “lack of benefit” of shared randomness in
e.g. the estimation problems considered in Chapter 2 stems from the fact that the
prior distribution used to prove the (Bayes risk) lower bounds does not depend on
the Markov kernels tKjumj“1 constituting the distributed protocol. That is, in the

language of the theorem above, π is not contingent on tKjumj“1. In the distributed
testing problem, sharper lower bounds are obtained by taking π adversarial with
respect to the local randomness protocol (i.e. tKjumj“1), see e.g. the distributed Le
Cam bound of Lemma 2.28.

To illustrate this further, suppose that

inf
f̂PK

sup
π

ż

Ef ℓνpf̂pY q, fqdπpfq — sup
π

inf
f̂PK

ż

Ef ℓνpf̂pY q, fqdπpfq, (3.48)

where the supremum is taken over all distributions π on F . By an argument similar
to that of the above theorem, it follows that

inf
f̂PJ

sup
fPF

Ef ℓνpf̂pY q, fq — inf
f̂PK

sup
fPF

Ef ℓνpf̂pY q, fq.

That is, if the minimax problem in Bayes risk satisfies an (asymptotic) “minimax
theorem” (i.e. (3.48) holds), shared randomness offers no improved minimax risk,
up to a constant factor. From this observation, one can also conclude that only in
problems where one considers “nature” to be possibly adversarial specifically to the
choice of kernel one might have benefit in having access to shared randomness.

On a similar note, if one assumes “nature” to be adversarial to the shared randomness
outcome, there is no benefit to having access to it. That is, if one defines the minimax
risk as

ż

sup
fPF

EY |U“u
f ℓνpf̂pY q, fq dPU puq, (3.49)

there is no benefit to having shared randomness. Indeed, through similar reasoning
as in the proof of Theorem 3.3, the infimum over J of the above expression equals
the infimum over K .

Which risk formulation is appropriate to one’s decision problem is contingent on what
assumptions one is prepared to make about the “opposing forces” present. Fundamen-
tally, the risk of formulation of (3.46) takes a viewpoint that assumes that, although
nature may act in opposition to our selected protocol, it does not conspire against the
source of shared randomness. This assumption appears sound; it is usually presumed
that “nature” is not adversarial towards individual random occurrences. So at least
in the scientific study of natural phenomena, this seems a reasonable formulation of
minimax risk to work with. For example, in the context of testing a hypothesis con-
cerning a natural phenomenon, the supremum is typically taken to guarantee power
against an entire class of alternatives, not because nature is adversarial to one’s testing
protocol.
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Yet, in a more contentious context, the utilization of shared randomness could be a
genuine issue. For example, if servers coordinate to detect the presence of a hacker,
using shared randomness might form a weakness in the sense that if the source of
randomness is leaked, this could be exploited by the hacker. Similarly, in a military
context, an enemy who gains access to these shared random elements could eavesdrop
or even disrupt the coordinated efforts of the military units. Such contemplations are
further exemplified in the detection game of the next section.

3.3.2 A simple minimax detection game

Consider the following detection game:

• It is the night of December 24th, and Santa Claus is about to visit the house of
Alice and Bob.

• When Santa Claus arrives, he knocks on either the front door, a window on the
side, or a window at the back of the house, leaving presents there.

• Alice and Bob are aware of this and position themselves at different windows
on two floors of the house, trying to spot Santa Claus.

• The house has a first floor with a window next to the front door and a window
to the side of the house, and a top floor with a side window and a window at
the back of the house.

Santa Claus wants to remain undetected and somehow is aware of any strategy that
Alice and Bob concoct beforehand. For example, if Alice and Bob decide to go to
the front- and side window on the first floor, Santa Claus will always appear at the
back of the house, remaining undetected. Since neither floor has windows covering all
three sides of the house, Alice and Bob must split up to have a positive probability
of detecting Santa Claus. Assume that Alice stays at the first floor, while Bob goes
upstairs. When Alice and Bob are on different floors, they are no longer able to
communicate.

The scenario fits into the framework of a minimax distributed detection game. Alice
and Bob choose a strategy, knowing that Santa Claus will pick the best strategy
against their chosen strategy. Let A the event in which Alice goes to the side window
and let B be the even that Bob goes to the side window. The probability of detecting
Santa Claus can be expressed as:

mint1 ´ PrpAq, 1 ´ PrpBq,PrpAYBqu.

If Alice and Bob do not randomize their strategy (i.e., PrpAq,PrpBq P t0, 1u), Santa
Claus will certainly not be detected. So, Alice and Bob will need to randomize their
choice of window, since there are sides of the house to cover, with only two people.

Let us consider the case where Alice and Bob can choose A and B from sigma algebras
Σa and Σb, respectively, to decide which window to guard. The minimax probability
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of detection of Santa Claus for Alice and Bob is

sup
APΣa,BPΣb

mint1 ´ PrpAq, 1 ´ PrpBq,PrpAYBqu.

If Alice and Bob randomize their window choice using independent sources of ran-
domness (with A and B being independent), the probability of the union of their
choices can be expressed as:

PrpAYBq “ PrpAq ` PrpBq ´ PrpAXBq “ PrpAq ` PrpBq ´ PrpAqPrpBq.

Thus, if Σa and Σb consist of independent events, the minimax problem for Alice and
Bob is upper bounded by:

max
x,yPr0,1s

mint1 ´ x, 1 ´ y, x` y ´ xyu,

which can be shown to equal 1
2 p

?
5 ´ 1q “ 0.61 . . . .

Can a better outcome be achieved when Alice and Bob have access to a shared source
of randomness? The answer is yes. An optimal strategy ensures that P pAXBq “ 0,
whilst also assuring PrpAYBq “ PrpAq `PrpBq “ 2{3. This is only possible if A and
B are dependent, i.e. Alice and Bob use a shared source of randomness.

To exemplify such a strategy, suppose Alice and Bob possess two “entangled” coins,
where the outcome (heads or tails) is always the same if the coins are flipped simul-
taneously. After flipping the shared randomness:

• If it lands on heads, Bob stands at the back window, and Alice rolls a die to
determine whether she stands at the side window (if the number of eyes is less
than 5) or the front window (otherwise).

• If it lands on tails, Alice stands at the front window, and Bob rolls a die to
determine whether he stands at the side window (if the number of eyes is less
than 5) or the back window (otherwise).

In this setup, P pAXBq “ 0 and P pAq “ P pBq “ 1{3. Consequently, the probability
of detecting Santa Claus under such a shared randomness strategy is mint1´P pAq, 1´

P pBq, P pAYBqu “ 2
3 , which is strictly greater than the minimax detection probability

with independent events in (3.3.2). So, a shared randomness strategy can achieve
a higher detection probability of up to 2

3 compared to a detection probability of
approximately 0.61 when no shared randomness is available.

The intriguing aspect here is that there is no communication between Alice and
Bob; what matters is the source of their randomness. The parallel between the
scenario above and bandwidth constraint hypothesis testing is that in both cases, there
are limited resources that need to “cover” multiple “locations”. Under bandwidth
constraints, we have a limited number of bits/machines that need to “cover” high
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dimensional data adequately. Each of these dimensions are “locations” in which
signal (Santa Claus in the scenario above) could “appear”. If the number of bits is
smaller than the dimension of the data (the number of “locations”), we can employ
randomization to “divide” bits across the different “locations”. When this randomness
is shared, it is possible to improve coordination between the machines, allowing them
to cover the “locations” more effectively.

In the privacy setting, the resource limitation originates from the fact that the more
dimensions of the data are shared, the more noise must be injected. Typically, if
we can get away with sharing something useful that is of lower dimensionality than
the original data, this means less noise needs to be added. Using a shared source
of randomness improves the coordination between the machines, effectively allow-
ing the machines to cover more “locations” of the original data, whilst keeping the
dimensionality of the object to which noise needs to be added limited.

Chapter acknowledgements: The quote from Section 3.1 was found in the blog of
Maxim Raginsky. The quote originates from the travelogue [117].

3.4 Appendix

3.4.1 Lemmas for the upper bound theorems in the finite di-
mensional Gaussian mean model under bandwidth con-
straints

3.4.1.1 Proof of Lemma 3.1
We state a slightly extended version of Lemma 3.1.

Lemma 3.16. Consider for k, l P N, l ě 2, independent random variables tBj
i :

i “ 1, . . . , k, j “ 1, . . . , lu with Bj
i „ Berppiq. If pi “ 1{2 for i “ 1, . . . , k, for each

α P p0, 1q there exists κα ą 0 such that

Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

1
?
kl

k
ÿ

i“1

˜

l
ÿ

j“1

pBj
i ´

1

2
q

¸2

´
?
k{4

ˇ

ˇ

ˇ

ˇ

ě κα

˛

‚ď α.

On the other hand, for arbitrary cα,n ą 0,

ηp,l,k :“
l ´ 1

2
?
k

k
ÿ

i“1

ˆ

pi ´
1

2

˙2

ě cα,n, (3.50)

it holds that

Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

1
?
kl

k
ÿ

i“1

˜

l
ÿ

j“1

pBj
i ´

1

2
q

¸2

´
?
k{4

ˇ

ˇ

ˇ

ˇ

ď cα,n

˛

‚ď
1{2 ` 16ηp,l,k{

?
k

η2p,l,k
. (3.51)

https://infostructuralist.wordpress.com/
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Proof. The left-hand side in the event having bounded variance: a straightforward
computation (using that for Bj

i „ Bernppiq, the central fourth moment is EpBj
i ´

piq
4 “ pip1 ´ piqp1 ´ 3pip1 ´ piqq ď 1{16 and VarpXq ď EX2) yields

E
” 1

?
kl

k
ÿ

i“1

´

l
ÿ

j“1

pBj
i ´

1

2
q

¯2

´

?
k

4

ı2

“
1

kl2

k
ÿ

i“1

Var
”´

l
ÿ

j“1

pBj
i ´ 1{2q

¯2ı

ď
1

l2

l
ÿ

j“1

EpBj
i ´ 1{2q4 `

1

l2

l
ÿ

j“1

`

EpBj
i ´ 1{2q2

˘2
ď 1{8, (3.52)

after which Chebyshev’s inequality yields the first statement.

We turn to the second statement. Adding and subtracting pi and expanding the
square, the left-hand side of the display in the lemma can be written as

Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

1
?
kl

k
ÿ

i“1

˜

l
ÿ

j“1

Bj
i ´ lpi

¸2

´ µp `
l ´ 1
?
k

k
ÿ

i“1

ˆ

pi ´
1

2

˙2

` ζ

ˇ

ˇ

ˇ

ˇ

ď cα,n

˛

‚ (3.53)

where

µp :“
1

?
k

k
ÿ

i“1

pip1 ´ piq and ζ :“
2

?
k

k
ÿ

i“1

ˆ

pi ´
1

2

˙

˜

l
ÿ

j“1

Bj
i ´ lpi

¸

.

The first term in the event of (3.53) has mean µp and variance (by the same compu-
tations as in (3.52))

Var
” 1

?
kl

k
ÿ

i“1

´

l
ÿ

j“1

Bj
i ´ lpi

¯2ı

“
1

kl2

k
ÿ

i“1

Var
”´

l
ÿ

j“1

Bj
i ´ lpi

¯2ı

ď 1{8.

The term ζ has mean 0 and

Varpζq “
4l

k

k
ÿ

i“1

ppi ´
1

2
q2pip1 ´ piq ď

l

k

k
ÿ

i“1

ˆ

pi ´
1

2

˙2

.

Applying the reverse triangle inequality and condition (3.50), the probability in (3.53)
is bounded from above by

Pr
”
ˇ

ˇ

ˇ

1
?
kl

k
ÿ

i“1

´

l
ÿ

j“1

Bj
i ´ lpi

¯2

´ µp

ˇ

ˇ

ˇ
` |ζ| ě

l ´ 1

2
?
k

k
ÿ

i“1

´

pi ´
1

2

¯2ı

ď Pr
”
ˇ

ˇ

ˇ

1
?
kl

k
ÿ

i“1

´

l
ÿ

j“1

Bj
i ´ lpi

¯2

´ µp

ˇ

ˇ

ˇ
ě ηp,l,k{2

ı

` Pr
”

|ζ| ě ηp,l,k{2
ı

ď
1{8

pηp,l,k{2q2
`

2lk´1{2ηp,l,k{pl ´ 1q

pηp,l,k{2q2
ď

1{2 ` 16ηp,l,k{
?
k

η2p,l,k
,

where the last line follows by Chebyshev’s inequality.
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3.4.1.2 Proof of rate attainment of auxiliary local randomness tests T 1
III

and T 2
III

Here, we provide the risk bounds for the partial tests T 1
III as defined in (3.9) and T 2

III

as defined in (3.11), used in Section 3.1.3.

Lemma 3.17. For any α P p0, 1q there exist constants κα,Mα, Cα ą 0 such that

E0T
1
III ď α{2. Furthermore, for f P Hρ if ρ2 ě Cα

d
?
d

mnpd^bq
and either mb

d
?
d

ě Mα or

ÿ

iPJ c
f2i ě ρ2{2, (3.54)

holds, where J was defined in (3.13), then

Ef p1 ´ T 1
IIIq ď α{2.

Proof. Under the null hypothesis, Y j
i „i.i.d. Bernp1{2q. For each α P p0, 1q by applying

Lemma 3.16 (with k “ d and l “ |I1|) we get that E0T
1
III ď α{2 for large enough

constant κα. For f P Hρ, we have

EfY
j
i “ EfEf

”

Y
pjq

i |Xpjq
ı

“ Φ
`?
nfi

˘

.

To bound the Type II error, we use the second statement of Lemma 3.16 (with k “ d
and l “ |I1|), but before that we show that condition (3.50) holds. Note that by
Lemma 3.26,

|I1| ´ 1

2
?
d

d
ÿ

i“1

ˆ

EfY
pjq

i ´
1

2

˙2

ě
|I1| ´ 1

24
?
d

d
ÿ

i“1

´

nf2i
ľ

1
¯

. (3.55)

In case (3.54) holds, the preceding display is bounded from below by

|I1| ´ 1

24
?
d

ÿ

iPJ c

nf2i ě
np|I1| ´ 1qρ2

48
?
d

.

Note, that for large enough Cα ą 0, np|I1|´1qρ2

48
?
d

ě npmb
d qCα

d
?
d

mnb{p96
?
dq ě κα _ 16

α .

If (3.54) does not hold, then there exists i˚ P t1, . . . , du such that fi˚ ě
a

1{n,
so (3.55) is lower bounded by

|I1| ´ 1

24
?
d

ě
mb

24d
?
d

´
1

12
?
d

ě
Mα

24
´

1

12
.

Then for large enough Mα ą 0, the condition (3.50) is satisfied. Consequently, the
statement of the proof follows by the second statement of Lemma 3.16.

Lemma 3.18. For any α P p0, 1q there exists a κα ą 0 large enough such that

E0T
2
III ď α{2. Furthermore, if ρ2 ě Cα

d
?
d

mnpd^bq
, m ě Mα, for some large enough

Cα,Mα ą 0, the set J defined in (3.13) is non-empty and b ě 2 logpd ` 1q, then
EfT

2
III ď α{2.
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Proof of Lemma 3.18. We apply Lemma 3.16 (with k “ 1 and l “ Cb,ddm). Under

the null hypothesis,
´?

nX
pjq

i

¯2

follows a chi-square distribution with one degree of

freedom. Consequently,

E0B
pjq

li “ E0Fχ2
1

´´?
nX

pjq

i

¯2¯

“ 1{2

and
m
ÿ

j“1

Y
pjq

count „ Bin p1{2,mdCb,dq . (3.56)

Then Lemma 3.16 yields that E0T
2
III ď α{2.

Next we deal with the upper bound for the Type II error. Let pi :“ EfFχ2
1

`

p
?
nX

pjq

i q2
˘

and note that pi ě 1{2. We apply again Lemma 3.16 (with k “ d, l “ mCb,d). Hence,
it is sufficient to show that the condition (3.50) of the lemma holds. For this first

note that
`?
nX

pjq

i

˘2
is a non-central chi-square distributed random variable with non-

centrality parameter nf2i and one degree of freedom. Consequently, for all i P J ‰ H

we have

pi “ EfFχ2
1

´´?
nX

pjq

i

¯2¯

“ Pr pV ě 1q ą 3{5, (3.57)

where it is used that V is noncentral F-distributed with noncentrality parameter
nf2i ě 1 and p1, 1q-degrees of freedom. Then by recalling that p̃i ě 1{2 we get that

mCb,d ´ 1

2d

´

d
ÿ

i“1

ppi ´
1

2
q

¯2

ě
mCb,d ´ 1

2d

´

ÿ

iPJ
pp̃i ´

1

2
q

¯2

ě
mCb,d ´ 1

2d
p|J |{10q2 ě

m2b

400d2
ě Mα{400,

yielding (3.50) for large enough choice of Mα and hence concluding the proof of our
statement.

3.4.1.3 Auxiliary bandwidth constraint lemmas

Lemma 3.19. Let Ud and V δd
d be independent chi-square distributed random variables

with d degree of freedom and non-centrality parameters zero and δd ą 0, respectively.
Then for a universal D P N, not depending on δd, we have for all d ě D that

Pr
´

V δd
d ´ Ud ě 0

¯

ě
1

2
`

1

40
p
δd
?
d

^
1

2
q. (3.58)

Proof. First note that the function δ ÞÑ Pr
`

V δ
d ´ Ud ě 0

˘

is monotone increasing.
Then

Pr
´

V δd
d ´ Ud ě 0

¯

ě Pr
´

V
δd^

?
d{2

d ´ Ud ě 0
¯

,

so without loss of generality we can assume that δd ď
?
d{2.
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The density of V δd
d is

8
ÿ

k“0

e´δd{2 pδd{2q
k

k!
pd`2k,

where pk denotes the χ2
k-density. By the independence of Ud and V δd

d ,

Pr
´

V δd
d ´ Ud ď 0

¯

“

8
ÿ

k“0

e´δd{2 pδd{2q
k

k!

ż

tv´uě0u

pd`2kpvqpdpuqdpv, uq.

Let U 1
d „ χ2

d and U2
2k „ χ2

2k be independent from each other and Ud. For any given
k P N, we have

ż

tv´uě0u

pd`2kpvqpdpuqdpv, uq “ Pr
`

Ud ´ U 1
d ď U2

2k

˘

.

For convenience let us introduce the notation Wd “ pUd ´ U 1
dq{p2

?
dq. Conditioning

and using independence once more, the latter equals

ż

Pr

ˆ

Wd ď
u

2
?
d

˙

dPU2
2k

puq “
1

2
`

ż

Pr

ˆ

0 ď Wd ď
u

2
?
d

˙

dPU2
2k

puq.

Since U2
2k has a median larger than 2k{3 and the map u ÞÑ Pr

´

0 ď Wd ď u
2

?
d

¯

is

increasing, we have that the second term in the last display satisfies

ż

Pr

ˆ

0 ď Wd ď
u

2
?
d

˙

p2kpuqdu ě Pr

ˆ

0 ď Wd ď
k

3
?
d

˙
ż

r 2k
3 ,8q

p2kpuqdu

ě
1

2
Pr

ˆ

0 ď Wd ď
k

3
?
d

˙

.

By combining the above inequalities we obtain that

Pr
´

V δd
d ´ Ud ď 0

¯

ě
1

2
`

1

2

8
ÿ

k“0

e´δd{2 pδd{2q
k

k!
Pr

ˆ

0 ď Wd ď
k

3
?
d

˙

. (3.59)

Assume now that δd Á 1. Let kd be the largest integer such that kd ď 3
?
d. We

divide the sum on the right hand of the preceding display to two parts, i.e. k ă kd
and k ě kd. By applying Lemma 3.20 with εd “ k, it holds that for c0 “ e´9{8{6,

kd
ÿ

k“0

e´δd{2 pδd{2q
k

k!
Pr

ˆ

0 ď Wd ď
k

3
?
d

˙

ě
c0
?
d

kd
ÿ

k“1

e´δd{2 pδd{2q
k

pk ´ 1q!

ě
c0δd

2
?
d

kd´1
ÿ

k“0

e´δd{2 pδd{2q
k

k!
.
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We have Pr p0 ď Wd ď 1q
d

Ñ Pr p0 ď Z ď 1q ą 1{3, hence there exists a D1 P N, such
that for all d ě D1 we have Pr p0 ď Wd ď 1q ą 1{3. For k ą kd we have k ą 3

?
d,

hence for all d ě D1,

8
ÿ

kąkd

e´δd{2 pδd{2q
k

k!
Pr

ˆ

0 ď Wd ď
k

3
?
d

˙

ě
c0
2

8
ÿ

kąkd

e´δd{2 pδd{2q
k

k!
.

Since δd{
?
d ď 1{2, we have for d ě D1,

1

2

8
ÿ

k“0

e´δd{2 pδd{2q
k

k!
Pr

ˆ

0 ď Wd ď
k

3
?
d

˙

ě
c0δd

2
?
d

p1 ´
e´δd{2 pδd{2q

kd

kd!
q.

The proof is finished by showing that for large enough d we have c0{2 ´ 1{40 ą

pδd{2qkd{kd! ą 0. Recalling that 2
?
d ď 3

?
d´ 1 ď kd ď 3

?
d and hence δd ď

?
d{2 ď?

d{4 we get in view of Stirling’s inequality, that for some universal constant C ą 0,

pδd{2q
kd

kd!
ď

pkd{4q
kd

kd!
À ekdp1´log 4qk

´1{2
d .

This is in turn bounded from above by c0{2 ´ 1{40 for d ě D1, for some sufficiently
large D1 ą 0.

Lemma 3.20. Let Ud, U
1
d

iid
„ χ2

d, and 0 ă εd ď C
?
d. Then there exists a large

enough D0 P N, such that for all d ě D0

Pr

ˆ

0 ď
Ud ´ U 1

d

2
?
d

ď
εd
?
d

˙

ě
e´C2

{8

6

εd
?
d
.

Proof. The characteristic function of the random variable Wd :“ pUd ´ U 1
dq{p2

?
dq is

ϕdptq “ EeitWd “ Eei
t

2
?

d
UdEe´i t

2
?

d
U 1

d

“ p1 ` it{
?
dq´d{2p1 ´ it{

?
dq´d{2

“ p1 ` t2{dq´d{2 dÑ8
ÝÑ e´t2{2.

Using the Fourier inversion formula, the density fWd
of Wd satisfies

fWd
pvq “

1

2π

ż

R
eitvϕdptqdt “

1

2π

ż

R
cosptvqϕdptqdt,

where the second equality follows from the symmetry of ϕd. Let

gpvq :“
1

2π

ż

R
cosptvqe´t2{2dt “

1
?
2π
e´v2

{2,
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where the last equation follows for instance by contour integration. Then by the
dominated convergence theorem

|fWd
pvq ´ gpvq| ď

1

2π

ż

R
|e´t2{2 ´ ϕdptq|dt

dÑ8
ÝÑ 0.

By the earlier established uniform convergence we have that for every d ě D0, for
some large enough D0,

ż

εd
2

?
d

0

fWd
pvqdv ě

1

3
e´ε2d{p8dq εd

2
?
d

“
e´C2

{8

6

εd
?
d
,

where the constant 1{3 is arbitrary and could be taken anything smaller than 1{
?
2π.

3.4.2 Lemmas concerning the upper bounds in privacy con-
strained setting

3.4.2.1 Proof of Lemma 3.7
Proof. The case where C is empty is trivial, so we shall assume C to be nonempty. We
follow the construction of McShane [153] whilst providing an additional argument to
assure Borel-measurability of the extension. Consider the map S̆ : Rnˆd Ñ r´8,8q

given by

S̆pxq “

#

Spxq if x P C,
inf tSpcq `DdHpc, xq : c P Cu otherwise.

Fix any c1 P C. Since S is D-Lipschitz with respect to the Hamming distance, we have
for all c P C that

Spcq `DdHpc, xq ě Spc1q ´DdHpc1, cq `DdHpc, xq ě Spc1q ´DdHpc1, xq ą ´8

where the last step follows from the triangle inequality. So, S̆ is real valued. For all
x P pRdqn and γ ą 0, there exists cγ P C such that

S̆pxq ě Spcγq `DdHpcγ , xq ´ γ.

So for x, x1 P pRdqn,

S̆px1q ´ S̆pxq ď S̆pcγq `DdHpcγ , x
1q ´ S̆pcγq ´DdHpcγ , xq ` γ ď DdHpx, x1q ` γ.

By symmetry of the argument and since γ ą 0 is given arbitrarily, we conclude that
S̆ is D-Lipschitz with respect to the Hamming distance. Note, however, that this
construction does not guarantee that S̆ is measurable.

For any map H : Rnˆd Ñ r´8,8s, let H˚ denote its minimal Borel-measurable
majorant. That is, a measurable map H˚ : Rnˆd Ñ r´8,8s such that
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1. H ď H˚ and

2. H˚ ď T P0-a.s. for every measurable T : Rnˆd Ñ r´8,8s with T ě H.

Such a map exists by e.g. Lemma 1.2.1 in [208]. The map S̃ : pRdqn Ñ R defined by

S̃pxq “ S̆˚pxq1xRC ` Spxq1xPC

is measurable and can be seen to be a Borel-measurable majorant of S̆; following from
the fact that sums and products of measurable functions are measurable, S̆ ď S̆˚ and
S̆pxq “ Spxq for x P C.

Furthermore, by combining the fact that S̃ is measurable with e.g. Lemma 1.2.2
in [208], we get

|S̃pxq ´ S̃px1q| “ |pS̃pxq ´ S̃px1qq˚| ď |S̆pxq ´ S̆px1q|˚, (3.60)

where px, x1q ÞÑ |S̆pxq ´ S̆px1q|˚ is minimal Borel-measurable majorant of px, x1q ÞÑ

|S̆pxq´S̆px1q|. Since S̆ is D-Lipschitz with respect to the Hamming distance px, x1q ÞÑ

dHpx, x1q, which is a measurable map,

|S̆pxq ´ S̆px1q|˚ ď DdHpx, x1q.

From (3.60) it follows that for all x, x1 P pRdqn,

|S̃pxq ´ S̃px1q| ď DdHpx, x1q.

We have obtained a map S̃ that is D-Lipschitz with respect to the Hamming distance,
measurable and S̃ “ S on C, concluding the proof.

3.4.2.2 Lemmas concerning clipping
Lemma 3.21. Let τ, µ ą 0 satisfy τ{4 ď µ ď τ{2, let V be a random variable

symmetric about zero (V
d
“ ´V ) with Lebesgue density bounded by M ą 0 and

Pr

ˆ

|V | ď
1

12M
_ pτ{2q

˙

ě c

for some constant c ą 0. It then holds that

E rµ` V s
τ
´τ ě pc^ 1{2qµ. (3.61)

Proof. By definition of clipping,

E rµ` V s
τ
´τ “ E rV s

τ´µ
´τ´µ ` µ.

The first term equals

E rV s
τ´µ
´pτ´µq

` E1tV Pr´τ´µ,´τ`µsu

´

rV s
´τ`µ
´τ´µ ` pτ ´ µq

¯

ě

E rV s
τ´µ
´pτ´µq

´ pτ ` µqPr p´τ ´ µ ď V ď ´τ ` µq “

´pτ ` µqPr p´τ ´ µ ď V ď ´τ ` µq ,
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where the last equality follows from the symmetry of V . By the condition on the
Lebesgue density of V , the right-hand side of the above display can be further bounded
from below by ´2Mpτ ` µqµ. When 3Mτ ă 1{2, we obtain (3.61) with the constant
1{2. Assume 3Mτ ě 1{2. Then, since µ ą 0 and V is symmetric about zero,

E rµ` V s
τ
´τ “ E pµ` V q1t|µ` V | ď τu ` τ pPr pµ` V ą τq ´ Pr pµ` V ă τqq

ě E pµ` V q1t|V | ď τ ´ µu

ě E pµ` V q1t|V | ď τ{2u

“ µPr p|V | ď p1{12Mq _ pτ{2qq

where the last inequality follows from µ ď τ{2 and the last equality follows from the
symmetry of V about zero.

Lemma 3.22. For any τ ą 0 and random variable V with |EV | ď τ ,

Var
`

rV s
τ
´τ

˘

ď Var pV q .

If both V and rV s
τ
´τ are mean 0, E

`

rV s
τ
´τ

˘4
ď EV 4.

Proof. Let µ “ EV . Since the expectation of a random variable is the constant
minimizing the L2-distance to that random variable,

Var
`

rV s
τ
´τ

˘

ď E
`

rV s
τ
´τ ´ µ

˘2
.

The latter expectation can be written as

E1V Pr´τ,τs pV ´ µq
2

` E1V ąτ pτ ´ µq
2

` E1V ă´τ p´τ ´ µq
2
.

Assuming µ ě 0, V ă ´τ implies that |´τ´µ| ď |V ´µ|. Since µ ď τ , V ą τ implies
that |τ ´ µ| ď |V ´ µ|. Consequently, the above display is bounded from above by

E1V Pr´τ,τs pV ´ µq
2

` E1V ąτ pV ´ µq
2

` E1V ă´τ pV ´ µq
2

“ E pV ´ µq
2
.

The case where µ ă 0 follows by the same reasoning. The last statement follows by
a similar argument.

3.4.2.3 Proof of Lemma 3.11
Proof. Since Cτ “ Aτ X Bτ , it suffices to show that Ac

τ and Bc
τ as defined in (3.26)

are small in Pf -probability for a large enough choice of κ̃α ą 0 in (3.20). For both
sets, we proceed via a union bound:

Pf

´

Xpjq R Aτ

¯

“ Pf

¨

˝DJ Ă rns, |J | ď K :

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›

›

›

ÿ

iPJ
X

pjq

i

›

›

›

›

›

2

2

´ |J |d

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą |J |γ

˛

‚

ď

K
ÿ

k“1

ˆ

n

k

˙

Pr
´ˇ

ˇ

ˇ
}
?
kf ´ Z}22 ´ d

ˇ

ˇ

ˇ
ą γ

¯

(3.62)
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where Z „ Np0, Idq. We have

}
?
kf ´ Z}22 “ k}f}22 ´ 2

?
kfJZ ` }Z}22.

Recalling that K “ r2τD´1s, D “ γ{n
?
d and

γ “ κ̃α logp1 `mq

ˆ

b

log2p1 ` nqn
?
dτ _

?
nd

˙

, (3.63)

we obtain that

K ď
2n

?
dτ

κ̃α logp1 `mq

b

log2p1 ` nqn
?
dτ _

?
nd

À γ{ logp1 ` nq. (3.64)

By the assumptions of the lemma (n}f}22 ď τ
?
d{2 and τ ď nM2{

?
d), we obtain that

k}f}22 ď KM2. Consequently, we have that for κ̃α ą 0 large enough K}f}22 ă γ{2, so
it holds that

Pr
´

}
?
kf ´ Z}22 ´ d ą γ

¯

ď Pr
´

}Z}22 ´ d´ 2
?
kfJZ ą γ{2

¯

.

Using that PrpAXBq `PrpAXBcq ď PrpA1q `PrpAXBcq for A1 Ă AXB, it follows
that the latter display is bounded above by

Pr
`

}Z}22 ´ d ą γ{4
˘

` Pr
´

´2
?
kfJZ ą γ{4

¯

.

By e.g. Lemma 3.28, the first probability is bounded by e´dγ{8. Again using K}f}22 ă

γ{2, the second term is bounded by e´γ{32, where we note that the second term equals
zero in the case that f “ 0. The bound

Pr
´

}
?
kf ´ Z}22 ´ d ă ´γ

¯

ď e´γ{4 ` e´γ{8

follows by similar reasoning. Combining the above with the elementary bound
řK

k“1

`

n
k

˘

ď

eK logpnq means that

Pf

´

Xpjq R Aτ

¯

ď 2 exp
´

K logpnq ´
γ

8

¯

ď α{p4mnq.

Turning our attention to Bτ , we find that Pf

`

Xpjq R Bτ

˘

is equal to

Pf

¨

˝max
iPrns

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPrnsztiu

xX
pjq

i , X
pjq

k y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą γ

˛

‚ď nPr

ˆ

ˇ

ˇxf ` Z, pn´ 1qf `
?
n´ 1Z 1y

ˇ

ˇ ąγ

˙

,

where Z and Z 1 are independent Np0, Idq random vectors. Using another union
bound, the above is further bounded by

Pr

ˆ

?
n´ 1xZ,Z 1y ą γ{2 ´ pn´ 1q}f}22

˙

` Pr

ˆ

pn´ 1qxf, Z 1y `
?
n´ 1xf, Zy ą γ{2

˙

.

(3.65)
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Using that n}f}22 ď τ
?
d{2 and τ ď nM2{

?
d by assumption of the lemma and

recalling (3.63), we see that

n}f}22 ď τ
?
d{2 ď

b

n
?
dτ

a?
dτ

2
?
n

ď
M

κ̃α
γ. (3.66)

For κ̃α ą 0, the latter can be seen to be larger than γ{4. Consequently, the first term
in (3.65) can be seen to be bounded by

Pr

ˆ

?
n´ 1xZ,Z 1y ą γ{4

˙

ď e
´

γ

4
?

nd ď e´κα logp1`mq logp1`nq,

where the inequality follows from Lemma 2.38. Since Z and Z 1 are independent
standard Gaussian vectors, the second term in (3.65) is bounded above by

Pr

ˆ

?
2pn´ 1qxf, Zy ą γ{2

˙

ď e
´

γ2

8n2}f}22 .

By using that n}f}22 ď τ
?
d{2,

γ2 ě 2κ̃2α log2p1 `mq log2p1 ` nqn2}f}22,

so the exponent in the second last display is bounded from below by

´κ̃2αk log
2
p1 `mq log2p1 ` nq{4.

Hence, we have obtained that

Pf

´

Xpjq R Bτ

¯

ď
α

4m

for κ̃α ą 0 large enough. This concludes the proof of the lemma.

3.4.2.4 Lemmas concerning clipped averages coordinate wise strategies
Consider for L P N, l “ 1, . . . , L and j “ 1, . . . ,m the transcripts

Y
pjq

l |pXpjq, Uq “ γ
n
ÿ

i“1

rpUX
pjq

i qls
τ
´τ `W

pjq

l ,

where τ “ κ̃α
a

logp1 ` dmnq, pW
pjq

l qj,l is either i.i.d. centered Laplace with scale
parameter 1 or standard Gaussian noise and U is an independent uniformly random
rotation taking values in Rdˆd.

Lemma 3.23. Let γ ą 0, L P N be given. The test

φ “ 1

$

&

%

1
?
L

L
ÿ

l“1

»

–

˜

1
?
m

m
ÿ

j“1

Y
pjq

l

¸2

´ nγ2 ´ EpW
pjq

l q2

fi

fl ě καpγ2n_ 1q

,

.

-
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satisfies P0φ À p1 ` mndq2´κ̃2
α{4 ` 1{κ2α. In particular, for any α P p0, 1q, there

exist constants κα, κ̃α ą 0 such that the test is of level P0φ ď α{2. Furthermore,
Pf p1 ´ φq ď α{2 if in addition it holds that }f}2 ď M and

ˆ

d

Lmn}f}22

˙

_

ˆ

d

γ2mLn2}f}22

˙

_

ˆ

κ2αd
2

m2Ln2}f}42

˙

_

ˆ

κ2αd
2

γ4m2Ln4}f}42

˙

ď cα (3.67)

for some cα ą 0 depending only on α.

Proof. Under Pf , pUX
pjq

i ql
d
“ pUfql ` pUZiql, where Zi „ Np0, Idq independent of

U and the centered i.i.d. W
pjq

l . Furthermore, UZi
d
“ Zi, pUZiql „ Np0, 1q, still

independent of pW
pjq

l ql,j . We obtain that

γ
n
ÿ

i“1

pUX
pjq

i ql `W
pjq

l
d
“ γnpUfql ` γ

?
nη `W

pjq

l ,

with η „ Np0, 1q and all three terms independent. Therefore, a straightforward
calculation shows that,

Vl :“

˜

1
?
m

m
ÿ

j“1

«

γ
n
ÿ

i“1

pUX
pjq

i ql `W
pjq

l

ff¸2

has expectation conditionally on U equal to γ2mn2pUfq2l ` nγ2 ` EpW
pjq

l q2. Since

EZ4
il “ 3 and EpW

pjq

l q4 — 1, its variance conditionally on U equals

n2γ4Var
`

η2
ˇ

ˇU
˘

` Var

¨

˝

˜

1
?
m

m
ÿ

j“1

W
pjq

l

¸2

|U

˛

‚` 2γ4n3mpUfq2lEη2

` 2γ2mn2pUfq2lEpW
pjq

l q2 ` 2γ2nEpW
pjq

l q2Eη2,

which is of the order

pγ4mn3pUfq2l q _ pγ2mn2pUfq2l q _ γ4n2 _ 1.

If
max
1ďiďd

|fi| ď τ{2, (3.68)

an application of the triangle inequality and Lemma 3.27 yield that, for κ̃α ą 0 large
enough, we have with probability at least

1 ´ 2mnde´τ2
{4 ě 1 ´ p1 `mndq2´κ̃2

α{4 ě 1 ´ α{4

that
max

iPrns,jPrms,lPrds

ˇ

ˇ

ˇ
pX

pjq

i ql

ˇ

ˇ

ˇ
ď τ.
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Consequently, under the null hypothesis (f “ 0), P0φ is bounded above by

P0

˜

1
?
L

L
ÿ

l“1

rVl ´ E0Vls ě καpγ2n_ 1q

¸

`
α

4
.

Chebyshev’s inequality yields that the first term on the left-hand side is of the order
1{κ2α, so less than α{4 for κα ą 0 large enough. Since that }f}2 ď M under the
alternative hypothesis, (3.68) is also satisfied with probability at least 1 ´ α{4 for κ̃α
large enough. In the case that (3.68) holds, we also have that Pf p1 ´ φq is bounded
above by

Pr

¨

˝

1
?
L

L
ÿ

l“1

»

–

˜

γ
?
mpnpUfql `

?
nZq `

1
?
m

m
ÿ

j“1

W
pjq

l

¸2

´ E0Vl

fi

fl ă καpγ2n_ 1q

˛

‚`
α

4
.

(3.69)
Under PU , we have that

pUfqk
d
“ }f}2

Zk

}Z}2
,

for Z “ pZ1, . . . , Zdq „ Np0, Idq. As
řd

k“1 EZ2
k{}Z}22 “ 1, EZ2

k{}Z}22 “ 1{d by
symmetry. Consequently,

EfVl “ γ2mn2EU pUfq2l ` nγ2 ` EpW
pjq

l q2 “
γ2mn2}f}22

d
` nγ2 ` EpW

pjq

l q2.

Subtracting d´1γ2mn2
?
L}f}22 on both sides, the first term in (3.69) is bounded above

by

Pr

˜

1
?
L

L
ÿ

l“1

rVl ´ EfVls ă ´
γ2n2m

?
L}f}22

2d

¸

whenever
γ2mn2

?
L}f}22

d
ě 2καpγ2n_ 1q. (3.70)

An application of Chebyshev’s inequality and the variance bound computed in (3.4.2.4)
now yields that the latter probability is of the order

pγ4md´1n3}f}22q _ pγ2mn2d´1}f}22q _ γ4n2 _ 1
´

γ2mn2
?
L

d }f}22

¯2 .

So, in order to obtain Pf p1´φq ď α{2 it suffices to have (3.67), noting that this also
yields (3.70).
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For the next lemma, consider for some L P N sets Il Ă t1, . . . ,mu such that |Il| “

tmL
d u and each j P t1, . . . ,mu is in Il for L different indexes l P t1, . . . , du. For γ ą 0,

l “ 1, . . . , d and j P Il, generate the transcripts according to

Y
pjq

l “ γ
n
ÿ

i“1

”

pX
pjq

i ql

ıτ

´τ
`W

pjq

l ,

with τ “ κ̃α
a

logpdmnq and pW
pjq

l qj,l either i.i.d. centered Laplace with scale param-
eter 1 or standard Gaussian noise. In essence, its content and proof are similar to the
previous lemma, the key difference being the absence of the shared random rotation.

Lemma 3.24. Let γ ą 0 be given. The test

φ “ 1

$

&

%

1
?
d

d
ÿ

l“1

»

–

˜

1
a

|Jl|

ÿ

jPJl

Y
pjq

l

¸2

´ nγ ´ EpW
pjq

l q2

fi

fl ě καpγ2n_ 1q

,

.

-

satisfies P0φ À p1 ` mndq2´κ̃2
α{4 ` 1{κ2α. In particular, for any α P p0, 1q, there

exist constants κα, κ̃α ą 0 such that the test is of level P0φ ď α{2. Furthermore,
Pf p1 ´ φq ď α{2 if in addition it holds that }f}2 ď M and

d

mnL}f}22
_

d

γ2mn2L}f}22
_

κ2αd
3

m2n2L2}f}42
_

κ2αd
3

γ4m2n4L2}f}42
ď cα (3.71)

for some cα ą 0 depending only on α.

Proof. Under Pf , pX
pjq

i ql
d
“ fl ` Zil with i.i.d. Zil „ Np0, 1q and is independent of

the centered i.i.d. W
pjq

l . The quantity

Vl :“

˜

1
a

|Jl|

ÿ

jPJl

«

γ
n
ÿ

i“1

pX
pjq

i ql `W
pjq

l

ff¸2

is in distribution equal to

˜

γ
a

|Jl|nfl ` γ
?
nη `

1
a

|Jl|

ÿ

jPJl

W
pjq

l

¸2

under Pf , with η „ Np0, 1q independent. Therefore, a straightforward calculation

shows that Vl has mean γ2n2|Jl|f
2
l ` nγ2 ` EpW

pjq

l q2 under Pf . Since EZ4
il “ 3 and

EpW
pjq

l q4 — 1, its variance equals

n2γ4Var
`

η2
˘

` Var

¨

˝

˜

1
a

|Jl|

ÿ

jPJl

W
pjq

l

¸2
˛

‚` γ4|Jl|n
3f2l Eη2

`γ2|Jl|n
2f2l EpW

pjq

l q2 ` nγ2EpW
pjq

l q2Eη2,
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which is of the order

pγ4|Jl|n
3f2l q _ pγ2|Jl|n

2f2l q _ γ4n2 _ 1.

If
max
1ďiďd

|fi| ď τ{2, (3.72)

an application of the triangle inequality and Lemma 3.27 yield that, for κ̃α ą 0 large
enough, we have with probability at least 1 ´ 2mnde´τ2

{4 ě 1 ´ p1 ` mndq2´κ̃2
α{4 ě

1 ´ α{4 that

max
iPrns,jPrms,lPrds

|pX
pjq

i ql| ď τ.

Consequently, under the null hypothesis (f “ 0), using that |Jl| “ |J1|, P0φ is
bounded above by

P0

¨

˝

1
?
d|J1|

d
ÿ

l“1

»

–

˜

ÿ

jPJl

´

γpnXpjqql `W
pjq

l

¯

¸2

´ E0Vl

fi

fl ě καpγ2n_ 1q

˛

‚`
α

4
.

Chebyshev’s inequality yields that the first term on the left-hand side is bounded α{4
for κα ą 0 large enough. Under the alternative hypothesis, note that }f}2 ď M , so
also in this case (3.72) is satisfied for κ̃α large enough (a more extensive but easy
calculation shows that this test also works for signals larger than M). In the case
that (3.72) holds, we also have that Pf p1 ´ φq is bounded above by

Pr

¨

˝

1
?
d|J1|

d
ÿ

l“1

»

–

˜

ÿ

jPJl

´

γpnfl `
?
nZq `W

pjq

l

¯

¸2

´ E0Vl

fi

fl ă καpγ2n_ 1q

˛

‚`
α

4
.

Subtracting d´1{2
řd

l“1 γ
2n2|Jl|f

2
l on both sides, the first term is bounded above by

Pr

¨

˝

1
?
d|J1|

d
ÿ

l“1

»

–

˜

ÿ

jPJl

´

γpnfl `
?
nZq `W

pjq

l

¯

¸2

´ EfVl

fi

fl ă ´
γ2n2|J1|}f}22

2
?
d

˛

‚

whenever

γ2n2|Jl|
?
d

}f}22 ě 2καpγ2n_ 1q ðñ
2καpγ2n_ 1qd

?
d

γ2n2mL}f}22
ď 1. (3.73)

An application of Chebyshev’s inequality and the variance bound computed in (3.4.2.4),
now yields that the latter probability is of the order

pd´1γ4|Jl|n
3}f}22q _ pd´1γ2|Jl|n

2}f}22q _ γ4n2 _ 1
´

γ2n2|Jl|
?
d

}f}22

¯2 .

Since |Jl| — mL{d, for the above expression to be smaller than α{2 and for (3.73) to
hold, it suffices to have (3.71).
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3.4.3 Auxiliary lemmas and folklore

The following lemma examines a well-known construction which demonstrates that,
that for data that is independently and identically distributed, it is possible to create
tests with different power and significance levels, starting from a test that has non-
trivial power and level. This construction does not affect the minimax separation rate
achieved by these tests: the minimax separations for the two tests are equal up to a
constant, regardless of the power and level of the two tests. Essentially, the lemma
warrants the study of the sum of Type I and Type II error when considering the
performance of inference in terms of minimax rate for i.i.d. data. It applies generally
to the setting discussed in Section 1.1, which we shall recall briefly.

Consider a statistical model Pn,ν in which we observe n ” nν i.i.d. observations from
Pf,n,ν ” Pf , indexed by f P Fν and ν P N. Consider the simple null hypothesis
H0 : f “ f0,ν and an arbitrary collection of alternatives Hρ Ă Fν , ρ ą 0, with
Hρ1 Ă Hρ for ρ ď ρ1. Given a level α P p0, 1q, consider the minimax Type II error
probability for tests of level α;

βPn,ν pα,H0, Hρq “ inf
T

sup
fPHρ

Pf p1 ´ T q,

where the infimum is over all tests of level at most α. The minimax separation at
α, β P p0, 1q is given by

ρ˚
α,β,n,ν :“ inf tρ ą 0 : βPν

pα,H0, Hρq ď βu .

Lemma 3.25. Assume that n ” nν Ñ 8 as ν Ñ 8. Suppose that for α, β P p0, 1q

with α ` β ă 1, it holds that

ρ˚
α,β,n,ν — ρ˚

α,β,tn{ku,ν

for any fixed k ą 0 as ν Ñ 8.

Then, ρ˚
α,β,n,ν — ρ˚

α1,β1,n,ν for all α, β, α1, β1 P p0, 1q such that α ` β and α1 ` β1 are
strictly less than 1.

Proof. Let ρ˚
α,β,n,ν and ρ˚

α1,β1,n,ν be given with α, β, α1, β1 satisfying the assumption
of the lemma. Assume without loss of generality that ρ˚

α,β,n,ν ě ρ˚
α1,β1,n,ν .

By assumption of the lemma,

ckρ
˚
α,β,n,ν ď ρ˚

α,β,tn{ku,ν ď Ckρ
˚
α,β,n,ν

for constants ck, Ck ą 0 depending only on k.

For any γ ą 0, k ą 0, there exists a sequence of tests φtn{ku,ν of level α such that

sup
fPH

Ckρ˚
α,β,n,ν

Pf

´

1 ´ φi
tn{ku,ν

¯

ď sup
fPH

ρ˚
α,β,tn{ku,ν

Pf,tn{ku,νp1 ´ φtn{ku,νq ď β ` γ
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for all n large enough. Split the n data points into k sets of tn{ku observations each.
Let the test φi

tn{ku,ν be equal to φtn{ku,ν applied to the i-th subset of observations.

The test φi
tn{ku,ν has level less than or equal to α. Consider the test of level α1 given

by

φα1,β1,n,ν :“ 1

#

k
ÿ

i“1

φi
tn{ku,ν ě F´1

Binpk,αq
p1 ´ α1q

+

(3.74)

with F´1
Binpk,αq

the quantile function of a binomial distribution with parameters pk, αq.

The quantity
1

?
k

pF´1
Binpk,αq

p1 ´ α1q ´ kαq

is bounded by k by the central limit theorem (see Lemma 4.9 in Chapter 4 for details)
and is consequently a bounded sequence in k. Under any alternative hypothesis
f P HCkρ

˚
α,β,n,ν

,

α ´ Pfφ
i
tn{ku,ν ď α ´ 1 ` sup

fPH
ρ˚
α,β,tn{ku,ν

Pf

´

1 ´ φi
tn{ku,ν

¯

ď α ` β ` γ ´ 1.

Since it is assumed that α ` β ă 1, it follows that the right-hand side is strictly less
than zero for γ ą 0 small enough. Subtracting kPfφ

i
tn{ku,ν on both sides and dividing

by
?
k, we obtain that Pf p1 ´ φα1,β1,n,νq is bounded above by

Pf

˜

1
?
k

k
ÿ

i“1

pφi
tn{ku,ν ´ Pfφ

i
tn{ku,νq ă

1
?
k

´

F´1
Binpk,αq

p1 ´ α1q ´ kα
¯

`
?
kα ´

?
kPfφ

i
n{k,ν

¸

which equals Pr
´

OP p1q ă Op1q ´
?
k
¯

by the arguments above. The latter quan-

tity can be seen to be less than or equal to β1 for k large enough depending only
on α, β, α1, β1. Since f P HCkρ

˚
α,β,n,ν

was given arbitrarily, we can conclude that

Ckρ
˚
α,β,n,ν ě ρ˚

α1,β1,n,ν . By symmetry of the argument, we also obtain that ρ˚
α,β,n,ν À

ρ˚
α1,β1,n,ν and the conclusion of the lemma follows.

The following three lemmas are standard, technical results, nevertheless we provided
them for completeness.

Lemma 3.26. Let Φ denote the CDF of a standard normal random variable. It holds
that

ˆ

Φpxq ´
1

2

˙2

ě
1

12
min

␣

x2, 1
(

.

Proof. Since Φpxq “ 1 ´ Φp´xq, it holds that
`

Φpxq ´ 1
2

˘2
“

`

Φp´xq ´ 1
2

˘2
. Hence,

one can consider x ě 0 without loss of generality. We first lower bound Φpxq ´ 1
2 for
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0 ď x ď
?
2. We have

Φpxq ´
1

2
“

1
?
2π

ż x

0

e´ 1
2 z

2

dz “
1

?
2π

ż x

0

8
ÿ

i“0

p´1qiz2i

2ii!
dz “

x
?
2π

´

8
ÿ

i“0

p´1qipx{
?
2q2i

p2i` 1qi!

¯

,

(3.75)

where the last equation follows by Fubini’s theorem. The series in the right-hand side
is decreasing in x P r0,

?
2s, as for each odd i it holds that

d

dϵ

„

p´1qiϵ2i

p2i` 1qi!
`

p´1qi`1ϵ2i`2

p2i` 3qpi` 1q!

ȷ

“
ϵ2i´12i

i!p2i` 1q

ˆ

ϵ2p2i` 1qp2i` 2q

pi` 1q2ip2i` 3q
´ 1

˙

ă 0

for 0 ď ϵ ď 1. Hence, for 0 ď x{
?
2 ď c ď 1,

x
?
2π

´

8
ÿ

i“0

p´1qipx{
?
2q2i

p2i` 1qi!

¯

ě
x

?
2π

˜

8
ÿ

i“0

p´1qic2i

p2i` 1qi!

¸

“
x

?
2c

ˆ

Φp
?
2cq ´

1

2

˙

,

where the last equality follows by (3.75). For x ą
?
2c, it holds that

Φpxq ´ 1{2 ě Φp
?
2cq ´ 1{2

as x ÞÑ Φpxq ´ 1{2 is increasing. Taking c “ 1 we obtain that

Φpxq ´ 1{2 ě min
!

x
`

Φp
?
2q ´ 1{2

˘

{
?
2,Φp

?
2q ´ 1

)

ą mintx, 1u{
?
12,

which finishes the proof.

Lemma 3.27. Let K P N and M P RKˆK be symmetric and positive definite. Con-
sider the random vector G “ pG1, . . . , GKq „ Np0,Mq. It holds that E max

1ďiďK
|Gi| ď

3}M}
a

logpKq _ logp2q and

Pr

ˆ

max
1ďiďK

G2
i ě }M}2x

˙

ď
2K

ex{4
,

for all x ą 0.

Proof. It holds that

G
d
“

?
MZ, with Z „ Np0, IKq.

SinceM is symmetric, positive definite, it has SVD decompositionM “ VDiagpλ1, . . . , λKqV J.
Since V is orthonormal,

?
MZ “ V

a

Diagpλ1, . . . , λKqpV JZq
d
“ V

a

Diagpλ1, . . . , λKqZ.



148
3. Optimal distributed testing protocols under bandwidth and privacy

constraints

Writing V “ rv1 . . . vKs where vk are orthogonal unit vectors, the latter display
equals

K
ÿ

k“1

a

λkvkZk „ N p0,Diagpλ1, . . . , λKqq .

Consequently,

max
kPrKs

|Gk|
d
“ max

kPrKs
|λkZk| ď }M}max

kPrKs
|Zk|.

Hence, it suffices to show that

Pr

ˆ

max
1ďiďK

Z2
i ě x

˙

ď
2K

ex{4
.

The case whereK “ 1 follows by standard Gaussian concentration properties. Assume
K ě 2. For 0 ď t ď 1{4,

EetmaxipZiq
2

“ etEmax
i
etpZ

2
i ´1q ď Ke2t

2
`t,

see Lemma 2.36. Taking t “ 1{4 and applying Markov’s inequality yields the second
statement of the lemma. Furthermore, in view of Jensen’s inequality

Emax
i

pZiq
2 ď

logpKq

t
` 2t` 1,

which in turn yields Emaxi |Zi| ď 3
a

logpKq.

Lemma 3.28. Let Xd be chi-square random variable with d-degrees of freedom. For
0 ă c ă 1 it holds that

Pr pXd ď cdq ď e´d
c´1´logpcq

2 .

Similarly, for c ą 1 it holds that

Pr pXd ě cdq ď e´d
c´1´logpcq

2 .

Proof. Let t ă 0. We have

Pr pXd ď cdq “ Pr
`

etXd ě etcd
˘

ď
EetXd

etcd
.

Using that EetXd “ p1 ´ 2tq´d{2, the latter display equals

exp
´

´ d
`

tc`
1

2
logp1 ´ 2tq

˘

¯

.

The expression tc` 1
2 logp1 ´ 2tq is maximized when t “ 1

2 p1 ´ 1
c q ă 0 which leads to

the result. The second statement follows by similar steps.
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Lemma 3.29. Let X „ Binpn, pq. For any 0 ă γ ă 1. It holds that

Pr pp1 ´ γqEX ď X ď p1 ` γqEXq ď 2 exp

ˆ

´
γ2EX

3

˙

.

Proof. This follows by a Chernoff bound using the moment generating function of the
binomial distribution.
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Chapter 4

Consequences for
meta-analysis based on
combined test statistics across
independent studies

Combining test statistics from independent trials or experiments is a popular method
of meta-analysis. However, there is very limited theoretical understanding of the
power of the combined test, especially in high-dimensional models considering com-
posite hypotheses tests. In this chapter, derive a mathematical framework to study
standard meta-analysis testing approaches in the context of the many-normal-means
model, which serves as the platform to investigate more complex models.

Given multiple data sets relating to the same hypothesis, one would like to combine
the evidence. Sometimes, the full data sets are not available (e.g. due to privacy or
proprietary reasons) or difficult to combine directly (e.g. due to the different exper-
imental or observational setups). In such cases, the analysis must be carried out on
the basis of the published results for each of the studies. Such “meta-analysis” can
increase the statistical power by combining individually inconclusive or moderately
significant tests, while keeping the false positive rate under control. Therefore, meta-
analysis has received a lot of attention in various fields, for instance in genetics and
system biology, when studying rare variants [19, 96] or in deep learning, for few shot
image recognition and neural architecture search, see the review article [116].

The outcomes of the studies concerning hypothesis tests are, typically, summarized as
real-valued test statistics and/or associated p-values. One expects the combination
of m such p-values to result in an increase in power, but one also expects to pay

151



152
4. Consequences for meta-analysis based on combined test statistics

across independent studies

a price relative to computing a test on the basis of the full, pooled data of the
m trials. The question of how to optimally combine independent real-valued test
statistics concerning the same hypothesis into a single test has an extensive literature.
A multitude of methods for combining independent tests of significance exist. For
combining p-values, this starts with Fisher, Tippett and Pearson in the nineteen-
thirties, see [202, 100, 164, 185, 108, 144, 209, 88, 155, 218, 212, 61, 214] and references
therein. In Section 4.2, we collect and describe the most popular and frequently used
p-value combination techniques.

We introduce a natural and mild restriction on the meta-level combination functions
of the local trials. This allows us to mathematically quantify the cost of compressing
m trials into real-valued test statistics and combining these. We then derive minimax
lower and matching upper bounds for the separation rates of standard combination
methods for e.g. p-values and e-values, quantifying the loss relative to using the full,
pooled data. The results bare resemblance with the b “ 1-bit bandwidth constraint
setting of Chapters 2 and 3, where we reveal for example that in certain cases combin-
ing the locally optimal tests in each trial results in a suboptimal meta-analysis method
and develop approaches to achieve the global optima. We also explore the possible
gains of allowing limited coordination between the trial designs by using shared ran-
domness. Our results connect meta-analysis with bandwidth constraint distributed
inference.

As noted in [35], there does not exist a general uniformly most powerful p-value com-
bination method for all alternative hypotheses. The distribution of a p-value or its
underlying test statistic under the alternative hypothesis should be taken into consid-
eration when selecting a method of combination. The performance of different p-value
combination techniques was investigated extensively by empirical experiments in var-
ious synthetic and real world scenarios, see for instance [148, 224]. However, a unified,
general theoretical description is lacking, especially in non-trivial, multidimensional
composite testing problems, where the likelihood ratio test is not necessarily uniformly
most powerful.

E-values are an increasingly popular and important notion of evidence, see [178, 111,
179]. E-values allow the combination of several tests in a straightforward manner
while preserving the prescribed level of the tests (see Section 4.2.2). Formally, e-values
are nonnegative random variables whose expected values under the null hypothesis
are bounded by one. In contrast to p-values defined by probabilities, e-values are
defined by expectation. This imposes significant differences in their interpretation,
application and combination compared to the more standard p-values. However, as
for p-values, very little is known about the power of these combination procedures.
Theoretical results focus on specific optimality criteria, for instance the worst-case
growth-rate (GROW), see [111]. However, these do not directly imply guarantees on
the testing power, which is the main focus in practice.

We consider the signal detection problem in the many-normal-means model as con-
sidered in the earlier chapters. One possible interpretation of this testing problem
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is to learn whether a treatment has an effect on any of the dimensions investigated.
This model is directly applied in several fields where high-dimensional statistics and
machine learning settings are concerned, such as detecting differentially expressed
genes [167, 132, 149, 200, 92], bankruptcy prediction for publicly traded companies
using Altman’s Z-score in finance [21, 22], separation of the background and source in
astronomical images [62, 112], and wavelet analysis [1, 125]. Furthermore, the model
allows for tractable computations and it typically serves as the platform to inves-
tigate more difficult statistical and learning problems, including high- and infinite-
dimensional models, see for instance [119, 204, 92, 106]. Results for the many-normal-
means model in principle can translate to many other multidimensional models, where
a certain loss in power is to be expected, since combining multidimensional data into
a real-valued statistic (e.g. p-value or e-value) requires data compression.

In each experiment j P t1, . . . ,mu the observations are summarized by an appropri-
ate real-valued summary statistic Spjq. These local test statistics (e.g. p- or e-values)
are combined into CmpSp1q, . . . , Spmqq. We consider a general class of combination
functions Cm, requiring only Hölder type continuity. Roughly speaking, such a re-
striction assures that Cm does not exploit the richness of the real numbers to encode
the data in full. We aim to quantify the loss of summarizing, the gain of perform-
ing a meta-analysis and the best testing strategies in the individual experiments
meta-analysis. This introduces only a mild restriction, and includes many standard
meta-analysis techniques, for instance the standard p-value combination methods (see
Section 4.2.1); e-value techniques (see Section 4.2.2); and other ad hoc and natural
test statistic combination approaches, see the beginning of Section 4.2 for additional
examples.

Our setting provides a principled and unified framework to study the power of stan-
dard meta-analysis testing methods. Within the framework of the many-normal-
means model, we derive a minimax lower bound for the testing (separation) error
and provide test statistics with associated combination methods that attain this the-
oretical limit (up to a logarithmic factor). Our results reveal that there is a certain
unavoidable loss associated with compressing the data of each experiment to a real
valued test statistic. We see that while it is always possible to obtain better testing
rates using m trials instead of the best possible test based on a single trial, there is
always a loss incurred when compared to the full, pooled data and optimal test in
moderate- to large dimensional problems. Our theoretical results quantify these gains
and losses in terms of the dimension d, sample size n and number of trials m.

Furthermore, we observe an elbow effect, which occurs when the number of trials is
large compared to the dimension of the signal. In this regime, combinations of the
(locally) optimal test in each individual trial performs suboptimally as a whole when
aggregated and meta-analysis approaches based on directional test statistics are shown
to perform better. Finally, we show that the performance of the meta-level tests can
substantially improve (in certain regimes, depending on d,m, n) if a certain amount of
coordination between the trials is allowed (e.g. by having access to the same random
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seed). For the theoretical analysis of meta-analysis techniques we derive connections
with the distributed statistical learning literature under communication constraints.
Our paper builds on the recent information theoretical developments in distributed
testing [8, 193, 195], allowing us to address several fundamental questions for the first
time with mathematical rigor.

The chapter is organized as follows. In Section 4.1 we introduce the mathematical
framework we consider in our investigation and present the corresponding minimax
testing lower bound results. Next in Subsection 4.1.1 we show that the derived results
are sharp by providing several meta-analysis approaches attaining the limits. Then we
investigate the benefits of allowing a mild coordination between the trials in Subsec-
tion 4.1.2. We collect and discuss the standard p- and e-value combination methods
in Section 4.2 and demonstrate our theoretical results numerically on synthetic data
sets in Section 4.3. We discuss our results and derive conclusions in Section 4.4. The
proofs of our results are deferred to the Appendix. In Section 4.5.1 we present the
proof of our main results while the proofs of the technical lemmas are given in 4.5.2.

4.1 Main results

We recall the distributed version of the many-normal-means model as studied earlier
in the thesis, where we tailor the language the meta-analysis setting: We assume
that in each local trial j P t1, . . . ,mu (in each machine) we observe a d-dimensional
random variable Xpjq P Rd, subject to

Xpjq “ f `
1

?
n
Zpjq, Zpjq i.i.d.

„ Np0, Idq, j “ 1, . . . ,m, (4.1)

for some unknown f P Rd. Denote by Pf the joint distribution of the observations and
let Ef be the corresponding expectation. We note that this framework is equivalent
to having n independent Npf, Idq observations within each local sample.

As in the earlier chapters, our goal is to test the presence or absence of the “signal
component” f P Rd. More formally, we consider the simple null hypothesis H0 :
f “ 0 versus composite alternative hypothesis Hρ : }f}2 ě ρ, for some ρ ą 0.
This corresponds to testing for joint significance of variables, such as the presence
of an effect of a treatment on any of the dimensions investigated. The difficulty in
distinguishing the hypotheses depends on the effect size, the sample size and the
dimension d. Here, ρ can be seen as the smallest effect size deemed important.

For a t0, 1u-valued test T , define the testing risk RpHρ, T q as the sum of the Type I
error probability and worst case Type II error probability, i.e.

RpHρ, T q :“ P0pT “ 1q ` sup
fPHρ

Pf pT “ 0q . (4.2)

In the case of a single trial (i.e.m “ 1), this testing problem is known to have minimax
separation rate or “detection boundary” ρ2 —

?
d{n.
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This means that if ρ2 "
?
d{n, there exist consistent1 tests T ” Td,n in the sense that

RpHρ, T q Ñ 0, whilst no consistent tests exist when ρ2 !
?
d{n. That is, for effect

sizes of smaller order than
?
d{n, the null hypothesis cannot be consistently distin-

guished from the alternative hypothesis. Such a testing rate is attainable through a
chi-square test based on }

?
nXp1q}22 (see e.g. [29]).

In case of m trials, if the full data were pooled (with aggregated sample size nm), the
minimax separation rate would be

?
d{pmnq. However, pooling the data might not be

possible or allowed in practice and often only real-valued test statistics are available
that describe the significance in the local problems (e.g. a p- or an e-value). These
m test statistics Spjq, j “ 1, . . . ,m, then can be combined with some combination
function Cm : Rm Ñ R, providing the test statistic in the meta-analysis. We now ask
whether the above pooled testing rate is attainable with this meta-analysis procedure.

Without any restrictions on the test statistics S “ pSp1q, . . . , Spmqq or the combination
function Cm, any of the conventional optimal “full-data” tests can be reconstructed,
since the real numbers and mappings between the real numbers form an overly rich
class. We wish to restrict our analysis to S and Cm that are reasonable in practice
and capture (most of) the relevant meta-analysis methods as listed in Section 4.2.

Based on each of the local observations Xpjq, a real-valued test statistic Spjq is com-
puted, where each Spjq is a function of Xpjq and possibly a source of randomness U pjq

independent of X :“ pXp1q, . . . , Xpmqq.

Assumption 4.1. For measurable functions fj : RdˆR Ñ R and independent random
variables U p1q, . . . , U pmq which are independent of the data X, the j-th test statistic
Spjq “ fjpXpjq, U pjqq satisfies E0|Spjq| ď M , for some M ą 0, j “ 1, . . . ,m.

We consider Hölder continuous combination functions Cm : Rm Ñ R. Arguably, this
is the most important assumption in ruling out bijections between Rd and R. This
ensures that a small change in the underlying local test statistics cannot result in a
large change in the combination of test statistics CmpSp1q, . . . , Spmqq.

Assumption 4.2. There exist L, p, q ą 0 such that for all s, s1 P Rm

ˇ

ˇCmpsq ´ Cmps1q
ˇ

ˇ ď L
´

m
ÿ

j“1

|sj ´ s1
j |p

¯q

. (4.3)

The special case of p “ 2 and q “ 1{2 leads to Lipschitz continuous functions. As-
sumption 4.1 and Assumption 4.2 should be considered in conjunction. By rescaling
and centering test statistics Spjq, one can typically obtain test statistics satisfying
Assumption 4.1. Rescaling and centering typically does affect how the test statistics
need to be combined, which might “break” Assumption 4.2.

Finally, following the standard testing approach, we compare the aggregated test
statistics CmpSp1q, . . . , Spmqq to a threshold value. If the combined test statistics

1For any asymptotics in ρ, d and n such that ρ2 "
?
d{n.
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result in a large enough value, the null hypothesis of no effect is rejected. We note
here that two-sided tests can be written as one-sided tests through straightforward
transformations (e.g. centering and taking absolute value). More formally, we consider
tests Tα of level α satisfying the following assumption.

Assumption 4.3. There exists a strictly decreasing function α ÞÑ κα so that

Tα “ 1

!

CmpSp1q, . . . , Spmqq ě κα

)

(4.4)

satisfies P0Tα ď α.

The map α ÞÑ κα could be taken as the quantile function of CmpSp1q, . . . , Spmqq under
its null distribution if it is appropriately standardized. If E0CmpSp1q, . . . , Spmqq is
bounded in m, we can choose κα equal to 1{α times the upper bound, in view of
Markov’s inequality.

Our first main result, Theorem 4.1 below, establishes a lower bound for tests of
the form (4.4) and Cm and S satisfying the above assumptions. More concretely,
under our assumptions, any test Tα (of level α ď 0.1) has large Type II-error under
alternatives with ρ2 of smaller order than p

?
m^ d

logpmq
q
?
d{pmnq. When the number

of trials is small compared to the dimension (i.e. m log2pmq ď d2), this means that the
separation rate is at least

?
d{p

?
mnq. Thus even though there is a benefit in terms

of separation rate compared to testing based on just a single trial, the gain is at best
the square root of what one would gain based on testing on the pooled data. When
m log2pmq ě d2, the rate in the lower bound changes to d

?
d{pmn logpmqq, resulting

in an elbow effect.

Theorem 4.1. Let Sp1q, . . . , Spmq, Cm and Tα satisfy Assumptions 4.1–4.3 with Tα
of level α P p0, 0.1s. Then there exists a constant c ą 0 depending only on L, p, q and
M , such that if

ρ2 ď c
p
?
m^ d

logpmq
q
?
d

mn
, (4.5)

it holds for all n,m, d P N that

sup
fPHρ

Pf pTα “ 0q ě 3{4. (4.6)

Remark 9. The ranges of values 0 ă α ď 0.1 and β “ 3{4 for the Type I and II
errors, respectively, are arbitrary. Similar results hold for different choices as well.
For instance, one can take arbitrary α P p0, 1{5s and β P p0, 2{3s, see the proof of
the theorem for details. The result implies in particular that consistent testing is
not possible for signals of a smaller order than the right-hand side of (4.5), where
asymptotics can be considered in n,m and d simultaneously.

In the next section we show that the lower bounds in the theorems above are sharp
(up to a logarithmic factor).
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4.1.1 Rate optimal combination methods

To attain the lower bound rate derived in Theorem 4.1, different tests can be con-
sidered, for example the 1-bit testing strategies considered in Chapter 3. Here, we
shall display tests that are based on single p-values, which attain the same rates (but
probably outperform at the level of constants). The optimal rate in the setting de-
scribed here displays a similar elbow effect around m — d2 as in the 1-bit bandwidth
constrained case. When the dimension is large compared to the number of trials m
(i.e. m À d2), strategies that combine p-values for the optimal local tests (based on
}
?
nXpjq}22 „H0 χ2

d), turn out to achieve the optimal rate, as exhibited below. Such a
test statistic is invariant to the directionality of Xpjq and invariant under the model
in the sense that the resulting power for the alternative Pf or Pg is the same as long
as }f}2 “ }g}2.

On the other hand, when the dimension is small compared to the number of trials
(i.e. m Á d2), optimal strategies exhibited below use information on the direction of
Xpjq. In fact, we show in Theorem 4.4 in the Appendix that if no such information
is available (i.e. the events defined by the signs of the pXpjqqj“1,...,m vector are not
contained in the sigma algebra generated by the test statistics S), one cannot obtain
a rate better than

?
d{p

?
mnq. This implies that by combining the locally optimal

test statistics Spjq “ }
?
nXpjq}22 (or their arbitrary functions, e.g. the corresponding

local p-values) would result in information loss and hence suboptimal rates in the
meta-analysis.

Furthermore, it turns out, in accordance with the empirical literature discussed in
the introduction, that there does not exist a uniquely best meta-analysis method. In
fact, multiple standard meta-analysis techniques provide (up to a logarithmic factor)
optimal rates, see below for some standard approaches attaining the lower bounds
derived in Theorem 4.1.

First we consider the scenario when the dimension d of the model is large compared
to the number of trials m, i.e. m À d2. Locally the optimal test is based on the test

statistic }
?
nXpjq}22

H0
„ χ2

d. A natural way to combine these statistics would be to sum
these locally optimal test statistics to obtain

Tα “ 1

#

m
ÿ

j“1

›

›

›

?
nXpjq

›

›

›

2

2
ě F´1

χ2
dm

p1 ´ αq

+

, (4.7)

which has level α. Alternatively, one could also apply p-value combination methods,
such as Fisher’s or Edgington’s method based on the p-value ppjq “ 1´Fχ2

d
p}

?
nXpjq}22q,

see Section 4.2. Lemma 4.6 in the appendix establishes that these tests are rate op-
timal.

Second, consider the case that the number of trials is large compared to the dimension,
i.e.m Á d2. Rate optimal tests can be constructed based on a variation of Edgington’s
or Stouffer’s method, see Section 4.2 for their descriptions. Taking a partition of
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t1, . . . ,mu “ Yd
i“1Ji where |Ji| — m{d and setting Spjq “

?
nX

pjq

i if j P Ji, the
meta-level test

Tα “ 1

$

&

%

?
d

m

d
ÿ

i“1

˜

ÿ

jPJi

Spjq

¸2

ě d´1{2F´1
χ2
d

p1 ´ αq

,

.

-

(4.8)

achieves the lower bounds. The above test is similar to employing Stouffer’s method
for each of the coordinates and averaging, i.e. computing approximately m{d i.i.d. p-

values ppjq “ Φp
?
nX

pjq

i q for j P Ji and applying the inverse Gaussian CDF Φ´1pppjqq.
Alternatively, the following variation of Edgington’s method,

Tα “ 1

$

&

%

?
d

m

d
ÿ

i“1

˜

ÿ

jPJi

ˆ

ppjq ´
1

2

˙

¸2

ě κα

,

.

-

, (4.9)

is also rate optimal, as proven in Lemma 4.7 in the appendix. Essentially, these
strategies divide the trials across the d different directions, and combines the evidence
for each of the directions. Theorem 4.4 affirms that the information on the “direction”
of the data is crucial to achieve the optimal rate in the m Á d2 case, by showing that
strategies that do not contain such information (rotationally invariant strategies such
as norm-based test statistics) achieve the rate

?
d{p

?
mnq at best. We summarize the

above testing upper bounds in the theorem below.

Theorem 4.2. For all α, β P p0, 1q there exist S, Cm : Rm Ñ R and tests Tα of level
α satisfying Assumptions 4.1–4.3 such that if

ρ2 ě Cα,β
p
?
m^ dq

?
d

mn
, (4.10)

we have
sup
fPHρ

Pf pTα “ 0q ď β

for a large enough constant Cα,β ą 0 depending only on α, β P p0, 1q, for all n,m, d P

N.

4.1.2 Benefits of coordination between the trials

When the dimension is small relative to the number of trials, as exhibited in the
previous section, optimal strategies include information on the directionality of the
observation vector. In this section we show that in this regime, there could be an ad-
ditional benefit from allowing mild coordination between the trials through employing
shared randomness, e.g. a shared random seed between the trials. Such a phenomenon
has been observed before in the distributed testing literature [11, 8, 193, 195], which
forms the basis of our analysis below.

We consider the following variation on Assumption 4.1, where the key difference is
that the source of randomness is allowed to be shared between the m trials.
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Assumption 4.4. For functions fj : Rd ˆR Ñ R and a random variable U which is
independent of the data X, the j-th test statistic Spjq “ fjpXpjq, Uq satisfies E0|Spjq| ď

M for some M ą 0 and all j “ 1, . . . ,m.

Test statistics satisfying this assumption shall be referred to as shared randomness
(or public coin) protocols.

The theorem below establishes the optimal rate when coordination through shared
randomness is allowed. When the number of trials is small compared to the dimension
(i.e. m À d{ logm), there is no difference between protocols that coordinate using
shared randomness or those without coordination. In fact, the optimal rate (ρ2 —?
d{p

?
mnq) in this case is reached by the test (4.7) or the ones below it, which do not

employ shared randomness. However, when the number of trials is large compared
to the dimension (i.e. m Á d), the testing rate substantially improves in the shared
randomness protocols.

Theorem 4.3. Let Sp1q, . . . , Spmq, Cm and Tα satisfy Assumptions 4.2–4.4. Then
there exists a constant c ą 0 depending only on L, p, q and M , such that if

ρ2 ď c

´?
m^

b

d
logpmq

¯?
d

mn
, (4.11)

it holds that sup
fPHρ

Pf pTα “ 0q ą 2{3 for all n,m, d P N and any level α P p0, 0.1s.

At the same time, for all α, β P p0, 1q there exists a constant Cα,β ą 0 depending only
on β, L, p, q, the function α ÞÑ κα and M , such that if

ρ2 ě Cα,β

´?
m^

?
d
¯?

d

mn
(4.12)

it holds that sup
fPHρ

Pf pTα “ 0q ď β for some test Tα of level α satisfying Assumptions

4.2–4.4.

Remark 10. Similarly to Theorem 4.1 the choice of ranges 0 ă α ď 0.1 and β “ 2{3
in the lower bound result is arbitrary, other choices are also possible as presented in
the proof.

A shared randomness method that attains the rate in (4.12) is given next. Consider
drawing an orthonormal d ˆ d matrix U taking values from the uniform measure on
such matrices. As a test statistic, each trial computes p

?
nUXpjqq1, which is a Np0, 1q

random variable under the null hypothesis. A level α P p0, 1q meta-level test is then
given by combining the local test statistics as

Tα :“ 1

#

ˇ

ˇ

1
?
m

m
ÿ

j“1

p
?
nUXpjqq1

ˇ

ˇ ě Φ´1p1 ´ α{2q

+

, (4.13)
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where Φ is the standard Gaussian CDF. The core idea here is that for each trial,
the same 1-dimensional projection of the d -dimensional data is computed, where
the projection is taken uniformly at random and the test is conducted along the
projected direction. The above method corresponds to Stouffer’s method for the p-
values ppjq “ Φp

?
npUXpjqq1q for j “ 1, . . . ,m. Lemma 4.8 in the appendix shows

that the above test attains a small Type II error probability whenever ρ2 Á d{pmnq.

4.2 Examples for various meta-analysis methods

Combinations of independent test statistics that fall into the framework of Assump-
tions 4.1– 4.4 are subject to the rate optimality theory established by the main the-
orems in Section 4.1. In this section, we look into common methods for combining
p-values, e-values and other test-statistics, as mentioned in the introduction.

When the distribution under the null hypothesis of the test statistics are known, cer-
tain combinations are natural. For example, the sum of normal or chi-square test
statistics is again normal or chi-square distributed, respectively. Similarly, voting
based mechanisms typically rely on summing Bernoulli random variables. It is easy
to see that these and similar combinations methods fall into the framework of As-
sumptions 4.1–4.4.

For more specific test statistics, such as p-values or e-values, many general combi-
nation methods have been introduced in the literature. We cover some of the most
prominent combination approaches for p-values and e-values in Section 4.2.1 and
Section 4.2.2, respectively. The list of methods is certainly non-exhaustive and many
more combination methods exist, but they serve as context for the range of techniques
covered by our general theory. Our main results allow establishing lower bound rates
for the ones listed below, whilst in Sections 4.1.1 and 4.1.2 attainability of these rates
by some of the listed methods was exhibited.

4.2.1 Combinations of p-values

If pp1q, . . . , ppmq are p-values obtained from m independent test statistics concerning
the same hypothesis, then under the null ppjq „i.i.d. Up0, 1q. One can aim to combine
the m p-values to form a test Tα ” Tαppp1q, . . . , ppmqq with Type I error probability α,
which hopefully has higher power than a test based on one of the individual p-values.
Below we list standard methods in the literature.

• Fisher’s method [100]. Because the variables ´2 log ppjq’s are i.i.d. χ2
2-distributed

under the null hypothesis, their sum follows a χ2
2m-distribution. Therefore, the

combination method
řm

j“1 ´ 2 log ppjq results in a χ2
2m distributed random vari-

able, and the corresponding quantile function provides level-α one-sided tests
at the meta-level.
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• Similar flavor to Fisher’s method are the combinations
řm

j“1´logp1´ppjqq (Pear-

son’s method [164]),
řm

j“1 ´ log ppjqp1´ppjqq (the logit method / Mudholkar and

George method [155]) and m´1{2
řm

j“1pppjq ´ 1{2q (Edgington’s method [88]).

• Order-based methods such as Tippett’s method [202] based on mintpp1q, . . . , ppmqu
H0
„

Betap1,mq.

• Methods based on inverse CDF’s, such as by Stouffer et al. [185] based on
m´1{2

řm
j“1Φ

´1pppjqq „ Np0, 1q under the null hypothesis.

• Generalized averages as considered in [212], Tα “ 1
␣

ar,mMr,mppp1q, . . . , ppmqq ď α
(

,

where Mr,mppp1q, . . . , ppmqq equals
`

m´1
řm

j“1pppjqqr
˘1{r

for r P Rzt0u, the ge-
ometric mean, minimum (i.e. Tippett’s method) and maximum for r “ 0,
r Ñ ´8, and r Ñ 8, respectively. For r P t´8u Y r1{pm ´ 1q,8s, ar,m
can be taken to obtain precisely level α tests (i.e. P0Tα “ α). We note that
this means that canonical multiple testing methods (see e.g. [102]) such as Bon-
ferroni’s correction (which corresponds with taking as Mr,m the minimum and
ar,m “ m) also fall within our framework.

Lemma 4.1 below shows that all the methods mentioned above fall into the framework
of Assumptions 4.1–4.4. This means that the error rate lower bounds of Theorem 4.1
and Theorem 4.3, respectively, apply to the p-value combination methods listed above.
That is, one cannot attain a better separation rate when considering the worst case
Type II error probability for the alternative hypothesis in (4.2), with any of the p-value
combination methods listed above. Whether Assumption 4.1 or 4.4 applies depends
on whether shared randomness is used in generating the p-values. To confirm that
Assumptions 4.3 and 4.2 apply to tests based on the combined p-values, some algebra
is needed. The proof of the lemma is deferred to the appendix.

Lemma 4.1. Consider p-values pp1q, . . . , ppmq, where each ppjq depends on the local
data Xpjq and possibly local randomness that is independent of the data. For each of
the combination methods for p-values mentioned above and corresponding test Tα of
level α P p0, 1q, the conclusions of Theorem 4.1 holds.

We remark that the p-values are obtained using shared randomness (i.e. in the sense
of Assumption 4.1), the lower bound rate of Theorem 4.3 applies. Furthermore, as
exhibited in Sections 4.1.1 and 4.1.2, for p-values corresponding to well-chosen test
statistics, these combination methods can achieve the theoretical limits established in
Theorems 4.1 and 4.3, respectively.

4.2.2 Combining e-values

An e-value is a nonnegative random variable E such that supP0PH0
P0E ď 1. The

threshold test corresponding to E of level α is 1tE ě α´1u. This test yields a so
called strict p-value; for P0 P H0 we have P0pE ě α´1q ď α by Markov’s inequality.
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E-values lend themselves for combining outcomes of independent studies for two main
reasons. First, they are easy to combine, see Section 4 in [213] for an in-depth dis-
cussion of specific combination functions for independent e-values. Second, they are
robust to misspecification and offer optional stopping/continuation guarantees [111].
Common examples of e-values are Bayes factors and likelihood ratios, which are non-
negative and have expectation equal to 1 in the case of a simple null hypothesis such
as considered in this article.

Several combination methods (e-merging functions) were proposed in the literature.
For instance, the product of independent e-values is also again an e-value. This
was shown to weakly dominate any other combination of independent e-values in the
sense that Πm

j“1E
pjq ě CmpEq, for any E “ pEpjqq P r1,8qm and E ÞÑ CmpEq such

that CmpEp1q, . . . , Epmqq is an e-value for any independent e-values Ep1q, . . . , Epmq,
see [213]. Similarly, the average of e-values is again an e-value. The product and the
average are admissible in the sense that there is no e-merging function that strictly
dominates them on r0,8sm. The lemma below shows that these two, arguably most
prominent e-value combination methods fulfill Assumptions 4.1– 4.4 and hence the
lower bounds derived in Theorems 4.1 and 4.3 apply.

Lemma 4.2. Consider e-values Ep1q, . . . , Epmq, where each Epjq depends on the lo-
cal data Xpjq and possibly local randomness that is independent of the data. Let
Cm : Rm Ñ R correspond to either the average or the product and let Tα be the
corresponding threshold test of level α P p0, 1q,

Tα “ 1

!

CmpEp1q, . . . , Epmqq ě α´1
)

.

If Cm is the product, assume in addition that E0| logEpjq| is uniformly bounded. Then,
the conclusion of Theorem 4.1 holds. In case the e-values are generated using shared
randomness, then Theorem 4.3 applies.

4.3 Simulations

In this section, we investigate the numerical performance of the testing strategies
outlined in Section 4.1.1 on synthetic data sets. We compare the tests based on their
receiver operating characteristic (ROC) curve. For a range of significance levels we
compute for each test the “true positive rate” (TPR) and “false positive rates” or
(FPR), i.e. the fraction of the simulation runs in which the test correctly identifies
the underlying signal, falsely rejects the null hypothesis, respectively. Plotting the
TPR against the FPR (both given as a function of the significance level) provides us
the ROC curve, visualizing the diagnostic ability of the test.

In our simulations we set m “ 20, n “ 30, let d range from 2 to 20 and take ρ2 “?
d{p4nq. This value of ρ2 corresponds to a signal that is almost indistinguishable

from noise using just a single trial, whilst consistently detectable if the data were to
be pooled with m « 20 (which increases the signal size to noise ratio effectively by
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Figure 4.1: ROC curves for different values of d, whilst keeping m “ 20, n “ 30,
ρ2 “

?
d{p4nq. From left to right, top to bottom: d “ 2, d “ 5, d “ 10, d “ 20.

a factor
?
20 ą 4). For each level α P t0.01, 0.02, . . . , 0.99u we compute the power

for different combination strategies 100 times, each time drawing a different f P Rd

with }f}2 “ ρ according to fi “ d´1{2ρRi and Ri i.i.d. Rademacher random variables
for i “ 1, . . . , d. As combination strategies, we compare the strategies (4.7), (4.13)
and (4.8) from Section 4.1, which are called “chi-square combined”, “coordinated
directional” and “uncoordinated directional” in the legend of Figure 4.3. In addition,
we display the ROC curves for the chi-square test based on pooled data (“chi-square
pooled”) and that of a single trial (“single trial”).

We make the following observations, in line with our theoretical findings. The meta-
analysis methods based on combining the locally optimal chi-squared test statistics
(yellow curves) substantially out-performed the chi-squared test statistics based on a
single trial (blue curve), but was substantially worse than the chi-square test based
on the pooled data (pink curve). Second note that the large dimensional case (d “ 10
and d “ 20) the best strategy is indeed to combine the local chi-square statistics
(yellow curve), while in the low dimensional setting (d “ 2) it is more advantageous



164
4. Consequences for meta-analysis based on combined test statistics

across independent studies

to combine the directional test statistics X
pjq

i (blue curve). Finally, note that allow-
ing coordination between the trials by a shared randomness protocol can result in
improved performance (green curve) compared to the independent experiments (blue
curve). In fact this approach provides the best meta-analysis method in the small
dimensional setting (e.g. d “ 2 and d “ 5 for small α, which is the most interesting
case).

In the appendix, Section 4.5.6, we explore eight additional simulation settings, where
we consider larger values of d andm. Whilst these simulations do not reveal additional
phenomena to the ones observed in Figure 4.3, they do give insight into the relative
performance of the testing methods for different values of d and m.

4.4 Discussion

We briefly summarize the main contributions of the chapter and discuss possible
extensions and research directions. First, by establishing a connection between meta-
analysis and distributed learning under communication constraints, we have provided
a unified, theoretical framework for evaluating the behavior of standard meta-analysis
techniques. In our analysis, we considered the many-normal-means model, but these
results can be extended to other more complex models as well, building on the con-
nection with distributed computation. For example, minimax estimation rates under
communication constraints were derived for other parametric models [229], density
estimation [30], signal-in-Gaussian-white-noise [231, 190, 47], nonparametric regres-
sion [189] and in abstract settings [226] including binary and Poisson regression, drift
estimation, and more. The normal means model allows for a tractable analysis, but
results in this model are known to extend to more complicated models, such as dis-
crete density testing (see e.g. [57]). With the due technical work, our results are
expected to translate to these settings as well, but we leave this for future endeavor.

In the normal means model we have shown that by combining the locally optimal
chi-square statistics at a meta-level one can gain a factor of

?
m compared to using

a single trial. Nevertheless, regardless of the choice of the combination method, a
factor of

?
m ^

?
d is lost compared to the scenario when all data from all trials are

at our disposal. This loss is clearly visible even in small sample sizes, dimensions
and trial numbers, as demonstrated in our numerical analysis, as can be seen in the
corresponding ROC curves. For more complex models, such a numerical study can
be a first step to quantify the efficiency of the meta-analysis method. We have also
shown that in the small dimension - large number of trials setting combining the
locally optimal chi-square statistics (or any rotationally invariant statistics for that
matter) results in information loss and suboptimal accuracy. In this case, better rates
can be attained by test statistics based on the direction of the observations combined
at the meta-level. In practice, one often cannot choose which test statistics can be
obtained from independent trials. In such cases, the

?
m-factor loss in the case of

e.g. rotationally invariant test statistics is of interest when considering power calcu-



4.5. Appendix 165

lations. Meta-analysis approaches based on directional test statistics are designed for
scenarios where individual datasets are not centrally collected, but there is some level
of coordination among experimenters.

The assumption throughout the paper of homogeneity between the trials (i.e. each
trial consisting of the same number of observations) simplifies the presentation, but
the results can be extended to cases where the number of observations in each trial
differ by constant factors. Situations where the number of observations differs greatly
(e.g. k ! m trials have as many observations as the other m´ k trials combined) are
certainly of interest, but beyond the scope of the thesis.

4.5 Appendix

The proofs of the main theorems (Theorem 4.1, 4.2 and 4.3) are divided over the
subsections as follows. In Section 4.5.1, the lower bounds of Theorem 4.1 and 4.3
are proven. Auxiliary lemmas for the proof of the lower bounds are proven in 4.5.2.
The attainability of the lower bound rates are given in Lemmas 4.6, 4.7 and 4.8 in
Section 4.5.4. In Section 4.5.5, Lemmas 4.1 and 4.2 are proven.

4.5.1 Proof of the lower bounds (Theorems 4.1 and 4.3)

The proof is based around the following idea. If Cm satisfies the continuity condition
of Assumption 4.2, it implies CmpSp1q, . . . , Spmqq should not change too much if the
statistics Sp1q, . . . , Spmq are replaced by finite bit approximations. If b is the number
of bits used for the approximation of Spjq, we should be able to get an approxima-
tion with accuracy of the order 2´b through e.g. binary expansion. Since Cm and
consequently the test based on Cm do not change (much) from passing to a finite bit
approximation, tools and results from testing under bit-constrained communication
apply, which finally yield the theorems.

Proof. We prove the statement for any α P p0, 1{10s. Since α ÞÑ κα is strictly de-
creasing, κ1{8 ă κ1{10 ď κα holds for any α P p0, 1{10s. Take 0 ă ϵ ă 1

2 pκ1{10 ´ κ1{8q.
Then |x ´ κα| ď ϵ implies x ě κ1{8, which by the definition of the quantile function
provides

P0 p|CmpSq ´ κα| ď 2ϵq ď 1{8. (4.14)

By Lemma 4.3, there exist Bpjq-bit binary approximations S̃pjq such that

|Spjq ´ S̃pjq| ď

ˆ

ϵ1{q

L1{qm

˙1{p

(4.15)

and

E0B
pjq ď E0 log2p|Spjq|q _ 0 ´

1

p
log

ˆ

ϵ1{q

L1{qm

˙

` 3. (4.16)



166
4. Consequences for meta-analysis based on combined test statistics

across independent studies

Write S̃ “ pS̃p1q, . . . , S̃pmqq. By combining Assumption 4.2 with (4.15),

|CmpSq ´ CmpS̃q| ď ϵ.

Consequently,

RpTα, Hρq ě P0

´

CmpS̃q ´ |CmpSq ´ CmpS̃q| ě κα

¯

` sup
fPHρ

Pf

´

CmpS̃q ď κα ´ |CmpSq ´ CmpS̃q|

¯

ě P0

´

CmpS̃q ě κα ` ϵ
¯

` sup
fPHρ

Pf

´

CmpS̃q ď κα ´ ϵ
¯

.

Define the test
T 1
α :“ 1

!

CmpS̃q ą κα ´ ϵ
)

.

Since

P0

´

CmpS̃q ě κα ` ϵ
¯

“ P0

´

CmpS̃q ą κα ´ ϵ
¯

´ P0

´

´ϵ ď CmpS̃q ´ κα ď ϵ
¯

,

the second last display can now be written as

RpT 1, Hρq ´ P0

´

|CmpS̃q ´ κα| ď ϵ
¯

.

Applying (4.3) again, using the reverse triangle inequality and (4.14), we obtain

P0

´

|CmpS̃q ´ κα| ď ϵ
¯

ď P0 p|CmpSq ´ κα| ď 2ϵq ď 1{8.

It suffices to show that for ρ satisfying (4.5) in the case of Theorem 4.1 or ρ satisfy-
ing (4.11) in case of Theorem 4.3 for a small enough c ą 0, we have

RpT 1, Hρq ě 7{8. (4.17)

This follows from Lemma 4.4, where it is left to verify that

m
ÿ

j“1

d^ E0B
pjq À mpd^ p1 _ logmqq (4.18)

for a constant independent of d, n,m and c ą 0. By (4.16) and E0|Spjq| ď M for some
constant M ą 0 for j “ 1, . . . ,m (following from Assumption 4.1 or 4.4), we obtain

that
m
ř

j“1

d^ E0B
pjq is bounded by

m

ˆ

d
ľ

ˆ

log2p1 `Mq ` 3 ´
1

p
log

ˆ

ϵ1{q

L1{qm

˙˙˙

,

from which (4.18) follows. Putting things together, we now have that for c ą 0 small
enough we obtain (4.17), from which we conclude that (4.17) holds and the proof of
the theorems is concluded.
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4.5.2 Auxiliary lemmas to the lower bound theorems

As a first tool, we introduce finite bit approximations of real numbers through their
binary expansion. Consider the binary expansion of x P R; i.e. there exist digits
akpxq, . . . , a1pxq, a0pxq P t0, 1u for a kx ” k P N Y t0u and pbipxqqiPN P t0, 1uN such
that

x “ signpxq

˜

k
ÿ

i“0

2iaipxq `

8
ÿ

i“1

2´ibipxq

¸

(4.19)

with k the largest element in NY t0u such that 2k ´ 1 ď |x|. We now define x̃B to be
the B-bit binary expansion giving the smallest approximation error in absolute value,
where the first bit encodes signpxq. That is, for B ě k ` 2, we have

|x´ x̃B | ď

8
ÿ

i“B´k´1

2´ibipxq. (4.20)

The following is well known, we exhibit its proof for completeness.

Lemma 4.3. Let V be a random variable with a first moment. Given 1 ą ϵ ą 0, let
Bϵ ” B denote the number of bits required such that

|V ´ ṼBϵ | ď ϵ. (4.21)

It holds that
EB ď Elog2p|V |q _ 0 ` 1 ` log2p1{ϵq ` 2.

Proof. If |V | ă 1, we have that

|V ´ ṼB | ď

8
ÿ

i“B´1

2´ibipV q.

So in the case that |V | ď 1, since bipV q P t0, 1u, for (4.21) to hold it suffices that
B ě log2p1{ϵq `2. Let B1 denote the amount of bits required to obtain |V ´ ṼB1 | ď 1.
When 2k ď |V | ă 2k`1, it holds that B1 ď k ` 1. Using Markov’s inequality,

EB1 “ EB1

8
ÿ

k“0

1
␣

2k ď |V | ă 2k`1
(

ď E
8
ÿ

k“0

pk ` 1q1 tk ď log2p|V |q ă k ` 1u ď Elog2p|V |q _ 0 ` 1.

In conclusion, EB ď Elog2p|V |q _ 0 ` 1 ` log2p1{ϵq ` 2.

For the lemmas below, we introduce the following notation. Let π be a probability
distribution on Rd. Write Pπ :“

ş

Pfdπpfq for the mixture distribution, where Pf

denotes the joint distribution on X, U and S. Let F denote the draw from π. Let
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PS̃
f denote the forward measure induced on the random variable S̃ and let LS̃

π denote
the likelihood ratio of the mixture distribution and P0, i.e.

LS̃
π “

ż

dPS̃
f

dPS̃
0

dπpfq. (4.22)

Because of the Markov chain structure of F Ñ pX,Uq Ñ S and the independence
between U and X, the joint distribution of pX,U, Sq under the mixture disintegrates
as

dPX,U,S
π px, u, sq “

ż

dPS|pX,UqpsqdPX
f pxqdPU puqdπpfq (4.23)

where PU is the marginal distribution of U . For the likelihood ratio conditionally on
U “ u, we shall write

LS̃|U“u
π “

ż

dPS̃|U“u
f

dPS̃|U“u
0

dπpfq. (4.24)

Furthermore, by the independence of the statistics given U ,

dPS|pX,Uq “

m
â

j“1

dPSpjq
|pXpjq,Uq. (4.25)

Let S̃pjq denote the Bpjq-bit binary approximations to Spjq such that (4.15) holds.
Note that the above displays are true for the random variable S̃ “ pS̃p1q, . . . , S̃pmqq in
place of S since F Ñ pX,Uq Ñ S Ñ S̃ forms a Markov chain as well. The following
lemma allows us to bound the chi-square divergence between the forward measure for

S̃, which we will denote by PS̃
π and PS̃

0 .

The following lemma lower bounds the worst-case risk for any test T 1 depending only
on S̃, the binary approximation of S as in (4.15).

Lemma 4.4. Let T 1 be a test depending only on S̃ taking values in Rm, satisfy-
ing (4.23) and where S̃pjq allows for an exact Bpjq-bit binary expansion as in (4.19),
with E0B

pjq ă 8 for j “ 1, . . . ,m.

There exists c ą 0 independent of n,m and d such that

RpT 1, Hρq ě 7{8

for all n,m, d P N whenever

m
ÿ

j“1

d^ E0B
pjq À mpd^ logmq (4.26)

in addition to

ρ2 ď c
p
?
m^ d

logpmq
q
?
d

mn
, (4.27)
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if S̃ is generated using public randomness, or

ρ2 ď c
p
?
m^

b

d
logpmq

q
?
d

mn
, (4.28)

in case S̃ is generated using only local randomness.

Proof. Consider a probability distribution π on Rd and LS̃
π as in (4.22). Consider the

set

D :“

#

u :
m
ÿ

j“1

d^ E0rBpjq|U “ us ď 64
m
ÿ

j“1

d^ E0B
pjq

+

,

whose complement, Dc, has PU -mass less than or equal to 1{64 by Markov’s inequality

and EU pd ^ E0rBpjq|U sq ď d ^ E0B
pjq. By conditioning on U (writing P|U“u

0 :“
P0p¨|U “ uq),

RpT 1, Hρq ě P0T
1 ` Pπp1 ´ T 1q ´ πpf R Hρq

ě

ż

´

P|U“u
0 pT 1q ` P|U“u

π p1 ´ T 1q

¯

1DpuqdPU puq ´ πpf R Hρq.

Since 0 ď T 1 ď 1 and LS̃
π ě 0, for all 0 ă γ ă 1,

P|U“u
0 pT 1q ` P|U“u

π p1 ´ T 1q ě P|U“u
0

´

γT 1 ` LS̃|U“u
π p1 ´ T 1q1

!

LS̃|U“u
π ą γ

)¯

ě γP|U“u
0

´

LS̃|U“u
π ą γ

¯

ě γ
`

1 ´ P|U“u
0 p|LS̃|U“u

π ´ 1| ě 1 ´ γq
˘

.

The probability on the right-hand side of the above display can be bounded by ap-
plying Chebyshev’s inequality and bounding the resulting chi-square divergence using
the tools of [195], in particular using Lemma 10.1 from the aforementioned paper.
This lemma applies if S̃ takes values in a space of finite, fixed cardinality.

Define B˚ “
m
ř

j“1

64E0|Bpjq| and the event

A :“

#

m
ÿ

j“1

Bpjq ď B˚

+

,

so that Ac by Markov’s inequality occurs with P0-probability less than 1{64.
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Let S̆pjq be the B̆pjq :“ Bpjq ^B˚ binary approximation of S̃pjq and note that on the
event A, S̆pjq “ S̃pjq. We have

ż

P|U“u
0

´

|LS̃|U“u
π ´ 1| ě 1 ´ γ

¯

1DpuqdPU puq ď

ż

P|U“u
0

´!

|LS̃|U“u
π ´ 1| ě 1 ´ γ

)

XA
¯

1DpuqdPU puq ` P0pAcq ď

ż

P|U“u
0

´

|LS̆|U“u
π ´ 1| ě 1 ´ γ

¯

1DpuqdPU puq ` 1{64,

where S̆ “ pS̆p1q, . . . , S̆pmqq. Using (4.23) and Chebyshev’s inequality, it suffices to

show that on the event D, E|U“u
0 |L

S̆|U“u
π ´ 1|2 is smaller than 1

32 p1 ´ γq2 for c small
enough when ρ satisfies (4.27) or (4.28), some γ ě 5{6 for a specific choice of π. By
Lemma 4.5, such a distribution π exists, satisfying πpf R Hρq ď 1{32, as long as
TrpΞuq can be sufficiently bounded, which can be done in terms of (4.16), as we will
show next.

Let Spjqpb, uq be the space in which S̆pjq|rBpjq “ b, U “ us takes values. Write

Vs,u “ E0

„

Xpjq

ˇ

ˇ

ˇ

ˇ

S̆pjq “ s, U “ u

ȷ

.

We have

Ξj
u “

ÿ

s

Vs,uV
J
s,uP0pS̆pjq “ s|U “ uq

“
ÿ

bPN
P0pB̆pjq “ b|U “ uq

ÿ

s“Sjpb,uq

P0pS̆pjq “ s|B̆pjq “ b, U “ uqVs,uV
J
s,u.

By Lemma 2.11, the trace of the matrix
ÿ

sPSjpb,uq

P0

´

S̆pjq “ s|B̆pjq “ b, U “ u
¯

Vs,uV
J
s,u

is bounded by
`

2 logp2q b
d

Ź

1
˘

d
n . By linearity of the trace operation,

TracepΞj
uq “

ÿ

bPN
P0

´

B̆pjq “ b|U “ u
¯

ˆ

2 logp2q
b

d

ľ

1

˙

d

n

ď 2 logp2q
d^ E0rB̆pjq|U “ us

n

and consequently, since B̆pjq ď Bpjq and u P D,

Tracep

m
ÿ

j“1

Ξj
uq ď 2 logp2qn´1

m
ÿ

j“1

d^ E0

”

B̆pjq|U “ u
ı

ď 128 logp2qn´1
m
ÿ

j“1

d^ E0

”

Bpjq
ı

.
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The result follows after using that ρ2 satisfies (4.28) and (4.27) in the case of local or
shared randomness protocols, respectively.

Lemma 4.5. Let LS̆
π be as defined through (4.22), with S̆ “ pS̆p1q, . . . , S̆pmqq taking

values in a space of finite cardinality. Let Ξu “
řm

j“1 Ξ
j
u with

Ξj
u :“ E|U“u

0 E0

„

Xpjq

ˇ

ˇ

ˇ

ˇ

S̆pjq, U “ u

ȷ

E0

„

Xpjq

ˇ

ˇ

ˇ

ˇ

S̆pjq, U “ u

ȷJ

. (4.29)

Let ρ2 satisfy (4.27) or (4.28). For c ą 0 small enough (in (4.27) or (4.28)) there
exists a probability distribution π on Rd such that

πpf R Hρq ď 1{32 (4.30)

and

E|U“u
0 |LS̆|U“u

π ´ 1|2 ď exp

ˆ

Cp
mn2ρ4

cd
`
mn3ρ4

d2c
Tr pΞuq

˙

´ 1, (4.31)

for a constant C ą 0 that does not depend on d, n,m or c. Furthermore, in case of
private coin randomness (U is degenerate), there exists a probability distribution π on
Rd such that (4.30) is satisfied and (the sharper bound)

E0|LS̆
π ´ 1|2 ď exp

ˆ

Cp
mn2ρ4

cd
`
n4ρ4

d3c
Tr pΞuq

2

˙

´ 1 (4.32)

holds for c ą 0 small enough.

Proof. The proof is an immediate consequence of Lemma 2.8.

4.5.3 Theorem concerning necessity of signs

The theorem below tells us that in order to attain the rate of d
nm , the statistics Spjq

need to contain at least some information on the signs of Xpjq, in the sense that?
d{p

?
mnq is the rate that can be attained at best when Spjq is measurable with

respect to the absolute values of the coordinates of Xpjq. This is in particular the
case for statistics based on e.g. the norm }Xpjq}2 or rotation invariant statistics such
as the worst-case growth rate optimal e-values (see e.g. [111]), which consequently

attain the rate
?
d?

mn
at best and are thus suboptimal when d is small compared to m.

Theorem 4.4. Suppose that Spjq “ fjpXpjq, Uq is such that Spjq is measurable with

respect to σpU, p|X
pjq

1 |, . . . , |X
pjq

d |qq for j “ 1, . . . ,m. Then, for any α P p0, 0.1s there
exists c ą 0 such that

sup
fPHρ

Pf pTα “ 0q ě 3{4, (4.33)

whenever

ρ2 ď c

?
d

?
mn

. (4.34)
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Proof. In view of Lemma 4.4 and the proof of the main theorems in 4.5.1, it suffices
to bound the trace of Ξu in (4.32) and (4.31) in Lemma 4.5 (the first term in the
exponent is controlled by (4.34)). By assumption on Spjq, we have

σpSpjq, U, p|X
pjq

1 |, . . . , |X
pjq

d |q “ σpU, p|X
pjq

1 |, . . . , |X
pjq

d |qq, (4.35)

which implies that the signpX
pjq

i q is independent of σpSpjq, U, p|X
pjq

1 |, . . . , |X
pjq

d |q.

Writing X
pjq

i “ signpX
pjq

i q|pX
pjq

i q|, we obtain that

E0

„

Xpjq

ˇ

ˇ

ˇ

ˇ

Spjq, U “ u

ȷ

“

ˆ

E0

„

signpX
pjq

i q|pX
pjq

i q|

ˇ

ˇ

ˇ

ˇ

Spjq, U “ u

ȷ˙

1ďiďd

“

ˆ

E0signpX
pjq

i qE0

„

|pX
pjq

i q|

ˇ

ˇ

ˇ

ˇ

Spjq, U “ u

ȷ˙

1ďiďd

“ 0,

where the second last inequality follows from the fact that signpX
pjq

i q is independent
of the sigma algebra in (4.35) and the final equality by the symmetry of the Gaussian
distribution around the mean. Following the proof of Theorem 4.1 with Ξu “ 0, we

obtain that the testing risk is bounded from below whenever ρ2 À
?
d?

mn
.

4.5.4 Lemmas related to rate attainability

Lemma 4.6. Let Tα correspond to a test of level α based on Edgington’s method
based for p-values ppjq “ χ2

dp}
?
nXpjq}22q or simply the sum of }

?
nXpjq}22. For all

α, β P p0, 1q if

ρ2 ě Cα,β

?
d

?
mn

(4.36)

we have
sup
fPHρ

Pf pTα “ 0q ď β

for d ě Cα,βm a large enough constant Cα,β depending only on α, β P p0, 1q. The
above result holds for Fisher’s method also, under the additional assumption that
logpmq À

?
d.

Proof. The test in (4.7) has level α under the null hypothesis. Under the alternative
hypothesis,

}
?
nXpjq}22

d
“ n}f}22 ` 2

?
npZpjqqJf ` }Zpjq}22,

where Zpjq „ Np0, Idq. Rearranging, the test Tα of (4.7) can be seen to equal

1

$

&

%

2

?
n

?
d

˜

m´1{2
m
ÿ

j“1

Zpjq

¸J

f `
1

?
md

m
ÿ

j“1

´

}Zpjq}22 ´ d
¯

ě ηd,m ´

?
mn

?
d

}f}22

,

.

-

(4.37)
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in distribution under Pf , with

ηd,m :“
1

?
dm

´

F´1
χ2
dm

p1 ´ αq ´md
¯

.

By Lemma 4.9, ηd,m Ñ Φ´1p1 ´ αq as both or either d,m Ñ 8, so ηd,m is bounded
in d and m. Consequently, Pf p1 ´ Tαq equals

Pr

ˆ

p1 `

?
n

?
d

}f}2qOP p1q ď ηd,m ´

?
mn

?
d

}f}22

˙

as the left-hand side of the test in (4.37) is mean 0 and has constant variance. Since

}f}22 ě Cα,β

?
d?

mn
, the latter display can be bounded from above by

Pr

ˆ

p1 `

?
n

?
d

}f}2qOP p1q ď ´

?
mn

2
?
d

}f}22

˙

for a large enough Cα,β . The latter display is smaller than β for Cα,β ą 0 large
enough depending only on α and β.

For Edgington’s method, one can take ppjq “ 1 ´ Fχ2
d
p}

?
nXpjq}22q and compute the

test

Tα :“ 1

#

m´1{2ζα,m

m
ÿ

j“1

pppjq ´
1

2
q ě 12´1{2Φ´1p1 ´ αq

+

, (4.38)

where ζα,m Ñ 1 in m is such that P0Tα “ α, by Lemma 4.9.

Under the alternative, Efp
pjq “ Prp}

?
nf ` Zpjq}22 ď χ2

dq. Therefore, by Lemma 4
in [193],

Efp
pjq ě

1

2
`

1

40

ˆ

d´1{2n}f}22

ľ 1

2

˙

,

where we note that we can take d larger than an arbitrary constant as the rate?
d{p

?
mnq being optimal (

?
d{p

?
mnq À d{pmnq) implies d Á m and for constant

order m there is nothing to prove. We obtain that

Pf p1 ´ Tαq “ Pf

˜

ζm,α
?
m

m
ÿ

j“1

pppjq ´ 1{2q ď 12´1{2Φ´1p1 ´ αq

¸

“ Pf

˜

ζm,α
?
m

m
ÿ

j“1

rpppjq ´ Efp
pjqq ` Efp

pjq ´
1

2
s ď 12´1{2Φ´1p1 ´ αq

¸

ď Pr

ˆ

OP p1q `
ζm,α

?
m

40

ˆ

d´1{2n}f}22

ľ 1

2

˙

ď 12´1{2Φ´1p1 ´ αq

˙

,

where the OP p1q term in last equality follows from the fact that ζm,α is bounded and
the central limit theorem (the ppjq’s are bounded and independent still under Pf ). If
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the minimum is taken in 1{2, the result follows for large enough m. If the minimum
is taken in the first argument,

ζm,α

?
m

40

ˆ

d´1{2n}f}22

ľ 1

2

˙

ě
Cα,βζm,α

40

so for large enough Cα,β , we obtain that Pf p1 ´ Tαq ď β.

For Fisher’s method, the test of level α is given by

Tα :“ 1

#

m
ÿ

j“1

´ 2 log ppjq ě F´1
χ2
2m

p1 ´ αq

+

, (4.39)

for the p-value ppjq :“ 1 ´ Fχ2
d
p}

?
nXpjq}22q (or equivalently Pearson’s method for the

p-value Fχ2
d
p}

?
nXpjq}22q).

For the Type II error bound, assume first that n}f}22 ě 20
?
d. We have that }Zpjq}22 ě

d ´ 5
?
d on an event of probability at least 1 ´ e´5, via e.g. Theorem 3.1.1 in [210].

By using a union and a standard Gaussian concentration inequality, the event

max
1ďjďm

ˇ

ˇ

ˇ

ˇ

2

?
n

?
d
fJZpjq

ˇ

ˇ

ˇ

ˇ

ď
n

2
?
d

}f}22, (4.40)

has mass at least 1 ´ me´n}f}
2
2{32 ě 1 ´ me´

?
d{2. On the intersection of these two

events,

Fχ2
d
p}

?
nf ` Zpjq}22q “ Pr

ˆ

χ2
d ´ }Zpjq}22?

d
ď 2

?
n

?
d
fJZpjq `

n
?
d

}f}22

˙

ě Pr

ˆ

χ2
d ´ d
?
d

ď
n

2
?
d

}f}22 ´ 5

˙

ě Pr

ˆ

χ2
d ´ d
?
d

ď 5

˙

,

where the right-hand side tends to Φp5q in d by the central limit theorem. As Φp5q ą

e´2, we obtain ´ log ppjq ě 2. Since Zp1q, . . . , Zpmq are independent, by binomial
concentration, there are at least p3{4qm indexes j “ 1, . . . ,m such that }Zpjq}22 ě

d ´ 5
?
d whilst also satisfying (4.40) with probability 1 ´ e´τm ´ me´

?
d{2 for some

constant τ ą 0. Using that we can without loss of generality take m ě Mα,β for a
constant Mα,β ą 0 (otherwise the separation rate is effectively the same the one for
m “ 1) and since we consider d Á m, we obtain that the event the joint event occurs
has mass less than 1´β. Furthermore, on this event, we have 1´Tα “ 0 forMα,β ą 0
large enough, since

m
ÿ

j“1

´ 2 log ppjq ě 4m ¨ p3{4q
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and by the fact that the chi-square quantile tends to 2m`Cα

?
2m for some constant

only depending on α, which is less than 4m ¨ p3{4q “ 3m for m ě Mα,β .

Assume now that n}f}22 ď 20
?
d. Consider the following claim: for d large enough it

holds that

´2Ef log
´

1 ´ Fχ2
d
p}

?
nf ` Zpjq}22q

¯

ě 2 ´ e´
?
d{4 `

n}f}22

C
?
d

(4.41)

for a fixed constant C ą 0. If the claim holds,

Pf p1´Tαq ď Pf

˜?
mn}f}22

C
?
d

´
?
me´c

?
d `

1
?
m

m
ÿ

j“1

´ 2plog ppjq ´ Ef log p
pjqq ď ηm,α

¸

with ηm,α :“ 1?
2m

pF´1
χ2
2m

p1´αq ´2mq. Since the method is rate optimal when m À d,

the second term of the left-hand side in the above display may be assumed to be
small. For the third term, note that

Ef p´2 log ppjqq2 “ 4Ef logp1 ´ Fχ2
d
p}

?
nf ` Zpjq}22qq

ď 4 logp1 ´ Fχ2
d
pn}f}22 ` dqq,

where the last inequality follows from the log-concavity of x ÞÑ 1 ´ Fχ2
d
pxq (see e.g.

Theorem 3.4 in [98]). For n}f}22 ď 20
?
d, the latter quantity is uniformly bounded in

n,m and d. Since the second moment bounds the variance, this implies that

1
?
m

m
ÿ

j“1

´ 2plog ppjq ´ Ef log p
pjqq “ OP p1q

by the independence of ppjq and ppkq for k ‰ j. Consequently, for some constant
τ ą 0,

Pf p1 ´ Tαq ď Pr

ˆ?
mn}f}22

C
?
d

´
?
me´τ

?
d `OP p1q ď ηm,α

˙

.

Since ηm,α Ñ Φ´1p1 ´ αq by Lemma 4.9, the fact that

?
mn}f}22

C
?
d

ě Cα,β{C

for large enough Cα,β ą 0 depending only on α and β and the fact that m À d, we
have that Pf p1 ´ Tαq ď β.

It remains to prove the claim of (4.41). We start by writing ´2Ef log
`

ppjq
˘

as

´2Ef logp1 ´ Fχ2
d
p}Zpjq}22q ´ 2Ef log

˜

1 ´ Fχ2
d
p}

?
nf ` Zpjq}22q

1 ´ Fχ2
d
p}Zpjq}22q

¸

.
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The first term equals 2. Using logpxq ď |x ´ 1|, the second term is bounded from
below by

2Ef

ˇ

ˇ

ˇ

ˇ

ˇ

Fχ2
d
p}

?
nf ` Zpjq}22q ´ Fχ2

d
p}Zpjq}22q

1 ´ Fχ2
d
p}Zpjq}22q

ˇ

ˇ

ˇ

ˇ

ˇ

ě 2Ef

ˇ

ˇ

ˇ
Fχ2

d
p}

?
nf ` Zpjq}22q ´ Fχ2

d
p}Zpjq}22q

ˇ

ˇ

ˇ
.

By the same argument as used for (4.40),

Ef1tfJZpjqă0uFχ2
d
p}

?
nf ` Zpjq}22q ě EfFχ2

d
p
1

2
}
?
nf}22 ` }Zpjq}22q ´ e´

?
d{4,

which is larger than EfFχ2
d
p}Zpjq}22q for all large enough d. Additionally, on the event

that fJZpjq ě 0, it holds that

Fχ2
d
p}

?
nf ` Zpjq}22q ě EfFχ2

d
p
1

2
}
?
nf}22 ` }Zpjq}22q ě EfFχ2

d
p}Zpjq}22q.

Furthermore, we have

EfFχ2
d
p
1

2
}
?
nf}22 ` }Zpjq}22q ´ EfFχ2

d
p}Zpjq}22q “ Pr

ˆ

0 ď
χ2
d ´ χ̃2

d?
d

ď
n

2
?
d

}f}22

˙

,

where χ2
d, χ̃

2
d are independent chi square random variables with d degrees of freedom,

which tends in d to

Φ

ˆ

n

2
?
d

}f}22

˙

´ Φp0q ě
n

C
?
d

}f}22,

where the inequality holds under the assumption n}f}22 ď 20
?
d for a large enough

constant C ą 0. Putting the above lower bounds together, we obtain (4.41).

Lemma 4.7. Let Tα correspond to a test of level α considered in (4.8) or (4.9). For
all α, β P p0, 1q if

ρ2 ě Cα,β
d3{2

mn
(4.42)

we have

sup
fPHρ

Pf pTα “ 0q ď β

for a large enough constant Cα,β depending only on α, β P p0, 1q.

Proof. The proof follows a similar line of reasoning as e.g. the proof of Lemma A.8
in [195]. Starting with (4.8), note that

Pf p1 ´ Tαq “ Pr
´ 1

?
d

d
ÿ

i“1

´

pd´1{2
?
mnfi ` Ziq

¯2

ď d´1{2F´1
χ2
d

p1 ´ αq

¯
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for independent Z1, . . . , Zd „ Np0, 1q. The latter display equals

Pr
´ nm

d
?
d

}f}22 ` 2

?
mn

d

d
ÿ

i“1

fiZi `
1

?
d

d
ÿ

i“1

`

Z2
i ´ 1

˘

ď d´1{2pF´1
χ2
d

p1 ´ αq ´ dq

¯

“

Pr
´ nm

d
?
d

}f}22 ` p1 `

c

nm

d2
}f}2qOP p1q ď d´1{2pF´1

χ2
d

p1 ´ αq ´ dq

¯

ď

Pr
´

p1 `

c

nm

d2
}f}22qOP p1q ď ´

1

2

nm

d
?
d

}f}22

¯

,

where the last inequality holds for large enough Cα,β since nm
d

?
d

}f}22 ě Cα,β and

d´1{2pF´1
χ2
d

p1 ´ αq ´ dq is bounded in d by Lemma 4.9. The resulting probability can

be made arbitrarily small by taking large enough Cα,β .

For a variation to Edgington’s method, i.e. (4.9), similar reasoning applies. Under
the null hypothesis, E0Φp

?
nXpjqq “ 1{2, so a conservative test (i.e. P0Tα ď α) based

on Edgington’s method is given by

Tα “ 1

#ˇ

ˇ

ˇ

ˇ

ˇ

1
?
d

d
ÿ

i“1

«

d

m

´

ÿ

jPJi

pppjq ´
1

2
q

¯2

´ Var0pppjqq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ě cα´1{2

+

for a constant c ą 0 by e.g. Chebyshev’s inequality. Under the alternative hypothesis,

we have ppjq “ Φp
?
nX

pjq

i q “ Φp
?
nfi ` Z

pjq

i q whenever j P Ji. The Type II error
Pf p1 ´ Tαq equals

Pf

˜

ˇ

ˇ

ˇ

ˇ

1
?
d

d
ÿ

i“1

«

d

m

´

ÿ

jPJi

pppjq ´ ΦpZ
pjq

i q ` ΦpZ
pjq

i q ´
1

2
q

¯2

´ Var0pppjqq

ff

ˇ

ˇ

ˇ

ˇ

ď cα´1{2

¸

“

Pf

˜

ˇ

ˇ

ˇ

ˇ

ζ ` ξ `
1

?
d

d
ÿ

i“1

d

m

´

ÿ

jPJi

pΦp
?
nfi ` Z

pjq

i q ´ ΦpZ
pjq

i qq

¯2
ˇ

ˇ

ˇ

ˇ

ď cα´1{2

¸

(4.43)

where

ζ “
1

?
d

d
ÿ

i“1

«

d

m

´

ÿ

jPJi

pΦpZ
pjq

i q ´
1

2
q

¯2

´ Var0pppjqq

ff

and

ξ “
2

?
d

m

d
ÿ

i“1

´

ÿ

jPJi

pΦp
?
nfi ` Z

pjq

i q ´ ΦpZ
pjq

i qq

¯´

ÿ

jPJi

pΦpZ
pjq

i q ´
1

2
q

¯

.

By independence between Z
pjq

i and Z
pkq

i when j ‰ k, the random variable ζ is mean
0 under Ef with constant variance (i.e. not depending on d,m, n) and is thus OP p1q.
Similarly, ξ has constant order variance and expectation. By Jensen’s inequality

Ef pΦp
?
nfi ` Z

pjq

i q ´ ΦpZ
pjq

i qq2 ě pΦp2´1{2
?
nfiq ´ Φp0qq2
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where it is used that

EfΦp
?
nfi ` Z

pjq

i q “ Pr
`?
nfi ` Z ě Z 1

˘

“ Φp2´1{2
?
nfiq.

By Lemma A.11 in [195], the right-hand side of the second last display is lower

bounded by 1
12 mint 1

2nf
2
i , 1u. By the independence of Z

pjq

i and Z
pkq

i when j ‰ k, it
also holds that

Ef pΦp
?
nfi ` Z

pjq

i q ´ ΦpZ
pjq

i qqpΦp
?
nfi ` Z

pkq

i q ´ ΦpZ
pkq

i qq “ pΦp2´1{2
?
nfiq ´ Φp0qq2.

Therefore,

Ef
d

m

´

ÿ

jPJi

pΦp
?
nfi ` Z

pjq

i q ´ ΦpZ
pjq

i qq

¯2

ě
m

12d
mint

1

2
nf2i , 1u.

Adding and subtracting the above expectation and noting that

1
?
d

d
ÿ

i“1

d

m

´

ÿ

jPJi

pΦp
?
nfi ` Z

pjq

i q ´ ΦpZ
pjq

i qq

¯2

has constant variance by the independence of Z
pjq

i and Z
pkq

i when j ‰ k, we obtain
that (4.43) is bounded above by

Pf

˜

OP p1q `
m

12d
?
d

d
ÿ

i“1

mint
1

2
nf2i , 1u ď cα´1{2

¸

.

If the minimum is taken by 1 for any i “ 1, . . . , d, the proof is completed by noting

that m Á d2 by assumption whenever the rate d
?
d

nm is the optimal rate and considering
m large enough. Otherwise, the power is arbitrarily small for

mn

d
?
d

}f}22 ě Cα,β

and Cα,β large enough.

Lemma 4.8. Let Tα correspond to a test of level α considered in (4.13). For all
α, β P p0, 1q if

ρ2 ě Cα,β
d

mn
(4.44)

we have

sup
fPHρ

Pf pTα “ 0q ď β

for a large enough constant Cα,β depending only on α, β P p0, 1q.
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Proof. The proof follows a similar line of reasoning as e.g. the proof of Lemma A.7
in [195]. For any f P Rd such that }f}2 ě ρ, we have

U
?
nXpjq d

“
?
nUf ` Zpjq

under Pf by rotational invariance of the normal distribution. The probability of a
Type II error of the test of level α given in (4.13) is then equal to

Pr
`
ˇ

ˇ

?
n

?
mpUfq1 ` Z

ˇ

ˇ ď Φ´1p1 ´ α{2q
˘

,

with Z „ Np0, 1q. The random variable pUfq1 is in distribution equal to }f}2Z
1
1{}Z 1}2

for a d-dimensional standard Gaussian random vector Z 1. For any β P p0, 1q, there
exists c1 ą 0 such that }Z 1}2 ą c1

?
d occurs with probability 1 ´ β{2. Also, for

?
nm}f}2

c1
?
d

ě Cα,β{c1 large enough,

Pr

ˆ

ˇ

ˇ

?
nm}f}2

c1
?
d

` Z
ˇ

ˇ ď Φ´1p1 ´ α{2q

˙

ď β{2.

This concludes the proof of the lemma.

The following fact is well known and included for completeness. For a random variable
V , let FV denote its CDF.

Lemma 4.9. Let W1, . . . ,Wm be random variables and let Vm “
řm

j“1Wj. Suppose
that

m´1{2
m
ÿ

j“1

pWj ´ EWjq ù Np0, σ2q.

Then, for all α P p0, 1q,

pσ2mq´1{2

˜

F´1
Vm

pαq ´

m
ÿ

j“1

EWj

¸

Ñ Φ´1pαq,

where Φ is the standard Gaussian CDF.

Proof. The quantile function

F´1
Vm

pαq “ inf tx P R : Pr pVm ď xq ě αu

satisfies zpF´1
Vm

pαq ´ yq “ F´1
zpVm´yq

pαq. The result now follows by e.g. Lemma 21.2

in [205].
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4.5.5 Proof Lemma 4.1 and Lemma 4.2

Proof of Lemma 4.1. The lemma directly follows from Theorem 4.1 and Theorem 4.3
after verifying the corresponding conditions. Assumption 4.1 is satisfied if ppjq is
generated using only local randomness, while in case of shared randomness, the same
conclusion holds for Assumption 4.4. Below, we prove Assumptions 4.2 and 4.3 for
the examples listed in the lemmas.

1. Fisher’s method: let Spjq “ ´2 log ppjq „H0 χ2
2 and consider the test of level α

as

1

!

ηα,m
1

?
2m

m
ÿ

j“1

pSpjq ´ 2q ě Φ´1p1 ´ αq

)

with Φ´1 the inverse standard normal CDF and

ηα,m :“ Φ´1p1 ´ αq

ˆ

1
?
2m

´

F´1
χ2
2m

p1 ´ αq ´ 2m
¯

˙´1

.

In view of the CLT, see Lemma 4.9, the sequence ηα,m converges to one, hence
it is bounded. Furthermore, note that the corresponding combination function
Cmpsq :“ pηα,m{

?
mq

řm
j“1psj ´ 1q with s “ psjq P Rm satisfies Assumption 4.2

(e.g. with p “ q “ 1). This in turn implies the moment condition for Spjq,
concluding the proof.

2. Mudholkar and George’s method: The corresponding combination function
Cmpsq :“ |m´1{2

řm
j“1 sj |, by triangle inequality, satisfies Assumption 4.4. Since

Spjq :“ ´ logpppjqp1 ´ ppjqqq, the moment conditions are also satisfied.

3. Pearson’s and Edgington’s methods: the proofs follow the same reasoning as
above with an additional application of the reverse triangle inequality in case
of a two-sided test.

4. Tippett’s method: when small p-values are expected under the alternative hy-
pothesis, a test of level α P p0, 1q is given by

Tα “ 1

!

1 ´
`

1 ´ mintpp1q, . . . , ppmqu
˘m

ď α
)

,

where 1´p1´mintpp1q, . . . , ppmquqm is uniformly distributed under the null (see
e.g. [202]). Observe that it is equivalent to

1

!

´mmin
!

´ logp1 ´ ppjqq

)

ě logp1 ´ αq

)

.

For j “ 1, . . . ,m, take Spjq “ ´ logp1 ´ ppjqq „H0 Expp1q. The threshold
α ÞÑ logp1 ´ αq is strictly decreasing and the combination function Cmpsq “

´mmin sj satisfies

|Cmpsq ´ Cmps1q| ď mmin |sj ´ s1
j | ď

m
ÿ

j“1

|sj ´ s1
j |.
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Consequently, Assumptions 4.3 and 4.2 are satisfied.

5. Generalized averages: The case where r “ ´8 corresponds to Tippett’s method
above. Similarly, r “ 8 corresponds to the maximum of p-values, for which the
proof follows by similar steps. For r P r 1

m´1 ,8q, ar,m can be chosen such
that the test Tα in defined in Section 4.2.1 has precise level: P0Tα “ α, see
Proposition 2 and 3 in [212]. For such ar,m, the set tar,m : r P r 1

m´1 ,8qu

is bounded (see Table 1 in the aforementioned paper). This test can eas-
ily be seen to be of the form (4.3) and for the generalized average, we have
pm´1

řm
j“1psjqrq1{r “ }m´1{rs}r, which yields

m´1{r
ˇ

ˇ}s}r ´ }s1}r
ˇ

ˇ ď m´1{r}s´ s1}r ď max
j

|sj ´ s1
j |,

so Assumption 4.2 is satisfied since ar,m is bounded.

Proof of Lemma 4.2. Product of e-values: The e-value test Tα for the combination

function pejq ÞÑ
m

Π
j“1

ej can be written as

Tα “ 1

!

m
ÿ

j“1

logEpjq ě logp1{αq

)

.

For Spjq :“ logEpjq and Cmpsq “
řm

j“1 sj note that E0| logEpjq| ă 8 and Cm

satisfies (4.3). Since α ÞÑ logp1{αq is strictly decreasing on p0, 1q, the assumptions of
Theorems 4.1 and 4.3 are met.

Average of e-values: Since Epjq is nonnegative, the moment condition is satisfied.
The map pejq ÞÑ m´1

řm
j“1 ej satisfies (4.3), while the map α ÞÑ α´1 is strictly

decreasing and independent of m. Hence, the conditions of Theorems 4.1 and 4.3 are
satisfied.

4.5.6 Additional simulations

Figure 4.5.6 shows the further improvement of the combined chi-square tests compared
to the directional methods as d grows with respect to the number of trials, for signals
that are around the detection threshold. Figure 4.5.6 shows the further worsening
of performance of the combined chi-square tests compared method as m grows with
respect to the dimension, for signals that are around the detection threshold. For
each of these simulations, 10, 000 repetitions for every value α P t0.01, 0.02, . . . , 0.99u

of the level of the tests are considered.
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Figure 4.2: ROC curves for different values of d, whilst keeping m “ 20, n “ 30,
ρ2 “ 9

?
d{p16nq. From left to right, top to bottom: d “ 30, d “ 60, d “ 90, d “ 120.

The uncoordinated directional test requires m ě d and is therefore has TPR set to 0.
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Figure 4.3: ROC curves for different values of m, whilst keeping d “ 5, n “ 30,
ρ2 “ 9d{p16nmq. From left to right, top to bottom: m “ 30, m “ 60, m “ 100,
m “ 200.
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Chapter 5

Adaptation in nonparametric
distributed testing with
bandwidth and privacy
constraints

“I wanted to see if it was really true that I had to give up all the beautiful
features in order to do the applications. To answer this question, you must
think about it differently. You need to find out what the constraints are
imposed by the applications, whether those constraints can be added to the
ones of the model, and whether the whole construction can be rebuilt.”
- Ingrid Daubechies

In this chapter, we shall describe the minimax rate for a nonparametric distributed
problem for both bandwidth- and privacy constraints. A natural extension of the
finite dimensional signal in Gaussian noise setting considered in the previous chap-
ters is the infinite dimensional signal-in-white-noise model. The latter model serves
as a benchmark model for nonparametric goodness-of-fit testing and has been exten-
sively studied outside of the distributed setting, see [94, 121, 140, 184, 118]. In the

distributed setting, the j “ 1, . . . ,m machines each observe i “ 1, . . . , n i.i.d, X
pjq

i

taking values in X Ă L2r0, 1s and subject to the stochastic differential equation

dX
pjq

t;i “ fptqdt` dW
pjq

t;i (5.1)

under Pf , with W
p1q

i , . . . ,W
pmq

i i.i.d. Brownian motions and f P L2r0, 1s for i “

1, . . . , n. Besides the difference in the local observations, the distributed setup con-
sidered for this model remains exactly the same. For notational convenience, we shall

185
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use N “ mn throughout the chapter and will consider asymptotic regimes where
N Ñ 8. The results derived for the null hypothesis “f “ 0” and alternative that
“}f}2 ě ρ” in the many-normal-means model translate in the infinite dimensional
model to testing H0 : f ” 0 P L2r0, 1s against the alternative hypotheses that

f P Hs,R
ρ :“ tf P Hs,Rr0, 1s : }f}L2

ě ρ and }f}Hs ď Ru. (5.2)

Here, Hs,R “ Hs,Rpr0, 1sq denotes the Sobolev ball of radius R in the space of s-
smooth Sobolev functions and } ¨ }Hs the Sobolev norm, see Section 5.5.3 in the
chapter appendix for the definitions. We furthermore remark here that the results
(minimax rates) extend to general Besov-ps, p, qq spaces (e.g. alternatives bounded
in Besov norm), for any p P r2,8s and q P r1,8s, up to possibly an additional
logarithmic factor due to the use of a Gaussian prior in the Bayes risk.

The smoothness parameter s ą 0 determines the difficulty of the classical (non-
distributed, m “ 1) nonparametric testing problem as considered in e.g. [123]. The

asymptotic minimax rate for the non-distributed case is ρ2 — pnq
´ 2s

2s`1{2 for the s-
smooth Sobolev alternative class.

This problem is closely related to “classical” nonparametric goodness-of-fit testing in
the sense of [23, 182, 67, 211], in which we aim to distinguish the null hypothesis that
an i.i.d. sample is generated from a cumulative distribution function F “ F0 versus
the alternative hypothesis that F ‰ F0, see the Section 1.4 in the introduction of the
thesis, and Section 1.4 in [123] and references therein for further discussion on this
comparison.

If we consider the total variation distance between probability distributions admitting
densities, which in the above example reduces to p1{2q}f0 ´ f}1 in case F0ptq “
şt

0
f0ptqdt, another motivation for the Gaussian shift experiment can be given through

Le Cam theory and the equivalence of experiments, which we shall further explore in
Chapter 6.

We consider the separation rate ρ in the nonparametric problem to be a sequence
of positive numbers in both N , m ” mN , n :“ N{m and depending on the type of
constraint, b or pϵ, δq. A distributed test T in the nonparametric setting is called
α-consistent for α P p0, 1q if RpHs,R

ρ , T q ď α for all N large enough. The distributed
setting for the nonparametric model remains unchanged in comparison with the finite
dimensional model introduced in earlier chapters, except of course for the sample

space in which the observations X
pjq

i take values and the parameter space. These
become (subsets of) L2r0, 1s instead of Rd.

The minimax rates when s is known, follow more or less straightforwardly from Chap-
ter 2 and Chapter 3. Roughly speaking, after taking e.g. a Fourier or wavelet trans-
form of the observations, the resulting problem in the infinite dimensional sequence
space is well approximated by one in a finite dimensional subspace, by optimally
truncating the sequence based on the knowledge of s. Such an approximation, com-
bined with the results from the earlier chapter yield tight minimax lower- and upper
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bounds for the minimax distributed testing problem in the nonparametric signal-in-
white-noise model.

In practice, however, the true smoothness of the underlying parameter is unknown.
When the smoothness s is unknown, the results and methods of the earlier chapters
do not transfer as straightforwardly to the nonparametric problem. In this case,
optimal methods need to be able to adapt to the unknown regularity of the underlying
function.

In this chapter, we consider both the adaptive settings, both under bandwidth and
differential privacy constraints. First, in Section 5.1, we derive tight minimax rates
under bandwidth constraints when the smoothness is known. After this, in Section 5.2,
we consider the setting where the smoothness is unknown, and derive minimax testing
lower bounds in the adaptive setting under bandwidth constraints. In Section 5.2.1,
where we exhibit adaptive testing methods attaining the lower bounds up to a log´ log
factor. Then, we switch to the differential privacy setting, deriving (up to logarithmic
factors) the known smoothness minimax optimal rates in Section 5.3 and exhibiting
an adaptive method that attains these rates (up to logarithmic factors) whilst also
adhering to the desired differential privacy constraints in Section 5.4.

5.1 Optimal nonparametric testing under bandwidth
constraints with known regularity

The following theorem is a straightforward extension of Theorems 2.3 and 3.1. It de-
scribes the minimax testing rate under bandwidth constraints whenever the regularity
is known. Optimal inference in this case boils down approximating the data using
a sufficiently regular orthonormal basis that provides a good approximation of the
(possibly) underlying signal in Sobolev space (such as a wavelet basis). Truncating
the basis expansion of the data then effectively puts us in the setting of Chapters 2
and 3. A full proof of the theorem is given in Section 5.1.1.

Theorem 5.1. Let s,R ą 0 and let b ” bN , m ” mN and n ” N{m be sequences of
natural numbers, take ρ ” ρn,b,m,s be a sequence of positive numbers satisfying

ρ2 “

$

’

’

&

’

’

%

N´ 2s
2s`1{2 , if b ě N

1
2s`1{2 ,

´?
bN

¯´ 2s
2s`1

, if n
1

2s`1{2m
´2s

2s`1{2 ď b ă N
1

2s`1{2 ,

p
?
mnq

´ 2s
2s`1{2 , if b ă n

1
2s`1{2m

´2s
2s`1{2 .

(5.3)

For all α P p0, 1q there exist constants Cα, cα ą 0 depending only on α, s and R such
that for all N large enough,

inf
TPT

pbq

SR

RpHs,R
cαρ, T q ą 1 ´ α and inf

TPT
pbq

SR

RpHs,R
Cαρ, T q ď α.
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Similarly, in the case of local randomness protocols, ρ ” ρn,b,m satisfying

ρ2 “

$

’

’

&

’

’

%

N´ 2s
2s`1{2 if b ě N

1
2s`1{2 ,

pbNq
´ 2s

2s`3{2 if n
1

2s`1{2m
´s`1{4
2s`1{2 ď b ă N

1
2s`1{2 ,

p
?
mnq

´ 2s
2s`1{2 if b ă n

1
2s`1{2m

´s`1{4
2s`1{2 ,

(5.4)

provides the minimax testing rate, i.e. for all α P p0, 1q there exist constants Cα, cα ą 0
depending only on α, s and R such that for all N large enough,

inf
TPT

pbq

LR

RpHs,R
cαρ, T q ą 1 ´ α and inf

TPT
pbq

LR

RpHs,R
Cαρ, T q ď α.

The proof of the theorem is given in Section 5.1.1. The theorem reveals the relation-
ship between the (local) signal-to-noise-ratio n, communication budget per machine
b, the number of machines m and the smoothness of the signal s. Before providing the
proof we briefly discuss the connection with distributed minimax estimation rates.

The distributed minimax estimation rates under bandwidth constraints were estab-
lished in Corollary 2.2 of [187] or Theorem 3.1 in [230]. A slight reformulation of the
latter yields that

inf
pf̂ ,LpY qqPEpbq

sup
fPHs,R

EY
f }f̂pY q´f}2L2

—

$

’

&

’

%

N´ 2s
2s`1 , if b ě N

1
2s`1 ,

pbNq
´ 2s

2s`2 , if pnm´1´2sq
1

2s`1 ď b ď N
1

2s`1 ,

pbmq
´2s

, if b ď pnm´1´2sq
1

2s`1 ,

(5.5)
where Epbq is the class of all distributed estimators based on b-bit transcripts Y “
`

Y p1q, . . . , Y pmq
˘

.

A first observation is that consistent testing is possible in any regime of b ě 1 and m,
whereas this is not the case in estimation. Consider for instance the regime where m
and b are fixed. In nonparametric distributed estimation, the L2-risk does not improve
once the sample size is large enough. In fact, even when allowing for asymptotics in

b and m (but assuming that pnm´1´2sq
1

2s`1 ě b) one is better off performing the
estimation locally using just one of the machines with local signal-to-noise-ratio n{m,

attaining the locally optimal rate n´ 2s
2s`1 .

In the case of nonparametric testing, not only can we consistently test for any fixed
m and b, the distributed testing rate is bounded from above by p

?
mnq´2s{p2s`1{2q

(regardless of the communication budget b), which is significantly smaller (for largem)
than the minimax testing rate based on the local signal-to-noise-ratio n´2s{p2s`1{2q,
which can be achieved by using only a single local machine. One possible explanation
for this discrepancy is that in nonparametric estimation, the output of the inference
is a high-dimensional object, which requires a large total communication budget to
be reconstructed with sufficient granularity. In testing, the output of our inference is
binary.



5.1. Optimal nonparametric testing under bandwidth constraints with
known regularity 189

A perhaps less surprising difference is that a larger budget is needed for testing at
the non-distributed minimax testing rate compared to estimation. That is, in order

to obtain the non-distributed minimax rate of ρ2 — N´ 2s
2s`1{2 , the communication

budget needs to satisfy b Á N
1

2s`1{2 . On the other hand, the non-distributed minimax

estimation rate N´ 2s
2s`1 requires only b Á N

1
2s`1 . This follows from the fact that the

L2-disk testing rate is faster than the L2 estimation rate and hence to achieve this
faster rate one has to collect information about the signal at higher frequency level

as well (up to the OpN
1

2s`1{2 q coefficients in the spectral decomposition).

Increasing m decreases the local signal-to-noise-ratio when the total number of ob-
servations nm “ N is kept fixed. When the total budget bm grows at a similar or
faster rate than the “effective dimension” of the model, the rate that can be achieved
no longer depends on m in both estimation and testing settings. In this regime, this
effect is offset by the total number of bits being received by the central machine.
What is different in testing problem, however, is that having access to shared ran-
domness strictly improves the performance (until the local communication budget b

reaches the effective dimension N
1

2s`1{2 as after that both methods reach the minimax
non-distributed testing rate N´ 2s

2s`1{2 ). One might wonder whether having access to
shared randomness improves the rate in the estimation setting also. It turns out
that this is not the case. See also Section 3.3, Theorem 3.3, which shows that under
the shared randomness protocol the distributed minimax estimation rate does not
improve compared to the local randomness protocol.

5.1.1 Proof of Theorem 5.1

For convenience, we consider a sufficiently smooth orthonormal wavelet basis tψlk :
l P N0, k “ 0, 1, . . . , 2l ´ 1u for L2r0, 1s, see Section 5.5.3 for a brief introduction of
wavelets and collection of properties used during the proof. Nevertheless, we note,
that other basis (e.g. Fourier) could be used equivalently.

For L “ L P N, let VL “ tψlk : l ď L, k “ 0, 1, . . . , 2l ´ 1u and define νL “
řL

l“0 2
l.

For f P L2r0, 1s, let fL denote the projection of f onto VL, i.e.

fL “

L
ÿ

l“0

2l´1
ÿ

k“0

f̃lkψlk (5.6)

with f̃lk :“
ş

fψlk. Let Xpjq “ pX
pjq

1 , . . . , X
pjq
n q and let Xpjq denote the average of

the observed paths in machine j “ 1, . . . ,m, for which it holds that

dXpjq
t

d
“ fptqdt`

1
?
n
dW

pjq

t ,

where W
pjq
¨ is a Brownian motion. We denote the wavelet coefficients of Xpjq by

X̃
pjq

lk :“
ş1

0
ψlkdXpjq

t. For the coefficients at resolution level L, write

X̃
pjq

L “ pX̃
pjq

L0 , . . . , X̃
pjq

Lp2L´1q
q
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for the R2L valued vector and let X̃
pjq

L1:L denote the concatenated coefficients from

resolution level L1 ă L up to resolution level L, i.e. X̃
pjq

L1:L “ pX̃
pjq

L1 , . . . , X̃
pjq

L q taking

values in RνL´νL1´1 . The vector X̃
pjq

0:L :“ pX̃
pjq

0 , X̃
pjq

1 , . . . , X̃
pjq

L q follows the dynamics

X̃
pjq

0:L “ f̃L `
1

?
n
Zpjq, (5.7)

where Zpjq „i.i.d. Np0, IνL
q, j “ 1, . . . ,m, and f̃L :“ pf̃lkql“0,...,L; k“0,...,2l´1.

The existence of Cα ą 0 such that f P Hs,R
Cαρ can be detected.

In view of Theorem 3.1, there exists a constant C 1
α ą 0 and a b-bit shared randomness

distributed testing protocol T with transcripts generated according to Y pjq|pX̃
pjq

0:L, Uq „

Kjp¨|X̃
pjq

0:L, Uq such that if }f̃L}22 ě pC 1
αq2

?
2L

mn

ˆ

b

2L

b^2L

Ź?
m

˙

, we have

E0T ` Ef̃Lp1 ´ T q ď α.

Similarly, there exists a constant C 1
α ą 0 and a b-bit local randomness distributed test-

ing protocol T such that the above display holds if }f̃L}22 ě pC 1
αq2

?
2L

mn

´

2L

b^2L

Ź?
m
¯

.

See Section 3.1 for the construction of such testing protocols.

Consequently, it suffices to show that for f P Hs,R
Cαρ, }f̃L}22 satisfies the above lower

bounds for some L P N and c ą 0. In view of pa` bq2{2 ´ b2 ď a2,

}fL}2L2
ě

}f}2L2

2
´ }f ´ fL}2L2

.

Furthermore, f P Hs,R
Cαρ implies that

}f´fL}2L2
“

ÿ

ląL

2l´1
ÿ

k“0

f̃2lk ď 2´2Ls
ÿ

ląL

2l´1
ÿ

k“0

f̃2lk2
2ls ď

}f}2Hs

22Ls
ď

R2

22Ls
and }f}2L2

ě C2
αρ

2.

Consequently, in view of Plancharel’s theorem and taking L “ 1 _ r´ 1
s log ρs,

}f̃L}22 “ }fL}2L2
ě ρ2C2

α{2 ´R22´2Ls ě ρ2pC2
α{2 ´R2q.

Consequently, there exists a b-bit shared randomness distributed testing protocol such
that

E0T ` Ef p1 ´ T q ď α

whenever

ρ2 Á

?
2L

mn

˜

c

2L

b^ 2L

ľ?
m

¸

—

a

1 _ ρ´1{s

mn

˜

d

1 _ ρ´1{s

b^ p1 _ ρ´1{sq

ľ?
m

¸

, (5.8)
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since the constant p
C2

α

2 ´ R2q can be made arbitrary large by large enough choice of

Cα ą 0. In the case that b ě p1 _ ρ´1{sq, the above display is satisfied whenever

ρ2` 1
2s Á pmnq´1, which provides the first case in (5.3). Similarly, if b ď ρ´1{s, the

above display boils down to ρ2` 1
s Á p

?
bmnq´1 whenever bm ě ρ´1{s, which leads to

the second case in (5.3). If bm ď ρ´1{s, the inequality (5.8) reduces to ρ2` 1
2s Á 1{

?
mn

and consequently provides the third case in (5.3).

By similar argument as for the shared randomness protocol above, there exists a b-bit
local randomness distributed testing protocol with testing risk less than α whenever

ρ2 Á

a

1 _ ρ´1{s

mn

´ 1 _ ρ´1{s

b^ p1 _ ρ´1{sq

ľ?
m
¯

(5.9)

and Cα ą 0 large enough. Then a similar computation as in the shared randomness
case above leads to the three cases in (5.4).

The existence of cα for which the risk is lower bounded. Furthermore, let ΨL : R2L Ñ

L2r0, 1s be the measurable map defined by

ΨLf̃
L “

2L´1
ÿ

i“0

f̃iψLi,

for f̃ “ pf̃0, . . . , f̃2L´1q P R2L . For any distribution πL on R2L , πL ˝ Ψ´1
L defines a

probability measure on the Borel sigma algebra of L2r0, 1s. The testing risk is lower
bounded as follows

RpHs,R
cαρ, T q ě P0pT “ 1q `

ż

Pf pT “ 0qdπL ˝ Ψ´1pfq ´ πL

´

f̃ P R2L : ΨLf̃ R Hs,R
cαρ

¯

.

The likelihood ratio
dPf̃

dP0
pXpjqq with f “ ΨLf̃ equals

exp

ˆ

n

ż 1

0

fdX
pjq

t ´
n

2
}f}22

˙

“ exp
´

npf̃qJX̃
pjq

L ´
n

2
}f̃L}22

¯

“: Lf̃ pX̃
pjq

L q,

where X̃
pjq

L “ p
ş1

0
ψL0ptqdX

pjq

t , . . . ,
ş1

0
ψLp2L´1qptqdX

pjq

t q P R2L . That is, under P0,

Lf̃ pX̃
pjq

L q is equal in distribution to the likelihood ratio

dN
´

f̃ , 1
nI2L

¯

dN
`

0, 1
nI2L

˘ .

This effectively puts us in the setting of Section 2.3. By Lemma 2.12, there exists

a symmetric, idempotent matrix Γ P R2Lˆ2L such that for πL “ Np0,Γq with Γ “
?
cαρ2

2L
Γ P R2Lˆ2L , it holds that

RpHs,R
cαρ, T q ě α ´ πL

´

f̃ P R2L : ΨLf̃ R Hs,R
cαρ

¯

, (5.10)
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as long as ρ satisfies

ρ2 ď cα

?
2L

mn

ˆ

2L{2

?
b^ 2L

ľ?
m

˙

in the case of shared randomness protocols or

ρ2 ď cα

?
2L

mn

ˆ

2L

b^ 2L

ľ?
m

˙

in the case of local randomness protocols, and cα ą 0 small enough in both cases.
Taking again L “ 2 _ rlog ρ´1{ss, by similar argument as given below display (5.8)
the above upper bounds for ρ2 result in (5.3) and (5.4).

It remained to bound the prior mass term in (5.10) for L “ 2 _ rlog ρ´1{ss. That is,
we will show that

πL

´

f̃ P R2L : }ΨLf̃}2L2
ě cαρ

2, }ΨLf̃}2Hs ď R2
¯

ě 1 ´ α{2, (5.11)

for all n large enough. Note that for all L P N, }ΨLf̃}2Hs ď 22Ls}ΨLf̃}L2 . Conse-
quently, using Plancharel’s theorem, we obtain that the left-hand side of (5.11) is
bounded from below by

πL

´

f̃ P R2L : cαρ
2 ď }f̃}22 ď 2´2LsR2

¯

ě Pr
`

cαρ
2 ď ZJΓZ ď R2ρ2

˘

“ Pr

ˆ

?
cα2

L ď ZJΓZ ď
R2

?
cα

2L
˙

, (5.12)

where Z is a 2L-dimensional standard normal vector. Since the matrix Γ is symmetric,
idempotent and has rank proportional to 2L, Lemma 3.28 yields that the right-hand
side of the above display is bounded from below by

1´ exp
´

´C2L
?
cα ´ 1 ´ 0.5 log cα

4

¯

´ exp
´

´C2L
R2{

?
cα ´ 1 ´ 0.5 log

`

R4{cα
˘

4

¯

,

for a universal constant C ą 0. The above expression can be set arbitrarily close to
1 per small enough choice of cα ą 0, verifying the prior mass condition.

5.2 Adaptation under bandwidth constraints

In the previous section we have derived minimax lower and matching upper bounds
for the nonparametric distributed testing problem in context of the Gaussian white
noise model. The proposed tests, however, depend on the regularity hyperparameter
s of the functional parameter of interest f . Typically, the regularity of the function
is not known in practice and one has to use data driven methods to find the best
testing strategies. In this section we derive distributed tests adapting to this unknown
regularity. We derive both lower and upper bounds and observe surprising, additional
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phase transition in the small budget regime which was not present in the non-adaptive
setting.

First, we note that even in the non-distributed setting, we have to pay an additional
log logN factor as a price for adaptation (see e.g. Theorem 2.3 in [184] or Section 7
in [123]). More concretely, if ρs — N´s{p2s`1{2q, it holds that for any smin ă smax,

sup
sPrsmin,smaxs

R
´

Hs,R
cNMN,sρs

, T
¯

Ñ 1,

for all tests T , MN,s “ plog logNq
s{4

2s`1{2 and any cN “ op1q whilst there exists a test
T satisfying

sup
sPrsmin,smaxs

R
´

Hs,R
CMN,sρs

, T
¯

Ñ 0,

for large enough constant C ą 0.

The distributed testing problem is more complicated as we have to consider different
regimes based on the number of transmitted bits, see Theorem 5.1. These regimes,
however, depend on the unknown regularity hyperparameter and require different
testing procedures to achieve consistent testing. The transcripts transmitted require
a larger communication budget to attain the same performance as in Theorem 5.1.
Theorem 5.2 and 5.3 below capture this increased difficulty in terms of lower- and
upper bounds on the detection rate (tight up to a log-log factor). In the proof of
the theorem, we derive such an adaptive distributed testing method which adapts
to the smoothness. These methods are in principle based on taking a 1{ logmn grid
of the regularity interval rsmin, smaxs, constructing optimal tests for each of the grid
points and combining them using Bonferroni’s correction. This results in loosing
a logarithmic factor in the intermediate case as the budget has to be divided over
OplogNq tests, each capturing a different possible level of smoothness.

The additional incurred cost in the distributed setting due to additional commu-
nication budget required is fundamental, as our accompanying lower bound shows.
This additional difficulty translates to a

?
logN and logN factor more observations

required in the intermediate budget regimes for the shared- and local randomness
settings, respectively. In the small budget regime, such a loss is incurred when the
local communication budget b is of smaller order than logN . When b Á logN in the
small budget regime, the same rate as in Theorem 5.1 can be obtained, up to the
log logN factor incurred by the Bonferroni correction.

The above described results are split over two theorems. The first, Theorem 5.2,
concerns the case where b Á logN . In the second, Theorem 5.3, the case where
b À logN (both theorems coincide when b — logN). The case where b “ Op1q is of
special interest, as b “ 1 means each machine’s local transcript forms a test itself and
the global test can be seen as a “meta-analysis” on the basis of these m tests. The
proofs of the upper bounds in both theorems are given in Section 5.2.1, while the
proofs of the lower bound are deferred to Section 5.5.1 in the supplement.
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Theorem 5.2. Let us consider some 0 ă smin ă smax ă 8, R ą 0, let m ” mN ,
n ” N{m and b ” bN such that b " logN be sequences of natural numbers and take
a sequence of positive numbers ρs ” ρn,b,m,s satisfying

ρ2s —

$

’

’

’

’

’

&

’

’

’

’

’

%

N´ 2s
2s`1{2 , if b ě logpNqN

1
2s`1{2 ,

ˆ

?
bN?

logpNq

˙´ 2s
2s`1

, if logpNq

ˆ

N
1

2s`1{2

m
2s`1

2s`1{2

Ž

1

˙

ď b ă logpNqN
1

2s`1{2 ,

p
?
mnq

´ 2s
2s`1{2 , if logpNq ď b ă logpNq

ˆ

N
1

2s`1{2

m
2s`1

2s`1{2

Ž

1

˙

,

(5.13)

in the shared randomness case, and

ρ2s —

$

’

’

’

’

&

’

’

’

’

%

N´ 2s
2s`1{2 if b ě logpNqN

1
2s`1{2 ,

´

bN
logpNq

¯´ 2s
2s`3{2

if logpNq

ˆ

N
1

2s`1{2

m
s`3{4
2s`1{2

Ž

1

˙

ď b ă logpNqN
1

2s`1{2 ,

p
?
mnq

´ 2s
2s`1{2 if logpNq ď b ă logpNq

ˆ

N
1

2s`1{2

m
s`3{4
2s`1{2

Ž

1

˙

,

(5.14)

in the case of only local randomness. Then, there exists a sequence of b-bit bandwidth
constrained distributed testing procedures T ” TN in the respective setups such that

sup
sPrsmin,smaxs

R
´

Hs,R
MNρs

, T
¯

Ñ 0,

for any MN "
`

log logpNq
˘1{4

. Similarly, for all distributed testing procedures in the
respective setups, we have that for all α P p0, 1q there exists cα ą 0 such that

sup
sPrsmin,smaxs

R
`

Hs,R
cαρs

, T
˘

ą α.

The above theorem recovers (up to log-factors) the three rates corresponding to the
three regimes also found in Theorem 5.1, the different regimes corresponding to dif-
ferent testing strategies. Since the true smoothness is unknown, these different dis-
tributed testing strategies are to be conducted simultaneously.

We note that form ě N
1

2smin`1 orm ě N
1

smin`3{4 in the shared- and local randomness
cases, respectively, the small budget regime no longer occurs. The reason for this is
that, even though b could be relatively small, the total communication budget bm is
large enough to warrant the strategy for the intermediate and high budget regimes.

Furthermore, whenever b ą logpNqN
1

2s`1{2 , the budget is large enough to recover the
non-distributed regime rate.

For b À logN the separation rate is different from the non-adaptive low budget regime.
Depending on the interplay between n and m either the minimax rate corresponding
to the intermediate case applies or an additional poly-plogpmnq{bq factor is present
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compared to the non-adaptive low budget regime, both in the local- and shared ran-
domness settings. This results in an additional phase transition at b “ logN . The
reason for this, is that in order to cover approximately logN different levels of smooth-
ness using less than logN bits, each of the machines can no longer send an adequate
amount of information on all the relevant smoothness levels. Instead, an optimal
strategy is to divide the different machines over each of the smoothness levels, where
each machines foregoes sending information regarding certain smoothness levels all
together.

Theorem 5.3. Assume the conditions of Theorem 5.2 with b À logN and assume
bm " logN . Let us consider

ρ2s —

$

’

’

&

’

’

%

ˆ

?
bN?

logpNq

˙´ 2s
2s`1

, if m ě N
1

2s`1 ,

´?
b

?
mn

logpNq

¯´ 2s
2s`1{2

, if m ă N
1

2s`1 ,

(5.15)

in the shared randomness case and

ρ2s —

$

’

&

’

%

´

bN
logpNq

¯´ 2s
2s`3{2

if m ě N
2

2s`3{2

´

b
logpNq

¯

s´1{4
2s`3{2

,
´?

mn
?
b

logpNq

¯´ 2s
2s`1{2

if m ă N
2

2s`3{2

´

b
logpNq

¯

s´1{4
2s`3{2

,

(5.16)

in the local randomness case. Then, there exists a sequence of b-bit bandwidth con-
strained distributed testing procedures in the respective setups such that

sup
sPrsmin,smaxs

R
´

Hs,R
MNρs

, T
¯

Ñ 0,

for arbitrary MN "
`

log logpNq
˘1{4

. Similarly, for all b-bit bandwidth constrained
distributed testing procedures in the respective setups, we have that for all α P p0, 1q

there exists cα ą 0 such that

sup
sPrsmin,smaxs

R
`

Hs,R
cαρs

, T
˘

ą α.

Remark 11. Both theorems together cover all cases where mb " logN . The cases
where mb À logN are excluded for technical reasons, as well as the fact that when
mb À logN , the optimal rate in (5.15)-(5.16) (up to at most a

?
log logN factor)

is attained by using a standard non-distributed method using just the data of one
machine (see e.g. [184]). Similarly, in order to contain the level of technicality, we
have foregone the plog logNq1{4 additional factor in the lower bound which we esteem
also to be present in the distributed setting. We refer the reader to the argument of
Theorem 2.3 in [184] for how to obtain the plog logNq1{4 factor in the lower bound in
addition to the

?
logN and logN factors in the shared- and local randomness cases,

respectively.
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5.2.1 Adaptive tests attaining the bounds Theorem 5.2 and 5.3

Underlying the adaptive methods lies the wavelet transform of the observations, as
introduced in Section 5.1.1. Let νL “

řL
l“0 2

l and let us introduce the notations
Ls “ ts´1 logp1{ρsqu_1, and for shorthand write Lmin “ Lsmax and Lmax “ Lsmin and
note that Ls P C :“ tLmin, . . . , Lmaxu for all s P rsmin, smaxs. Note that |C| ď logN .

For each regularity hyperparameter s, we distinguish low-budget (2Ls Á mb in the

shared randomness case, and 2
3
2Ls Á mb in the local randomness setting) and high-

budget (corresponding to 2Ls À mb in the case of shared randomness and 2
3
2Ls À mb

in the local randomness setting) cases. Since m and b are known for any given
regularity s we know which regime it falls and is sufficient to construct that test. For
notational convenience, without loss of generality, for each s we construct both the
high-budget and the low-budget optimal tests using all the m machines (and do not
split them between these two cases).

5.2.2 Proof of the upper bound in the low-budget regime

First we deal with the low-budget case (where the total budget is small compared
to the effective dimension), which coincides in both setups. For each L P C we take

a subset of machines ML Ă t1, . . . ,mu such that |ML| “ m1 :“ mplogpNq^bq

logpNq
and

each machine appears in at most b such subsets. We note that this is possible since
m1|C| ď mb. Then for each j P ML, L P C we communicate

Y
pjq

I pLq|Xpjq „ Ber
´

χ2
νL

´?
n}X̃

pjq

0:L}22

¯¯

(5.17)

and at the central machine, we can compute

SIpLq “
1

?
m1

ÿ

jPML

p2Y
pjq

I pLq ´ 1q.

Then we consider the following adaptive test based on Bonferroni’s correction

T adapt
I “ 1

!

max
LPC

SIpLq ě 2
a

log logN
)

.

Since for L P C, it holds that L — logpNq, the above
?
log logN blow up suffices

to guarantee that the test has asymptotically vanishing Type I error control, i.e.
E0T

adapt
I “ op1q by Lemma 5.1 in the Supplementary Material (as the random vari-

ables 2Y
pjq

I pLq ´ 1 are i.i.d. Rademacher under P0).

For the Type II error note that

Ef p1 ´ T adapt
I q ď Pf

´

SIpLsq ă 2
a

log logN
¯

and aim to apply Lemma 3.16. In view of Lemma 3.2, (with }f}2 replaced by }f̃Ls}2

and d “ νLs), noting that by triangle inequality }f̃Ls}22 ě }f}22{2´2´2LssR2 (see also
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Section 5.1.1), we get for }f}22 ě C2
0

a

log logpNqρ2s ě C2
0

a

log logpNq

?
2Lsm logpNq

n
?

b^logpNq
,

that for m large enough

ηp,m1,1 Á pm1 ´ 1q

´n}f̃Ls}22

m2Ls{2
^

1

2

¯2

Á m1
´

pC̃
log logN

m1
q ^ p1{4q

¯

,

with C̃ “ C2
0{2 ´ R2. By the assumption that bm " logpNq, m1 can be taken larger

than arbitrary constant M0 ą 0. This means that, in view of Lemma 3.16 with
cα,N “ 4 log logN and large enough constant C0 (depending on R), the Type II error
is bounded by α.

5.2.3 Proof of the upper bound in the shared randomness,
high budget regime

We use similar arguments as before, applying a Bonferroni-type of correction. First
let us consider the shared randomness setting and take a one-to-one mapping ξL from
t1, . . . , νLu to tpl, iq : l “ 0, . . . , L, i “ 0, 1, . . . , 2l ´ 1u. Let us define the test

pY
pjq

II pLqqi|UL “ 1

!´?
nULX̃

pjq

ξLpiq

¯

i
ą 0

)

, (5.18)

where the random variable UL P RνLˆνL is drawn from the Haar measure on the
rotation group on RνL . Similarly to before for each L we take a subset of machines

ML Ď t1, . . . ,mu such that |ML| “ m1 :“ mpb^logpNqq

logpNq
, and each machine appears at

most in b such sets.

Then machine j P ML, L P C, transmits the bits pY
pjq

II pLqqi, i “ 1, . . . , b1 :“ mb
m1|C|

^νL
to the central machine, where these local test statistics are aggregated, similarly
to (3.6), as

SIIpLq “
1

?
b1m1

b1
ÿ

i“1

»

–

˜

ÿ

jPML

”

pY
pjq

II pLqqi ´ 1{2
ı

¸2

´
m1

4

fi

fl . (5.19)

In view of Lemma 5.1 the Type I error of the test

T pub,adapt
II :“ 1

!

max
LPC

SIIpLq ě 2
a

log logN
)

is op1q. For the Type II error note that

Ef p1 ´ T pub,adapt
II q ď Ef1

!

SIIpLsq ă 2
a

log logN
)

.

By Lemma 5.2, the above display is op1q whenever ρ2 Á MN
2Ls

N
b

b
logpNq

^2Ls
, which, for

the choice of Ls“ ts´1 logp1{ρsqu _ 1 yields the rates of Theorem 5.2 and 5.3.
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5.2.4 Proof of the upper bound in the local randomness case,
high-budget regime

We proceed by adapting the test TIII provided in Section 3.1.3 to the nonparametric
setting with unknown regularity using again a Bonferroni type correction to achieve
adaptation. For simplicity, we again apply the map ξL introduced previously to move
between the single and double index notations of the sequence model.

For all L P C, similarly to the previous cases we consider a collection of machines ML

with |ML| “ m1 “
mpb^logpNqq

logpNq
and similarly to Section 3.1.3 let us use the notation

IipLq Ă ML for the collection of machines corresponding the ith coordinate. We note
that without loss of generality we can assume that m1 ě Mα

?
log logN22Ls{pb1q2, for

some large enough constant Mα, otherwise the test T adapt
I above covers the corre-

sponding range. Then we modify the test given in (3.9) by increasing the threshold
with the Bonferroni correction, i.e.

T priv,adapt,1
III “ 1

!

max
LPC

SIII,1pLq ě 2
a

log logN
)

, where

SIII,1pLq “

ˇ

ˇ

ˇ

1

|I1pLq|2L{2

νL
ÿ

i“1

´

ÿ

jPIipLq

pY
pjq

i ´ 1{2q

¯2

´ 2L{2{4
ˇ

ˇ

ˇ
,

Y
pjq

i |X̃
pjq

ξLpiq “ 1

!

X̃
pjq

ξLpiq ą 0
)

.

To deal with large signal components, similarly to (3.9) (with d “ νL and including
the Bonferroni correction in the threshold), we propose the test,

T priv,adapt,2
III “ 1

!

max
LPC,2 logpLqďb

SIII,2pLq ě κα
a

log logN
)

, where

SIII,2pLq “

ˇ

ˇ

ˇ

ˇ

1

dm1Cb,L

˜

m1
ÿ

j“1

pY
pjq

count ´ Cb,L2
L´1q

¸2

´
1

4

ˇ

ˇ

ˇ

ˇ

,

with Cb,L “ 2b´L and Y
pjq

count given by

Y
pjq

count “

Cb,d
ÿ

l“1

d
ÿ

i“1

B
pjq

li P t0, 1, . . . , Cb,ddu,

with for i “ 1, . . . , d and j “ 1, . . . ,m, let us generate

B
pjq

li
i.i.d.
„ Ber

´

Fχ2
1

´

`?
nX

pjq

i

˘2
¯¯

, l P t1, . . . , Cb,d “ t2b{pd` 1quu.

Note that Cb,d ě 1 by assumption. Then machine j communicates the transcript

Y
pjq

count to the central machine, which can be done using log2pCb,dd ` 1q ď b bits in
total. Finally, we aggregate these tests by taking

T priv,adapt
III “ T priv,adapt,1

III _ T priv,adapt,2
III .
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In view of the law of Lemma 5.1 the Type I error tends to zero for both tests.
Therefore, it remains to show that the Type II error is bounded by α. Similarly to
the previous cases, note that

Ef p1´T priv,adapt
III q ď Ef

´

1

!

SIII,1pLsq ă 2
a

log logN
)

^1

!

SIII,2pLsq ă 2
a

log logN
)¯

.

Following the proofs of Lemmas 3.4, 3.17 and 3.18 (with d “ νLs
, f taken to be the

νLs
dimensional vector f̃Ls , b replaced by b1, and Mα replaced by M0

?
log log n, for

some large enough M0 ą 0), noting that for C2
0 ą 4R2

}f̃Ls}22 ě }f}22{2 ´R22´2Lss Á C0

a

log logNρ2s

“
C02

3Ls{2
?
log logN

2Np b
logpNq

^ 2Lsq
Á
C02

Ls
?
log logN

Nb1 m1

m

,

and applying Lemmas 3.26 and 3.16 with cn,α “ 2
?
log logN , we get that the Type

II error of T priv,adapt
III is bounded from above by α{2.

Finally, we combine the above tests by taking

T priv,adapt “ T priv,adapt
III _ T priv,adapt

I and T pub,adapt “ T pub,adapt
II _ T pub,adapt

I .

Note that both of the above tests still have vanishing Type I error, while the Type II
errors are bounded by the prescribed level α in view of taking the union of the above
optimal tests.

5.3 Optimal nonparametric testing under differen-
tial privacy constraints

In this section, we study goodness-of-fit testing in the distributed nonparametric
signal-in-white-noise model as described in the start of this chapter (i.e. in (5.1)) under
differential privacy constraints, as laid out in Definition 3. The specific goodness-of-fit
test we shall consider is that of testing H0 : f ” 0 P L2r0, 1s against the alternative
hypotheses that

f P Hs,R
ρ :“ tf P Hs,Rr0, 1s : }f}L2 ě ρ and }f}Hs ď Ru.

As is the case under bandwidth constraints, the nonparametric testing problem un-
der privacy constraints closely resembles the goodness-of-fit testing problem in the
many-normal-means model under privacy constraints, as studied in Chapters 2 and 3.
Loosely speaking, this is a consequence of the fact that, when the model its parame-
ter space restricted to the above Sobolev ball, it is well approximated by the many-
normal-means model. That is, after applying e.g. a wavelet transform and considering
the wavelet coefficients only up until a certain resolution determined by the model
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characteristics, n,m, ϵ and s (sometimes referred to as its “effective dimension”), we
end up in the many-normal-means model with the dimension as a function of the
other model characteristics.

In this section, we shall consider the smoothness level s to be known and derive
the minimax separation rate ρ for the nonparametric problem under pϵ, δq-differential
privacy constraints. That is, for sufficiently δ, finding ρ as function of n,m, ϵ for
which the minimax nonparametric testing risk

inf
TPT

pϵ,δq

SR

RpHs,R
MNρ, T q

tends to either 0 or 1 depending on the sequence MN ą 0. Here, as in earlier chap-

ters, T
pϵ,δq

SR consists of all distributed protocols satisfying the pϵ, δq-differential privacy

constraint (see Definition 3). Likewise, we consider the class T
pϵ,δq

LR as consisting of
distributed protocols using local randomness only and satisfying the same differential
privacy constraint.

As is observed in Theorem 1.2, the separation rate many-normal-means model under
privacy constraints is subject to many phase transitions, depending on the values
of n,m, ϵ and d. These same phase transitions are observed in the nonparametric
signal-in-white-noise models too, depending on n,m, ϵ and s.

In the case of shared randomness, the minimax rate in the nonparametric model is
(up to logarithmic factors) given by

ρ2 —

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

pmnq
´ 2s

2s`1{2 if ϵ ě m
1

4s`1n
1{2´2s
4s`1 ,

pmn3{2ϵq´ 2s
2s`1 if m´ 2s

4s`1n
1{2´2s
4s`1 ď ϵ ă m

1
4s`1n

1{2´2s
4s`1 , and ϵ ě n´1{2,

pmn2ϵ2q
´ 2s

2s`1 if m´ 1
2n

1´2s
4s ď ϵ ă n´1{2,

p
?
mnq

´ 2s
2s`1{2 if n´1{2 ď ϵ ă m´ 2s

4s`1n
1{2´2s
4s`1 ,

p
?
mn3{2ϵq´ 2s

2s`1{2 if m´ 1
2n´

1`s
2s`1 ď ϵ ă m´ 1

2n
1´2s
4s and ϵ ă n´1{2,

pmn2ϵ2q´1 if ϵ ă m´ 1
2n´

1`s
2s`1 .

(5.20)

For different values of ϵ ranging between 0 and 1, the minimax rate changes, which
we shall refer to as different regimes. We note also that, depending on the particular
values of m,n and s, some of the above regimes do not occur for any value of ϵ P

p0, 1s. When considering only local randomness protocols, the minimax rate (up to
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logarithmic factors) for s ą 1{4 satisfies

ρ2 —

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

pmnq
´ 2s

2s`1{2 if ϵ ě m
1

4s`1n
1{2´2s
4s`1 ,

pmn2ϵ2q
´ 2s

2s`3{2 if m
1{4´s
4s`1 n

1{2´2s
4s`1 ď ϵ ă m

1
4s`1n

1{2´2s
4s`1 and ϵ ě n´1{2,

pmn2ϵ2q
´ 2s

2s`3{2 if m´ 1
2n

5{2´2s
4s´1 ď ϵ ă n´1{2,

p
?
mnq

´ 2s
2s`1{2 if n´1{2 ď ϵ ă m

1{4´s
4s`1 n

1{2´2s
4s`1 ,

p
?
mn3{2ϵq´ 2s

2s`1{2 if m´ 1
2n´

1`s
2s`1 ď ϵ ă m´ 1

2n
5{2´2s
4s´1 and ϵ ă n´1{2,

pmn2ϵ2q´1 if ϵ ă m´ 1
2n´

1`s
2s`1 .

(5.21)

We note that here, the minimax rate is subject to five different rates, where the

rate pmn2ϵ2q
´ 2s

2s`3{2 is split into two different cases. Even though the case where

m´ 1
2n

5{2´2s
4s´1 ď ϵ ă n´1{2 does not change the minimax rate in (5.21), we do highlight

it separately as it creates for an easier comparison with the shared randomness rate
of (5.20).

Whenever s ď 1{4, the conditions for local randomness minimax rate in (5.21) change
to

ρ2 —

$

’

&

’

%

p
?
mnq

´ 2s
2s`1{2 if ϵ ě n´1{2,

p
?
mn3{2ϵq´ 2s

2s`1{2 if m´ 1
2n´

1`s
2s`1 ď ϵ ă n´1{2,

pmn2ϵ2q´1 if ϵ ă m´ 1
2n´

1`s
2s`1 .

(5.22)

We further comment on the derived rates after the full statement on the minimax
rate, which is given by the following theorem.

Theorem 5.4. Let s,R ą 0 be given and consider any sequences of natural numbers
m ” mN and n :“ N{m such that N “ mn Ñ 8, ϵ ” ϵN in pN´1, 1s and δ ” δN —

pmnq´p for some constant p ě 2. Let ρ ” ρn,m,ϵ,δ be a sequence of positive numbers
satisfying (5.20).

Then,

inf
TPT

pϵ,δq

SR

RpHs,R
MNρ, T q Ñ

#

0 for any MN " log3pNq,

1 for any MN Ñ 0.

Similarly, for ρ satisfying (5.21) for s ą 1{4 or (5.21) for 0 ă s ď 1{4 we have that

inf
TPT

pϵ,δq

LR

RpHs,R
MNρ, T q Ñ

#

0 for any MN " log3pNq,

1 for any MN Ñ 0.

The theorem shows that the minimax rate under pϵ, δq-differentially privacy is indeed
captured by (5.20) and (5.21) in the case of shared- and local randomness, respectively,
up to a poly-logarithmic factor. The rate is asymptotic in the sense that the total
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number of observations N “ nm is assumed to tend to infinity. We note here that,
for the cases where ϵ À n´1{2, the rates are in fact attained by pϵ, 0q-differentially
private protocols.

A first observation is that consistent testing against Hs,R
ρ alternatives is possible for

any value of ϵ " m´1{2n´1 log6pNq. That is, whenever ϵ " m´1{2n´1 log6pNq, the
ρ tends to zero as N Ñ 8, meaning that a signal in Hs,Rr0, 1s of arbitrary size can
be consistently distinguished from 0 as long as the total sample size is large enough.

Whenever ϵ " N
1{2

2s`1{2 {
?
n, the minimax testing rate of the unconstrained problem

can be attained, up to poly-logarithmic factors. This means that, for the distributed
nonparametric testing problem under privacy constraints with ϵ ď 1 exhibit similar
performance as in the unconstrained problem, m is required to be small in comparison
to n, where the smoothness plays a part in the threshold. To be precise, attaining
the optimal, unconstrained rate for ϵ ď 1 requires m À n2s´1{2, which in turn means
that the unconstrained rate can only be attained whenever s ą 1{4. This is true for
both the shared- and local randomness distributed protocols. The drastic change in
terms of achievable regimes around s “ 1{4 in the case of local randomness protocols
as prescribed by (5.21) and (5.22) is due to the “effective dimension” becoming too
large (i.e. larger than

?
mn) for the “high-privacy-budget” regime to occur (see also

Section 1.3.2).

The estimation rate in this model can be derived from Theorems 2.5 and 2.6 in
Section 2.5.6. We will not provide the technical steps here in the thesis, but refer
the reader to [51], where nonparametric regression is treated, which is subject to the
same minimax estimation rate. This rate amounts to

inf
f̂PE pϵ,δq

sup
fPHs,Rr0,1s

Ef

›

›

›
f̂pY q ´ f

›

›

›

2

L2

— MN

´

N´ 2s
2s`1 ` pmn2ϵ2q

´ 2s
2s`1

¯

, (5.23)

where E pϵ, δq denotes the class of all pϵ, δq-differentially private estimation protocols,
logp1{δq — logpnmq, ϵ P pp

?
mnq´1, 1s and MN is at most of the order log2pNq. The

estimation rate reveals that consistent estimation uniformly over the Sobolev ball
is possible whenever ϵ " m´1{2n´1, the same threshold as for the testing problem.
To attain the same rate as in the unconstrained problem (up to possibly a poly-

logarithmic factor), the estimation problem requires ϵ " N
1{2

2s`1 {
?
n, which means

that the unconstrained minimax rate can be attained in estimation for smaller privacy
budgets than in testing. However, as can be observed in (5.20) and (5.21) the relative
cost of privacy can be seen to be much higher in the estimation problem, in the sense
that a change in ϵ has a larger effect on the estimation minimax rates.

How the privacy constraint affects the minimax rate can be seen to heavily depend on
the regularity parameter s. In order to understand this impact, it helps to visualize
the ρ-ϵ relationship as governed by (5.20) and (5.21). The relationship is depicted
in Figure 5.1 below, which shows the minimax rate ρ as function of ϵ, for different
smoothness levels. The slope of the curve captures the cost of increasing privacy
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in terms of its effect on the minimax rate. The six regimes are summarized in the
accompanying Table 5.1.

(m = 15, n = 2) (m = 5, n = 6)

Local R
andom

ness
S

hared R
andom

ness
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Figure 5.1: The relationship of the minimax testing rate ρ and ϵ, given by (5.20)
and (5.21), for pn,mq “ p6, 5q in the left column and pn,mq “ p2, 15q in the right
column, σ “ 1 and smoothness levels s “ 1{5, s “ 1{2, s “ 1 and s “ 3. The
panels on the first row correspond to distributed pϵ, δq-DP (local randomness only)
protocols (i.e. (5.20)), the bottom row corresponds to distributed pϵ, δq-DP protocols
with shared randomness (i.e. (5.21)). The regimes correspond to the six regimes (e.g.
different rates) in Table 5.1.

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 Regime 6

Shared U
`

1
mn

˘
2s

2s`1{2
`

1
mn3{2ϵ

˘
2s

2s`1
`

1
mn2ϵ2

˘
2s

2s`1

´

1?
mn

¯
2s

2s`1{2
´

1?
mn3{2ϵ

¯
2s

2s`1{2 1
mn2ϵ2

Local only
`

1
mn

˘
2s

2s`1{2
`

1
mn2ϵ2

˘
2s

2s`3{2
`

1
mn2ϵ2

˘
2s

2s`3{2

´

1?
mn

¯
2s

2s`1{2
´

1?
mn3{2ϵ

¯
2s

2s`1{2 1
mn2ϵ2

Table 5.1: The minimax separation rates for the testing problem under privacy con-
straints, for both the local randomness and shared randomness settings. The rates
are given up to logarithmic factors. The regimes are defined by the values of ϵ and
the model characteristics m,n, s.

Figure 5.1 shows the minimax testing rates under privacy constraints with various
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values for m and n and various levels of smoothness. In particular, the curves give
insights into the cost of decreasing the privacy parameter ϵ depending on the regime.
When the curve is flat, it means that ϵ can be decreased without incurring a cost
in terms of having a larger detection boundary. A steep curve mean that, when ϵ
decreases, it causes a large increase in the detection boundary. It can be observed
that s has a “flattening” effect on the impact of ϵ on the detection boundary for
“moderate” to “large” values of ϵ.

What constitute “moderate” or “large” values, depends on the size of m relative to
n, as can be seen when comparing the n “ 6 and m “ 5 the setting with n “ 2 and
m “ 15. It can be seen that, as the local sample n is larger compared to the number
of times the total number of data points N is divided m, the cost of privacy is less.
This underlines the idea that, in large samples, it is easier to retain privacy.

When ϵ becomes “very small” (smaller than a threshold depending on s, m and n),
the smoothness starts to matter less and less, up to the point where the difficulty
of the problem is no different for (very) different regularity levels. These scenarios
correspond to settings where the privacy requirement underlying the problem is so
stringent, that it effectively becomes the bottleneck of the testing problem. In such
scenarios, the estimation problem locally becomes easier than the global testing prob-
lem under privacy constraints, meaning that the signal can locally be estimated at
a smaller error than that the global testing problem can be solved, solely due to the
presence of the differential privacy demands.

The estimation rate of (5.23) only exhibits one phase transition. This phase transition
occurs between the optimal unconstrained rate and values of ϵ small enough such
that the privacy constraint causes a worse rate. Comparing to the testing rates of
Figures 5.1, we see that the cost of privacy for estimation is larger for “intermediate”
to “small” values of ϵ, where the slope is much steeper for estimation, up until the
“very small” values of ϵ, where both the testing and estimation minimax rates no
longer tend to zero, which occurs for ϵ À 1{p

?
mnq.

Lastly, as in the case of bandwidth constraints, there is a benefit to shared ran-
domness, strictly for moderate to large values of ϵ. [75, 44] study interactive versus
non-interactive protocols and finds a difference in terms of minimax performance
between the two in the local differential privacy setting. Interestingly, for n “ 1
(which yields the local differential privacy setting), we find the similar minimax rates
for nonparametric goodness-of-fit testing in the large privacy-budget regimes, for the
shared randomness and local randomness protocols, as they do for interactive and
non-interactive protocols, whenever ϵ is in the high-budget regime. Although they
study a different model, observations from smooth densities; it is interesting to see that
the same rates seem to be attainable without sequential interaction, by using shared
randomness instead. We note here that, when sequential- or interactive protocols
are allowed, shared randomness can be employed in particular. In real applications
without interaction, one should always use shared randomness if at all possible.
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5.3.1 Proof of Theorem 5.4

In a similar manenr to the proof the nonparametric testing rate under bandwidth
constraints, we will make extensive use of the wavelet transform, which allows the
tools of Chapter 2 and Chapter 3 to apply. We note that a wavelet basis is taken
for convenience and other orthonormal bases for L2r0, 1s, such as Fourier- or spline
bases would work as well. We separate the proof of the theorem into proving upper-
and lower bounds. Before delving into the proof of the upper- and lower bounds, we
introduce some notation.

We consider a smooth orthonormal wavelet basis tψli : l P N0, i “ 0, 1, . . . , 2l ´ 1u.
See Section 5.5.3 for a brief introduction of wavelets and collection of properties used
in this proof.

For L P N, let VL “ tψli : l ď L, i “ 0, 1, . . . , 2l ´ 1u and define νL “
řL

l“0 2
l. For

f P L2r0, 1s, let fL denote the projection of f onto VL, i.e.

fL “

L
ÿ

l“0

2l´1
ÿ

i“0

f̃liψli,

with f̃li :“
ş

fψli. A slight difference with the approach taken in the case of band-
width constraints, is that the wavelet transform is to be applied at the level of each
observation. That is, consider

X̃
pjq

lk;i :“

ż 1

0

ψlkdX
pjq

t;i , for i “ 1, . . . , n.

For the coefficients at resolution level L, write X̃
pjq

L;i “ pX̃
pjq

L0;i, . . . , X̃
pjq

Lp2L´1q;i
q P R2L

and let X̃
pjq

L1:L;i denote the concatenated coefficients from resolution level L1 ă L

up to resolution level L, i.e. X̃
pjq

L1:L;i “ pX̃
pjq

L1;i, . . . , X̃
pjq

L;iq P R2L`1
´2L

1`1

. The vector

X̃
pjq

0:L;i :“ pX̃
pjq

0;i , X̃
pjq

1;i , . . . , X̃
pjq

L;iq follows the dynamics

X̃
pjq

0:L;i “ f̃L ` Z
pjq

i , (5.24)

where Z
pjq

i „i.i.d. Np0, IνL
q, j “ 1, . . . ,m, and f̃L :“ pf̃liql“0,...,L; i“0,...,2l´1. Further-

more, let X̃
pjq

lk “ pX̃
pjq

lk;iqi“1,...,n and X̃
pjq

L1:L “ pX̃
pjq

L1:L;iqi“1,...,n.

The existence of a sequence of pϵ, δq-DP consistent tests: The wavelet coefficients

X̃
pjq

0:L;i corresponding to the observation X
pjq

i , effectively place us in the many-normal-

means setting of Chapters 2 and 3, with d “ 2L. For transcripts Y
pjq

L generated
according to

Y
pjq

L |pXpjq, Uq „ Kj
´

¨|X̃
pjq

0:L, U
¯

,

a change in one datum X
pjq

i translates to a change in X̃
pjq

0:L;i only, which means that
the privacy preserving mechanisms of Chapter 3 apply after the wavelet transform
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and truncation up to resolution level L. Theorem 3.2 yields that, for L P N and
α P p0, 1q, there exists a distributed pϵ, δq-differentially private, shared randomness
testing protocol

Tα;L ” tTα;L, tK
jumj“1, pU ,U ,PU qu (5.25)

such that P0Tα;L ď α and furthermore the condition

›

›

›
f̃L

›

›

›

2

2
ě Cα log6p2LNq

˜

2L

mn
?
nϵ2 ^ 1

?
nϵ2 ^ 2L

ľ

˜ ?
2L

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

,

implies that Pf p1 ´ Tα;Lq ď α. For local randomness protocols, the same is true
whenever

›

›

›
f̃L

›

›

›

2

2
ě Cα log6p2LNq

˜

2p3{2qL

mnpnϵ2 ^ 2Lq

ľ

˜ ?
2L

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

.

Next, we show that for f P Hs,R
Cαρ, }f̃L}22 satisfies the above lower bounds for some

L P N.

In view of pa` bq2{2 ´ b2 ď a2,

}fL}2L2
ě

}f}2L2

2
´ }f ´ fL}2L2

.

Furthermore, f P Hs,R
Cαρ implies that

}f´fL}2L2
“

ÿ

ląL

2l´1
ÿ

k“0

f̃2lk ď 2´2Ls
ÿ

ląL

2l´1
ÿ

k“0

f̃2lk2
2ls ď

}f}2Hs

22Ls
ď

R2

22Ls
and }f}2L2

ě C2
αρ

2.

Consequently, in view of Plancharel’s theorem and taking L “ 1 _ r´ 1
s log2 ρs,

}f̃L}22 “ }fL}2L2
ě ρ2C2

α{2 ´R22´2Ls ě ρ2pC2
α{2 ´R2q.

Consequently, whenever ρ satisfies either

ρ2 Á

˜

1 _ ρ´1{s

mn
?
nϵ2 ^ 1

a

nϵ2 ^ p1 _ ρ´1{sq

ľ

˜

a

1 _ ρ´1{s

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

, (5.26)

in the case of shared randomness, or

ρ2 Á

˜

p1 _ ρ´1{sq3{2

mnpnϵ2 ^ p1 _ ρ´1{sqq

ľ

˜

a

1 _ ρ´1{s

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

, (5.27)

in the case of local randomness, we have that for all MN " log6p2LNq,

sup
fPHs,R

Cαρ

pE0Tα;L ` Ef p1 ´ Tα;Lqq ď 2α
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for N large enough since p
C2

α

2 ´R2q tends to zero as Cα Ñ 8. Since α is arbitrary, it
follows that

inf
TPT¨pϵ,δq

RpHs,R
MNρ, T q Ñ 0

for both classes of shared randomness protocols and local randomness protocols when
MN " log6p2LNq, whenever ρ satisfies (5.26) or (5.27), respectively.

The testing risk lower bound for pϵ, δq-DP tests:

Consider for L P N the linear operator ΨL : R2L Ñ L2r0, 1s defined by

ΨLf̃
L “

2L´1
ÿ

i“0

f̃iψLi, (5.28)

for f̃L “ pf̃0, . . . , f̃2L´1q P R2L . Since ΨL is measurable, any probability distribution

πL on R2L , πL ˝ Ψ´1
L defines a probability measure on the Borel sigma algebra of

L2r0, 1s. This means that the testing risk is lower bounded as follows

RpHs,R
cαρ, T q ě P0pT “ 1q `

ż

Pf pT “ 0qdπL ˝ Ψ´1pfq ´ πL

´

f̃ P R2L : ΨLf̃ R Hs,R
cαρ

¯

.

The likelihood ratio
dPf̃

dP0
pX

pjq

i q with f “ ΨLf̃ equals

exp

ˆ
ż 1

0

fdX
pjq

t;i ´
1

2
}f}22

˙

“ exp

ˆ

pf̃qJX̃
pjq

L;i ´
1

2
}f̃L}22

˙

“: Lf̃ pX̃
pjq

L;iq,

where X̃
pjq

L;i “ p
ş1

0
ψL0ptqdX

pjq

t , . . . ,
ş1

0
ψLp2L´1qptqdX

pjq

t q P R2L . That is, under P0,

Lf̃ pX̃
pjq

L;iq is equal in distribution to the likelihood ratio

dN
´

f̃L, I2L
¯

dN p0, I2Lq
.

Since the observations given f̃L are i.i.d., restricting to the above Bayes risk effectively
puts us in the setting of Section 2.3 with d “ 2L. By Lemma 2.17, if L À logpNq,

there exists a symmetric, idempotent matrix Γ P R2Lˆ2L such that for πL “ Np0,Γq

with Γ “
?
cαρ2

2L
Γ P R2Lˆ2L , it holds that

RpHs,R
cαρ, T q ě α ´ πL

´

f̃ P R2L : ΨLf̃ R Hs,R
cαρ

¯

, (5.29)

as long as ρ satisfies

ρ2 ď cα

˜

2L

mn
?
nϵ2 ^ 1

?
nϵ2 ^ 2L

ľ

˜ ?
2L

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸
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in the case of shared randomness protocols or

ρ2 ď cα

˜

2p3{2qL

mnpnϵ2 ^ 2Lq

ľ

˜ ?
2L

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

in the case of local randomness protocols, and cα ą 0 small enough in both cases. The
choice minimizing the left-hand side whilst also satisfying the prior mass requirement
and L À logpNq, is shown below to be L “ 2_rlog2 ρ

´1{ss. The condition L À logpNq

follows if ρ satisfies (5.20) or (5.21). We verify the prior mass requirement further
down below. The choice of L “ 2 _ rlog2 ρ

´1{ss yields that if

ρ À

˜

1 _ ρ´1{s

mn
?
nϵ2 ^ 1

a

nϵ2 ^ p1 _ ρ´1{sq

ľ

˜

a

1 _ ρ´1{s

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

, (5.30)

in the case of shared randomness, or

ρ À

˜

p1 _ ρ´1{sq3{2

mnpnϵ2 ^ p1 _ ρ´1{sqq

ľ

˜

a

1 _ ρ´1{s

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

, (5.31)

in case of local randomness, the corresponding class T¨ pϵ, δq is such that

inf
TPT¨pϵ,δq

RpHs,R
MNρ, T q Ñ 0

for any sequence MN Ñ 0.

It remained to bound the prior mass term in (5.29) for L “ 2 _ rlog2 ρ
´1{ss. That is,

we will show that

πL

´

f̃ P R2L : }ΨLf̃}2L2
ě cαρ

2, }ΨLf̃}2Hs ď R2
¯

ě 1 ´ α{2, (5.32)

for all n large enough. Note that for all L P N, }ΨLf̃}2Hs ď 22Ls}ΨLf̃}L2
. Conse-

quently, using Plancharel’s theorem, we obtain that the left-hand side of (5.32) is
bounded from below by

πL

´

f̃ P R2L : cαρ
2 ď }f̃}22 ď 2´2LsR2

¯

ě Pr
`

cαρ
2 ď ZJΓZ ď R2ρ2

˘

“ Pr

ˆ

?
cα2

L ď ZJΓZ ď
R2

?
cα

2L
˙

, (5.33)

where Z is a 2L-dimensional standard normal vector. Since the matrix Γ is symmetric,
idempotent and has rank proportional to 2L, Lemma 3.28 yields that the right-hand
side of the above display is bounded from below by

1´ exp
´

´C2L
?
cα ´ 1 ´ 0.5 log cα

4

¯

´ exp
´

´C2L
R2{

?
cα ´ 1 ´ 0.5 log

`

R4{cα
˘

4

¯

,
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for a universal constant C ą 0. The above expression can be set arbitrarily close to
1 per small enough choice of cα ą 0, verifying the prior mass condition.

In summary:

Putting everything together, we have obtained the result of the theorem whenever (5.26)
and (5.30) hold in the case of shared randomness protocols, or (5.27) and (5.31) in
case of local randomness protocols. That is, when

ρ —

˜

1 _ ρ´1{s

mn
?
nϵ2 ^ 1

a

nϵ2 ^ p1 _ ρ´1{sq

ľ

˜

a

1 _ ρ´1{s

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

,

in the case of shared randomness, or

ρ —

˜

p1 _ ρ´1{sq3{2

mnpnϵ2 ^ p1 _ ρ´1{sqq

ľ

˜

a

1 _ ρ´1{s

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

,

in the case of local randomness protocols, we obtain the statement of the theorem.
A straightforward calculation yields the corresponding expressions of (5.20), (5.21)
and (5.22) for ρ2.

5.4 Adaptive nonparametric methods under privacy
constraints

In the previous section, minimax (up to a poly-log factor) optimal pϵ, δq-DP dis-
tributed testing protocols Tα;L were derived, where the choice of L yielded the optimal
performance. This optimal choice of L was contingent on the hyperparamter s ą 0,
the true smoothness of the signals in the alternative class.

In many settings, the true underlying smoothness of a signals is not known in ad-
vance and it is desirable in these cases to consider testing risk for various levels of
smoothness. In such cases, it makes sense to consider the minimax testing risk

sup
sPrsmin,smaxs

R
´

Hs,R
MN,sρs

, T
¯

,

for certain predetermined values 0 ă smin ă smax ă 8. Here, we consider separa-
tion rates ρs depending on the underlying smoothness. In the case that s “ smin,
which results in a relatively larger separation rate than when (for example) s “ smax.
The results of the previous section indicate that the rate ρsmin

can be attained (up
to a poly-logarithmic factor) by a pϵ, δq-DP distributed protocol when ρsmin

satis-
fies (5.20), (5.21) and (5.22) with s “ smin. However, in the case that the true
smoothness s is larger than smin we would like to attain the smaller of the two rates
ρs.
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In this section, it is shown that adaptation under pϵ, δq-differential privacy constraints,
adaptive testing is possible at the cost of at most a logarithmic factor in N . Specifi-
cally, by deriving tests that adapt to the optimal rate (up to a poly-logarithmic factor)
established in the previous section, we prove the following theorem.

Theorem 5.5. Let 0 ă smin ă smax ă 8, R ą 0 be given and consider sequences of
natural numbers m ” mN , n “ N{m, positive numbers ϵ ” ϵN in ppmnq´1, 1s and
δ ” δN — pmnq´p for some constant p ě 2. Consider for every s P rsmin, smaxs a
sequence of nonnegative ρs satisfying (5.20). Then, there exists a shared randomness
distributed pϵ, δq-differentially private protocol TSR such that

sup
sPrsmin,smaxs

R
´

Hs,R
CMN,sρs

, TSR

¯

Ñ 0

whenever MN,s " logpspNq, where ps ď 11{4 is a constant depending only on s ą 0.
Furthermore, whenever each ρs satisfies (5.21) when s ą 1{4 or (5.22) when s ď 1{4,
there exists a local randomness distributed pϵ, δq-differentially private protocol TLR

sup
sPrsmin,smaxs

R
´

Hs,R
CMN,sρs

, TLR

¯

Ñ 0,

whenever MN,s " logpspNq where ps is a constant depending only on s ą 0.

Proof. We start by introducing the notation Ls “ ts´1 log2p1{ρsqu _ 1. Define fur-
thermore C :“ tLsmin , . . . , Lsmaxu and note that Ls P C for all s P rsmin, smaxs and
|C| ď Csmax logN for some constant Csmax ą 0 depending only on smax, whenever ρs
satisfies the conditions of the theorem.

The adaptive test we construct can be seen as the maximum of the tests Tα;Ls
consid-

ered in (5.25) in addition to a Bonferroni correction to compensate for the increasing
Type I error resulting from taking the maximum of tests. To be precise, let ϵ1 “ ϵ{|C|

and δ1 “ δ{|C|. For every s P rsmin, smaxs and Ls P C, we release the pϵ1, δ1q-DP tran-

scripts pY
pjq

Ls
qjPrms corresponding to the rate-optimal test TLs

of the previous section
(i.e. as in (5.25)). The full collection of transcripts received is

!

pY
pjq

Ls
qjPrms : Ls P C

)

,

which can be generated through independent noise mechanisms, is pϵ, δq-DP (see e.g.
Theorem 3.16 in [82]).

Next, we discuss the construction of the test TLs
for each Ls P C. What is the optimal

test depends on whether there is access to shared randomness or not, so we consider
these cases separately. We recall the notation νL :“

řL
l“0 2

l.

An adaptive shared randomness protocol: For νLs{
?
mn ď ϵ1, let pY

pjq

Ls
qjPrms

be generated by (3.21) with as the underlying observations the wavelet coefficients
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X̃
pjq

0:Ls
, i.e. setting d “ νLs

and compute the test φϵ1

τ defined in (3.22) for all τ P T,

where the latter collection is given (3.23) with M “ R. For the critical value of φϵ1

τ ,
setting J “ 1{p|C||T|q results in the test

TLs
:“ max

τPT
φϵ1

τ (5.34)

having Type I error less than α{|C| by Lemma 3.8 for arbitrary α P p0, 1q. By the
proof of the same Lemma, the above test has Type II error of the order α whenever

›

›

›
f̃Ls

›

›

›

2

2
ě Cα log6p1 `mnq

˜ ?
2Ls

?
mnp

?
nϵ1 ^ 1q

¸

ł

ˆ

1

mn2pϵ1q2

˙

,

with Cα ě C 1
α|C| with C 1

α ą 0 large enough.

Whenever νLs{
?
mn ą ϵ1, let pY

pjq

Ls
qjPrms be generated by (3.39) (d “ νLs) with as

the underlying observations the wavelet coefficients X̃
pjq

0:Ls
. Using these transcripts,

the test T ϵ1,δ1

II as defined in (3.40) with κα “ κ1
α

a

|C|, κ1
α ą 0 has Type I error less

than α{|C| by Lemma 3.23. By Lemma 3.14 combined with Lemma 3.23, this test has
Type II error of the order κ2α{C2

α ď α whenever

›

›

›
f̃Ls

›

›

›

2

2
ě Cα

2Ls logp1 ` 2Lsnmq logp1 ` nmq

mn
a

npϵ1q2 ^ 2Ls

a

npϵ1q2 ^ 1

and Cα ě C 1
ακα Á C 1

α|C| with C 1
α ą 0 large enough.

For the distributed protocol described above, the test

T :“ max
LsPC

TLs

satisfies

E0T ` Ef p1 ´ T q ď
ÿ

LsPC
E0TLs

` Ef p1 ´ TL˚
s

q ď α ` Ef p1 ´ TLs˚ q

for any s˚ P rsmin, smaxs. This means that the test T has its Type I error bounded
by α, and its Type II error is also less than α whenever

›

›

›
f̃Ls˚

›

›

›

2

2
ě M2

N

˜

2Ls˚

mn
?
nϵ2 ^ 1

?
nϵ2 ^ 2Ls˚

ľ

˜ ?
2Ls˚

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

,

for some nonnegative sequence M2
N that is at most of the order log9{2

pNq. By the
same computation as in the proof of Theorem 5.4, the above display is satisfied when

f P Hs˚,R
MN,s˚ρs˚

with s˚ P rsmin, smaxs, s ÞÑ MN,s as in the assumptions of the theorem

and s ÞÑ ρs satisfying

ρs Á

¨

˝

1 _ ρ
´1{s
s

mn
?
nϵ2 ^ 1

b

nϵ2 ^ p1 _ ρ
´1{s
s q

ľ

¨

˝

b

1 _ ρ
´1{s
s

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

˛

‚

˛

‚,
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where the latter follows from the choice Ls “ ts´1 log2p1{ρsqu_1. Solving for ρs yields
the rates described by the theorem. Taking a positive sequence α ” αN converging
zero slow enough (depending on MN,s) completes the proof for shared randomness
protocols.

An adaptive local randomness protocol: The procedure in this case is essentially
the same as in the case of having access to shared randomness, except for using a
different testing procedure when ϵ1 is “large” relative to 2Ls , m and n. Whenever
ϵ1 ď 1{

?
n and ϵ1 ď 2Ls{

?
mn, or whenever ϵ1 ą 1{

?
n and ϵ1 ď 2Ls{p

?
mnq, set the

test TLs equal to the one computed in (5.34) and let pY
pjq

Ls
qjPrms be generated by (3.21)

with as the underlying observations the wavelet coefficients X̃
pjq

0:Ls
, i.e. setting d “ νLs

.
We note here that the kernel generating the transcripts underlying this test require
no shared randomness.

Otherwise, whenever ϵ1 ď 1{
?
n and ϵ1 ą 2Ls{

?
mn, or whenever ϵ1 ą 1{

?
n and ϵ1 ą

2Ls{p
?
mnq, let pY

pjq

Ls
qjPrms be generated by (3.43) with as the underlying observations

the wavelet coefficients X̃
pjq

0:Ls
. Using these transcripts, let TLs

“ T ϵ1,δ1

III (with d “ νLs
)

as computed in (3.45), with κα “ κ1
α

a

|C|. By Lemma 3.24, this test has level α{|C| for
κ1
α ą 0 large enough. Furthermore, by the same lemma combined with Lemma 3.15,

gives that TLs
as such has Type II error less than α whenever

›

›

›
f̃Ls

›

›

›

2

2
ě Cα|C|

2p3{2qLs logp1 ` 2Lsnmq logp1 ` nmq

mnpnpϵ1q2 ^ 2Lsq
,

which is in particular true whenever

›

›

›
f̃Ls

›

›

›

2

2
Á log3pNq logp1 ` 2LsNq logp1 `Nq

2p3{2qLs

mnpnϵ2 ^ 2Lsq
.

Since Ls “ ts´1 log2p1{ρsqu _ 1,

ρs Á

¨

˝

p1 _ ρ
´1{s
s q3{2

mnpnϵ2 ^ p1 _ ρ
´1{s
s qq

ľ

¨

˝

b

1 _ ρ
´1{s
s

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

˛

‚

˛

‚,

ensures that the test T :“ max
LsPC

TLs
has Type I and Pf -Type II error less than α

whenever f P Hs˚,R
MN,s˚ρs˚

for any s˚ P rsmin, smaxs, s ÞÑ MN,s as in the assumptions

of the theorem.

Chapter acknowledgements: The quote at the start of the chapter is taken
from [60].
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5.5 Appendix

5.5.1 Proof of the adaptation lower bounds Theorems 5.2 and 5.3

Let fL and X̃
pjq

L1:L as defined in (5.6) and (5.7), respectively. Let T “ pT,K,PU q be
a distributed testing protocol (with U degenerate in the case it is a local randomness
protocol) and fix α P p0, 1q. For given smin ă smax, consider for s P rsmin, smaxs the
map s ÞÑ ρs.

Recall that for ΨL as defined in (5.28) and any distribution πL on RνpLq, πL ˝ Ψ´1
L

defines a probability measure on the Borel sigma algebra of L2r0, 1s. Define the
mixture of the above probability measures by

Π “
1

|C0|

ÿ

LPC0

πL ˝ Ψ´1
L , (5.35)

where C0 Ď C. There exists a grid of points S Ă rsmin, smaxs such that the map
s ÞÑ Ls is a one-to-one map from S to C. Let L ÞÑ sL denote its inverse.

By the same steps as in (2.82),

sup
fPH

sL,R
cαρsL

PY
f pT “ 0q ě PY

πL
pT “ 0q ´ πL ˝ Ψ´1

L

´

f R HsL,R
cαρsL

¯

, (5.36)

for all L P C. Using the above display, we can bound the risk in the adaptive setting
from below:

sup
sPrsmin,smaxs

RpHs,R
cαρs

, T q ě
1

|C|

ÿ

LPC
RpHsL,R

cαρsL
, T q

ě PY
0 pT “ 1q ` PY

ΠpT “ 0q ´
1

|C0|

ÿ

LPC0

πL ˝ Ψ´1
L

´

f R HsL,R
cαρsL

¯

.

(5.37)

Taking πL as in the proof of Theorem 5.1, then by the same reasoning as in proof the
proof of Theorem 5.1 that the third term in the above display can be made arbitrarily
small per choice of cα for ρs satisfying (5.13)-(5.14). For the first two terms, define

LY |u
πL

:“

ż

dPY |U“u
f

dPY |U“u
0

dπLpfq
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and note that

PY
0 pT “ 1q ` PY

ΠpT “ 0q “
1

|C0|

ÿ

LPC0

ż

PY |U“u
0

´

T ` LY |u
πL

p1 ´ T q

¯

dPU puq

ě
1

|C0|

ÿ

LPC0

ż

EY |U“u
0

´

γT ` LY |u
πL

p1 ´ T q

¯

1

!

LY |u
πL

ą γ
)

dPU puq

ě γ
1

|C0|

ÿ

LPC0

ż

PY |U“u
0

´

LY |u
πL

ą γ
¯

dPU puq,

where the conditioning follows from the Markov chain structure and the inequality
holds for 0 ă γ ă 1. We can conclude that it suffices to show that for all ε ą 0,

1

|C0|

ÿ

LPC0

PpY,Uq

0

´
ˇ

ˇ

ˇ
LY |U
πL

´ 1
ˇ

ˇ

ˇ
ą ε

¯

(5.38)

can be made arbitrarily small per small enough choice of cα in order obtain the

required lower bound in (5.37). Using PpY,Uq

0 “ dPUdPY |U
0 , conditioning on the PY |U

0 -

variance of LY |u
Π with Chebyshev’s inequality and EY |U“u

0 LY |u
Π “ 1 lead to

1

|C0|

ÿ

LPC0

PpY,Uq

0

ˆ

´

LY |U
πL

´ 1
¯2

ą ε2
˙

ď
1

|C0|

ÿ

LPC0

PU
´

EY |U pLY |U
πL

q2 ą 1 ` ζ
¯

`
ζ

ε2

for all ε ą 0 and ζ ą 0. Noting that EY |U“upLY |U“u
πL q2 ě 1, sufficiently bound-

ing (5.38) follows from Markov’s inequality and showing

1

|C0|

ÿ

LPC0

ż

log
´

EY |U“upLY |U“u
πL

q2
¯

dPU puq À cα. (5.39)

Noting that EY |U“upLY |U“u
πL q2 “ Dχ2pPY |U“u

0,K ;PY |U“u
πL,K q ` 1, we can apply the argu-

ment of the proof of Theorem 2.3 for bounding the chi-square divergence, and we
obtain that for some fixed C ą 0,

log
´

EY |U“upLY |U“u
πL

q2
¯

ď

$

&

%

Ccα
n4ρ4

sL

23L
Tr pΞL,uq

2
`AL,u, if U is degenerate,

Ccα
mn3ρ4

sL

22L
Tr pΞL,uq `AL,u, otherwise,

(5.40)
where

AL,u “

m
ÿ

j“1

log

¨

˝EY pjq
|U“u

0

¨

˝E0

«

ż

dPX̃pjq

f

dPX̃pjq

0

pX̃
pjq

L qdπLpfq

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ff2
˛

‚

˛

‚

and ΞL,u “
řm

j“1 Ξ
j
L,u with Ξj

L,u “ E0E0

”

X̃
pjq

L

ˇ

ˇY pjq, U “ u
ı

E0

”

X̃
pjq

L

ˇ

ˇY pjq, U “ u
ıJ

.

Via a data processing argument (Lemma 5.5),

1

|C0|

ÿ

LPC0

ż

AL,udPU puq À max
LPC0

cαmn
2ρ4sLpb^ |C0|q

2L|C0|
.
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When U is degenerate, Lemma 5.3 implies that there exists a choice for C0 Ă C0 such
that for all L P C0,

Tr pΞL,uq
2

À

ˆ

b

|C|
^ 2L

˙2
m2

n2
.

When U is not degenerate, Lemma 5.4 implies that taking C0 “ C,

1

|C|

ÿ

LPC

mn3ρ4sL
22L

Tr pΞL,uq À max
LPC

N2ρ4sL
22L

ˆ

b

|C|
^ 2L

˙

.

Combining the above with the fact that s ÞÑ Ls “ ts´1 logp1{ρsqu _ 1 maps a grid
S Ă rsmin, smaxs one-to-one to C0 with inverse map L ÞÑ sL on C0, we obtain

1

|C0|

ÿ

LPC0

ż

log
´

EY |U“upLY |U“u
πL

q2
¯

dPU puq À cα¨

$

’

&

’

%

max
LPC

N2ρ4
sL

p b
logpnq

^2Lq
2

23L

Ž N2ρ4
sL

pb^logpNqq

m2L logpNq
,

max
LPC

N2ρ4
sL

p b
logpnq

^2Lq
22L

Ž N2ρ4
sL

pb^logpNqq

m2L logpNq
,

where the first case corresponds to a degenerate U , the latter to the general (shared
randomness) case. The conditions (5.13)-(5.14) for ρsL yield (5.39), which in turn
finishes the proof.

5.5.2 Auxiliary lemmas concerning adaptation under band-
width constraints

The following lemma controls the Type I error of the adaptive tests defined in Sec-
tion 5.2.

Lemma 5.1. Consider for L P N and a nonnegative positive integer sequence Kn,

SnpLq :“
1

?
Kn

Kn
ÿ

i“1

ζi,L

where pζ1,L, . . . , ζKn,Lq independent random variables with mean 0 and unit variance.

Assume that the random variables satisfy Cramér’s condition, i.e. for some ϵ ą 0 and
all t P p´ϵ, ϵq, i “ 1, . . . ,Kn and L P C, for some set C Ă N satisfying |C| — logpnq,

Eetζi,L ă 8.

Then for Kn " plog log nq6, it holds that

Pr

ˆ

max
LPC

|SnpLq| ě c
a

log logpnq

˙

Ñ 0

for all c ą
?
2 as n Ñ 8.
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If the random variables are i.i.d. Rademacher or are of the form

ζi,L “
1

4Q

»

–

˜

Q
ÿ

q“1

RqL

¸2

´Q

fi

fl

with R “ pR1L, . . . , RQLq independent Rademacher random variables and Q P N, the
statement holds for any sequence Kn as n Ñ 8.

Proof. By using union bounds,

Pr

ˆ

max
LPC

SnpLq ě c
a

log logpnq

˙

ď
ÿ

LPC
Pr

´

|SnpLq| ě c
a

log logpnq

¯

ď

ÿ

LPC

”

Pr
´

SnpLq ě c
a

log logpnq

¯

` Pr
´

´SnpLq ě c
a

log logpnq

¯ı

.

The proof follows by showing that SnpLq and ´SnpLq are or tend to sub-Gaussian
variables with sub-Gaussianity constant less than or equal to 1, since this allows for
bounding the above display by

2
ÿ

LPC
e´ c2

2 log logpnq À
1

plogpnqqc
2{2´1

and the result follows.

For the first statement, by Cramér’s theorem (see e.g. Theorem 7 in Section 8.2
of [165]),

Pr
´

SnpLq ě c
a

log logpnq

¯

1 ´ Φpc
a

log logpnqq
“ exp

ˆ

Op1q ¨
plog log nq3

?
Kn

˙ˆ

1 `O

ˆ

log logn
?
Kn

˙˙

Ñ 1.

Note that the above statement holds for ´SnpLq also. The statement now follows by

using 1 ´ Φpxq ď e´x2
{2.

For the second statement, note that by symmetry of the Rademacher distribution, it
suffices to consider only SnpLq. In case the ζi,L’s are i.i.d. Rademacher, note that a
Chernoff bound yields

Pr
´

SnpLq ě c
a

log logpnq

¯

ď inf
tą0

e
t2

2 ´ct
?

log logpnq “ e´ c2

2 log logpnq. (5.41)

Similarly, for the sum of Rademacher random variables, we have

E exp

ˆ

t
?
Kn

ζi,L

˙

“ E exp

˜

t

4Q
?
Kn

«

Q
ÿ

q‰q1

RqLRq1L

ff¸

ď E exp

˜

t

Q
?
Kn

«

Q
ÿ

q‰q1

RqLR
1
q1L

ff¸

,
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where the inequality follows from e.g. Theorem 6.1.1 in [210] withR1 “ pR1
1L, . . . , R

1
QLq

independent of R. The latter implies that pRqLR
1
q1Lqpq,q1qPt1,...,Qu2 itself is a vector

of independent Rademacher random variables, and consequently the above display is
further bounded by

exp

ˆ

t2QpQ´ 1q

2KnQ2

˙

ď exp

ˆ

t2

2Kn

˙

.

The proof of the last statement now follows via Chernoff bound as in (5.41).

The next lemma controls the Type 2 error of the adaptive test in the high-budget
case for the shared randomness protocol.

Lemma 5.2. Consider SIIpLsq as in (5.19) in the paper. It holds that

Ef1

!

SIIpLsq ă 2
a

log log n
)

ď α{2

whenever f P Hs,R
Cαρs

with ρ2 ě C0

a

log logpnq 2Ls

n
b

b
logpnq

^2Ls
for C0 large enough, de-

pending only on R.

Proof. The proof is similar in spirit to that of the risk bound in the finite dimensional,
non-adaptive, shared randomness setting given in Lemma 3.3.

We show below that the event

A “

!m1 ´ 1

2
?
b1

b1
ÿ

i“1

pY
pjq

II pLqqi ´ 1{2q2 ě 2
a

log logN
)

,

occurs with Pf -probability greater than 1´α{4. Since onA the condition of Lemma 3.16
is satisfied with cα,n “ 2

?
log logN and consequently, by the conclusion of Lemma 3.16,

Ef1
␣

SIIpLsq ă 2
?
log logN

(

is bounded by α{2.

Following the proof of Lemma 3.3 (with d “ νLs
, considering the νLs

dimensional
vector fνLs , and taking Nα “ 2

?
log logN), and noting that for C2

0 ą 4R2

}f̃Ls}22 ě }f}22{2 ´R22´2Lss Á
C02

Ls
a

log logpNq

2N
b

b
logpNq

^ 2Ls

Á
C02

Ls
a

log logpNq

N
b

b1 m1

m

,

we get that

Ef1Ac ď Pr

˜

m1 ´ 1

24
?
b1

b1
ÿ

i“1

min

"

C0

?
log logN2LsZ2

i

2m1
?
b1}Z}22

, 1

*

ď 2
a

log logN

¸

. (5.42)

Considering the intersection with the event t}Z}22 ď k2Lsu for some large enough
k ą 0, and noting that by Lemma 3.27,

Pr

˜

max
1ďiďb1

Z2
i ě

2m1
?
b1k

C0

?
log logN

¸

ď 2b1 exp

˜

´
m1

?
b1k

2C0

?
log logN

¸

“ op1q,
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the right-hand side of (5.42) is further bounded by

Pr

˜

b1
ÿ

i“1

Z2
i ď

96b1m1k

C0pm1 ´ 1q

¸

` op1q ` α{8 ď α{4,

where the last inequality holds for large enough choices m1 :“ mpb^logpnqq

logpnq
, b1 :“

mb
m1|C|

^ νL and large enough choice of C0 (depending on k), see e.g. (3.7) in the proof

of Lemma 3.3, which finishes the proof of our statement.

Next we provide the lemmas for the lower bound. From now on in this section,

we consider the setting of Section 5.2. That is, let X̃
pjq

L , X̃
pjq

1:L denote the wavelet
coefficients of Xpjq as in (5.7). Define in addition the matrices

Ξj
L,u “ E0E0

”

X̃
pjq

L

ˇ

ˇY pjq, U “ u
ı

E0

”

X̃
pjq

L

ˇ

ˇY pjq, U “ u
ıJ

,

Ξj
L1:L,u “ E0E0

”

X̃
pjq

L1:L

ˇ

ˇY pjq, U “ u
ı

E0

”

X̃
pjq

L1:L

ˇ

ˇY pjq, U “ u
ıJ

,

ΞL,u :“
řm

j“1 Ξ
j
L,u and Ξu “

řm
j“1 Ξ

j
Lmin:Lmax,u

. The lemma below allows for extend-
ing the data processing inequality of Lemma 2.11 to the adaptive local randomness
case, in which extra demands are placed on the communication budget in terms of
the budget needing to cover the coordinates corresponding to each resolution level.

Lemma 5.3. Suppose Y pjq takes values in a space with cardinality at most 2b P N,
for j “ 1, . . . ,m and let C “ tLmin, . . . ,Lmaxu, for some Lmin ă Lmax P N. There
exists C0 Ă C such that

Tr pΞL,uq À

ˆ

b

|C|
^ 2L

˙

m

n

for all L P C0.

Proof. Define ∆L “ Tr pΞL,uq and let ℓ : t1, . . . , Lmax ´ Lmin ` 1u Ñ C a map that
respects the ordering of the ∆L’s in the sense that

∆ℓpiq ď ∆ℓpkq if i ď k.

Let C0 denote the first tLmax´Lmin`1
2 u elements of the collection t∆ℓ1,∆ℓp2q, . . . ,∆ℓpLmax´Lmin`1qu.

For all L˝ P C,

Tr pΞL˝,uq ď
2

|C|

ÿ

LPCzC0

Tr pΞL,uq .

By definition of the trace of a matrix,
ř

L TrpΞL,uq “ TrpΞLmin:Lmax,uq. By Lemma 2.11,

Tr pΞLmin:Lmax,uq “

m
ÿ

j“1

Tr
´

Ξj
Lmin:Lmax,u

¯

ď
2 logp2qmb

n
.
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Combining the above two displays, we obtain that

Tr pΞL˝,uq À
mb

np|C|
.

By an application of Lemma 2.11 and a straightforward computation as in the proof
of Lemma 2.11,

Tr pΞL˝,uq ď
m

n
2L

˝

. (5.43)

Combining the two bounds for Tr pΞL˝,uq gives the result.

The next lemma applies to the adaptive shared randomness setting. The bound below
is slightly more relaxed than the previous one, which relates to the local randomness
setting. The reason for this is the fact that in the shared randomness setting, the
hyperprior cannot be chosen in an adversarial way because of the shared randomness
draw essentially allowing multiple (coordinated) protocols across the m machines.

Lemma 5.4. With the notation as in the proof of Theorem 5.2, it holds that

1

|C|

ÿ

LPC

N3ρ4sL
m22L

Tr pΞL,uq À max
LPC

N2ρ4sL
22L

ˆ

b

|C|
^ 2L

˙

.

Proof. Similarly to the proof of Lemma 5.3, we note that by the linearity of the trace,

ÿ

LPC
Tr pΞL,uq “ Tr pΞuq ,

where Ξu “
řm

j“1 Ξ
j
Lmin:Lmax,u

. Lemma 2.11 yields Tr pΞuq ď 2 logp2q bm
n . Otherwise,

applying Lemma 2.11 yields Tr pΞL,uq ď 2Lm
n . Combining these two inequalities yields

the result:

1

|C|

ÿ

LPC

N3ρ4sL
m22L

Tr pΞL,uq ď
1

|C|

ÿ

LPC

N2ρ4sL
22L

´ n

m
Tr pΞL,uq

ľ

2L
¯

ď max
L˚

N2ρ4
s˚
L

22L˚

˜

n

m

1

|C|

ÿ

LPC
Tr pΞL,uq

ľ

2L
˚

¸

À max
L˚

N2ρ4
s˚
L

22L˚

ˆ

b

|C|

ľ

2L
˚

˙

.

Whereas in the nonadaptive setting of Theorem 2.3 and Theorem 5.1 the local “chi-
square” based terms need no special data processing treatment, it does in the adaptive

case. For each of the logpNq resolution levels L, information on the norm of X̃
pjq

L is
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communicated. Using b — logpNq to this without loss (compared to Theorem 5.1)
turns out to be fundamental, as is the content of the lemma below. The proof of the

lemma is based on exploiting the fact that even though 2´L{2p}
a

n{mX̃
pjq

L }22 ´ 2Lq

is sub-exponential, the fact that it tends to a sub-Gaussian random variable can be
exploited whenever the communication budget is small enough.

Lemma 5.5. Let πL as in the proof of Theorem 5.2, with ρs “ ρsL satisfying (5.14)
or (5.13). Furthermore, let

AL,u “

m
ÿ

j“1

log

¨

˝EY pjq
|U“u

0

¨

˝E0

«

ż

dPX̃pjq

f

dPX̃pjq

0

pX̃
pjq

L qdπLpfq

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ff2
˛

‚

˛

‚.

Then for arbitrary C Ă N,

1

|C|

ÿ

LPC

ż

AL,udPU puq À max
LPC

cαmn
2ρ4sLpb^ |C|q

2L|C|
.

Proof. Recalling the notation from Section 5.1.1, we shall write

LπL
pX̃

pjq

L q “

ż

Lf pX̃
pjq

L qdπLpfq

with

Lf pX̃
pjq

L q :“
dPX̃pjq

f

dPX̃pjq

0

pX̃
pjq

L q “ enf
JX̃

pjq

L ´ n
2 }f}

2
2 .

Note that, using logpxq ď x ´ 1, E0LπL
pX̃

pjq

L q “ 1 and the fact that by the law of
total probability

EY pjq
|U“u

0 E0

„

LπL
pX̃

pjq

L q

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ȷ

“ 1,

we obtain that

AL,u ď

m
ÿ

j“1

EY pjq
|U“u

0

˜

E0

„

LπL
pX̃

pjq

L q ´ 1

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ȷ2
¸

. (5.44)

We work out the case where π “ Np0, ϱ2sI2Lq, the case where π “ Np0, ϱ2sΓq with
}Γ} — 1 follows similarly with additional bookkeeping. Since f „ Np0, ϱ2sI2Lq with

ϱs “ c
1{4
α ρs{2L{2,

LπL
pX̃

pjq

L q “
2L´1

Π
i“0

ż

enfiX̃
pjq

Li ´ 1
2 pn`ϱ´2

s qf2
i

a

2πϱ2s
dfi “

e
nϱ2

s

}
?

nX̃
pjq
L

}22
2p1`nϱ2sq

p1 ` nϱ2sq2
L{2

(5.45)
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where the last equality follows by the substitution u “ fi
a

1 ` nϱ2s and completing

the square. Taking the logarithm and using that p1`xq logp1`xq

x ą 1 for x ą 0, we find

V
pjq

L :“ nϱ2s
}
?
nX̃

pjq

L }22

2p1 ` nϱ2sq
´ 2L´1 logp1 ` nϱ2sq ď

nϱ2s
2

´

}
?
nX̃

pjq

L }22 ´ 2L
¯

(5.46)

Therefore, using (5.45), Taylor expanding, pa ` bq2 ď 2a2 ` 2b2 and (5.46), we can
upper bound (5.44) by

2
m
ÿ

j“1

EY pjq
|U“u

0

˜

E0

„

V
pjq

L

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ȷ2
¸

` 2
m
ÿ

j“1

EY pjq
|U“u

0 pDjq2, (5.47)

with

Dj “ E0

«

8
ÿ

k“2

nkϱ2ks
2kk!

ˇ

ˇ

ˇ
}
?
nX̃

pjq

L }22 ´ 2L
ˇ

ˇ

ˇ

k
ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ff

.

We deal with the two terms in (5.47) separately. Since conditional expectation con-
tracts the L2-norm,

m
ÿ

j“1

EY pjq
|U“u

0 pDjq2 À m ¨

8
ÿ

k“2

8
ÿ

i“2

nkc
k{2
α ρ2ks

2k2kLs{2k!

nic
i{2
α ρ2is

2i2iLs{2i!
EW i`k

where W
d
“ 2´L{2

´

}
?
nX̃

pjq

L }22 ´ 2L
¯

. Furthermore, since }
?
nX

pjq

L }22 „ χ2
2L is 2L{2-

sub-exponential, EW i`k ď Ck`ipi ` kqi`k, where C ą 0 is a constant (see e.g.
Proposition 2.7.1 in [210]). Then in view of pi ` kqi`k ď 2i`ki!k!, we the above

display is Op
c2αn4ρ8

s

22Ls
q whenever

c2αn4ρ8
s

C222Ls
ă 1. This is certainly the case when ρ2s À

ˆ ?
m logpmnq

mn
?

b^logpnmq

˙
2s

2s`1{2

and mb Á logpnmq, which yields that

m
ÿ

j“1

EY pjq
|U“u

0 pDjq2 À
c2αn

2ρ4s
m2Ls{2

¨O

ˆ

logpmnq

mpb^ logpnqq

˙

.

It remained to deal with the first term in (5.47), where we proceed by a data processing
argument. When b ě logpnq,

2
m
ÿ

j“1

EY pjq
|U“u

0

˜

E0

„

V
pjq

L

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ȷ2
¸

ď 2
m
ÿ

j“1

EX̃pjq

0

´

V
pjq

L

¯2

ď
cαmn

2ρ4s
2Ls

,

in which case the result follows.
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We continue with the case where b ă logpnq, which implies |Ypjq| ď 2logpnq. We bound
the average of the first terms in (5.47) over C, by

1

|C|

ÿ

LPC

m
ÿ

j“1

n2ρ4s
2Ls

EY pjq
|U“u

0

˜

E0

„

G
pjq

L

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ȷ2
¸

ď (5.48)

max
LPC

n2ρ4sL
2L|C|

m
ÿ

j“1

EY pjq
|U“u

0 TrpM pjqpY pjqqq,

whereM pjqpyq “ E0

„

G
pjq

C

ˇ

ˇ

ˇ

ˇ

Y pjq “ y, U “ u

ȷ

E0

„

G
pjq

C

ˇ

ˇ

ˇ

ˇ

Y pjq “ y, U “ u

ȷJ

, G
pjq

C “ pG
pjq

L qLPC ,

and G
pjq

L “

´

nρ2
s

2Ls{2

¯´1

V
pjq

L . We show below that for all v “ pvLqLPC of unit norm

EY pjq
|U“u

0 xvC , G
pjq

C y2 ď b, (5.49)

which by taking v “ G
pjq

C {}G
pjq

C }2 yields that (5.48) is Opmaxs
mn2ρ4

s

2Ls |C|
bq as required.

Therefore, it remains to verify (5.49). For any λ P R, independence and (5.46) yield

EXpjq

0 eλv
JG

pjq

C ď Π
LPC

EXpjq

0 e
λ

2Ls{2 vL
2L´1
ř

i“0
pX̃2

Li´1q

.

When |λ|

2¨2Ls{2 vL ď 1
4 , the latter can be further bounded by

Π
LPC

exp
`

λ2v2L
˘

“ exp
`

λ2
˘

,

see e.g. Lemma 12 in [192]. In view of 0 ď Kpy|Xpjq, uq ď 1 and the previously shown

sub-exponential behavior of xvC , G
pjq

C y, we get that

PY pjq
|U“upyqE0

„

xvC , G
pjq

C y

ˇ

ˇ

ˇ

ˇ

Y pjq “ y, U “ u

ȷ

“ EXpjq

0 xvC , G
pjq

C yKpy|Xpjq, uq ď EXpjq

0

ż 8

0

1

!

|xvC , G
pjq

C y| ą t
)

Kpy|Xpjq, uqdt

ď

ż 8

0

min
!

PXpjq

0

´

|xvC , G
pjq

C y| ą t
¯

,PY pjq
|U“upyq

)

dt ď e´t0 ` t0PY pjq
|U“upyq.

Taking t0 “ ´ logpPY pjq
|U“upyqq yields

E0

„

xvC , G
pjq

C y

ˇ

ˇ

ˇ

ˇ

Y pjq “ y, U “ u

ȷ

ď ´2 logpPY pjq
|U“upyqq _ p1 ´ logpPY pjq

|U“upyqqq.

(5.50)
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Furthermore, for λy P R and y satisfying

´2Ls{2`2 ď λy “ E0

„

xvC , G
pjq

C y

ˇ

ˇ

ˇ

ˇ

Y pjq “ y, U “ u

ȷ

ď 2Ls{2`2, (5.51)

the argument of Lemma 2.11 yields

E0

„

xvC , G
pjq

C y

ˇ

ˇ

ˇ

ˇ

Y pjq “ y, U “ u

ȷ2

ď ´ log
´

PY pjq
|U“upyq

¯

. (5.52)

Note, that if (5.51) does not hold, then in view of (5.50), ´ logpPY pjq
|U“upyqq ě

2Ls{2`1.

Let us write py “ PY pjq
|U“upyq and define Ypjq

˚ “ ty P Ypjq : logp1{pyq ď 2Ls{2`2u.
Since x ÞÑ x log2p1{xq is increasing on p0, e´2q, it holds that

py log
2
p1{pyq ď e´2Ls{2`2

`pLs`4q logp2q

for y P pYpjq
˚ qc. Then, in view of (5.50) and (5.52) we get that

ÿ

yPYpjq

pyE0

„

xvC , G
pjq

C y

ˇ

ˇ

ˇ

ˇ

Y pjq “ y, U “ u

ȷ2

ď
ÿ

yPYpjq

˚

py logp1{pyq ` 4
ÿ

yPpYpjq

˚ qc

py log
2
p1{pyq

À log |Ypjq| ` 2be´2Ls{2`2
`pLs`4q logp2q À b,

concluding the proof of (5.49) and hence the lemma.

5.5.3 Definitions and notations for wavelets

In this section we briefly introduce wavelets and collect some properties used in the
article. For a more detailed and elaborate introduction of wavelets we refer to [115,
106].

In our work we consider the Cohen, Daubechies and Vial construction of compactly
supported, orthonormal, N -regular wavelet basis of L2r0, 1s, see for instance [64].
First for any N P N one can follow Daubechies’ construction of the father ϕp.q and
mother ψp.q wavelets with N vanishing moments and bounded support on r0, 2N ´1s

and r´N ` 1, N s, respectively, see for instance [70]. The basis functions are then
obtained as

␣

ϕj0m, ψjk : m P t0, . . . , 2j0 ´ 1u, j ą j0, k P t0, . . . , 2j ´ 1u
(

,

with ψjkpxq “ 2j{2ψp2jx´kq, for k P rN´1, 2j´N s, and ϕj0kpxq “ 2j0ϕp2j0x´mq, for
m P r0, 2j0 ´ 2N s, while for other values of k and m, the basis functions are specially
constructed, to form a basis with the required smoothness property. For notational
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convenience we take j0 “ 0 and denote the father wavelet by ψ00. Then the function
f P L2r0, 1s can be represented in the form

f “

8
ÿ

j“j0

2j´1
ÿ

k“0

fjkψjk,

with fjk “ xf, ψjky. Note that in view of the orthonormality of the wavelet basis the
L2-norm of the function f is equal to

}f}22 “

8
ÿ

j“j0

2j´1
ÿ

k“0

f2jk.

Next we give an equivalent definition of Sobolev spaces using wavelets. Let us define
the norm for s P p0, Nq as

}f}2Hs “
ÿ

jěj0

22js
2j´1
ÿ

k“0

f2jk.

Then the Sobolev space Hspr0, 1sq and Sobolev ball Hs,Rpr0, 1sq of radius R ą 0 are
defined as

Hs “ tf P L2r0, 1s : }f}Hs ă 8u, and Hs,Rpr0, 1sq “ tf P L2r0, 1s : }f}Hs ď Ru,

respectively. The above definition of the Sobolev space and norm is equivalent to
the classical one based on the weak derivatives of the function (see e.g. Chapter 4
in [106]). Similarly, we can define s-smooth Hölder function spaces using wavelets.
Consider the norm

}f}Cs :“ }f}8 ` sup
jě0

2js`1{2 max
0ďkď2j´1

|fjk|,

which is equivalent to the s-smooth Hölder norm defined through the modulus of
smoothness (e.g. Chapter 4 in [106]). The Hölder space Cspr0, 1sq and Hölder ball
Cs,Rpr0, 1sq of radius R ą 0 are defined as

Cs “ tf P L2r0, 1s : }f}Cs ă 8u, and Cs,Rpr0, 1sq “ tf P L2r0, 1s : }f}Cs ď Ru,

respectively.



Chapter 6

Statistical equivalence under
communication constraints

“Oh, my distances are very impossible to calculate; you know that. But
bounds are feasible. And for the Bayes risk, I know that just the metric
structure does not catch everything, but I don’t know what else to look at,
except, as you said, calculations.” - Lucien Le Cam

In this final chapter of the thesis, we explore the degree to which the results derived in
this thesis extend beyond the many-normal-means model and the infinite dimensional
signal-in-white-noise model studied in the earlier chapters. To do so, we shall leverage
existing results concerning the comparison of models, called Le Cam theory. This
allows us to obtain minimax rates for goodness-of-fit testing in other models, such as
the multinomial model, nonparametric regression and nonparametric density testing.

Le Cam theory is a general framework for decision problems. At the core of this
theory is the notion of a distance between statistical models1, known as Le Cam’s
deficiency distance. The objective of this distance is to quantify the extent to which
a complex statistical model can be approximated by a more simple one. If a model is
close to another model in Le Cam’s distance, then there is a mapping of solutions to
decision theoretic problems from one model to the other. Whenever the risk of the
decision problem is bounded, this means that similar performance can be achieved
in the two models. Consequently, studying the complex model can be reduced to
studying the corresponding simple model. For an extensive introduction to Le Cam
theory, see e.g. [137, 186]. For a brief introduction; [138, 151].

It has been a long-standing and persistent finding that models that describe seem-
ingly very different data and dynamics, can still be subject to the same phenomena,

1Or their corresponding statistical experiments, see Section 6.1.
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such as the asymptotic minimax risk coinciding as the number of samples grows.
This finds mathematical substantiation using the Le Cam distance: if the Le Cam
distance between models tends to zero as e.g. the size of the data grows, they are
called asymptotically equivalent. For parametric models, asymptotic equivalence has
been established for a huge variety of models, in particular models that are “lo-
cally asymptotically normal”, see for instance [138]. Starting in 1996, asymptotic
equivalence between the nonparametric signal-in-white-noise model studied in Chap-
ter 5 to observing i.i.d. draws from a density function or a nonparametric regression
model has been established by [40, 161]. Since then, asymptotic equivalence to the
signal-in-white-noise model has been established for many models, such as nonpara-
metric generalized linear models [109], nonparametric regression with non-identically
distributed data [124], nonparametric regression with non-Gaussian errors [110], non-
parametric regression with random design [42], nonparametric drift diffusion mod-
els [71, 104, 68, 69], the spectral density of a Gaussian process [107], densities with
known discontinuities [152] and jump-diffusion models [150].

A phenomenon which is also of interest in this chapter, is that of asymptotic nonequiv-
alence. Two models are considered asymptotically nonequivalent if their Le Cam
distance remains bounded away from zero, even as the amount of data increases in
both models. Whilst a Le Cam distance lower bound only indicates that in some
loss functions concerning certain specific decision problems two models behave dif-
ferently, these results are still of interest. Firstly, they give fundamental insight into
specific statistical models. Secondly, they serve as a warning to tread carefully in
such cases, by indicating that the usual statistical phenomena one might expect in
the well studied simple model might not necessarily occur in the model of inter-
est. Asymptotic nonequivalence has been studied for the signal-in-white-noise model,
showing nonequivalence to e.g. nonparametric regression and i.i.d. draws from a den-
sity whenever the underlying space of functions is not of sufficient regularity [91, 41]
or nonequivalence with i.i.d. sampling from densities when the class of densities are
not sufficiently bounded from below [173]. In [217], nonequivalence is shown between
the drift diffusion model and a stochastic volatility model.

There are many reasons to study the Le Cam distance of models, not the least of
which scientific interest. The main concern in this chapter is the ability to obtain
distributed inference performance bounds in complex models which are known to be
asymptotically equivalent to the many-normal-means model and the infinite dimen-
sional signal-in-white-noise model. This allows us to obtain distributed bandwidth
and differential privacy constraint minimax testing rates for models for which these
have, up until now, not been established.

Whilst classically minimax goodness-of-fit testing rates are perhaps more easily de-
rived by studying the different models directly, this does not seem to be the case
for the bandwidth and differential privacy constraint distributed equivalent of these
testing problems. From the results of the earlier chapters of the thesis, it is clear
that to obtain the minimax rates in simple, stylized Gaussian models already requires
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substantial effort. By leveraging asymptotic equivalence in the distributed setting,
we can establish minimax distributed testing rates for the d-dimensional multinomial
model under bandwidth and local differential privacy constraints. Prior to this work,
such rates had only been available in the literature for the case of having just one
observation per machine (n “ 1) in [9, 10, 15]. To obtain the rates for the multinomial
model, we use the Le Cam deficiency bound between the Gaussian and multinomial
model of [57]. The multinomial model shall be our main illustrative example to
elucidate the role of the sample space in the distributed communication constraint
setting. These results give insight into whether models that are asymptotically equiv-
alent, have equivalent rates in the distributed setting as well. The answer here turns
out to be partly yes, but not always.

Furthermore, we extend our results of Chapter 5 to nonparametric models more com-
monly encountered in practice, such as nonparametric regression and goodness-of-fit
testing for nonparametric densities based on i.i.d. observations. The Le Cam distance
bound of [172] allows us to establish bandwidth and local minimax distributed testing
rates for nonparametric density testing, which have been established in the literature
only for the case of just one observation per machine under privacy constraints in
[75, 136], where in [136], the authors consider adaptation as well. The work of this
chapter is also the first to establish minimax distributed testing rates for nonparamet-
ric regression under bandwidth and local differential privacy constraints. The latter
results leverage the Le Cam distance bound of [174] between the signal-in-white-noise
model and nonparametric regression. The results for both of these models apply to
their respective adaptive settings.

Besides deriving distributed testing rates, we shall also study asymptotic nonequiva-
lence. The route with which we shall study asymptotic nonequivalence is novel and
perhaps surprising. By leveraging our result concerning asymptotic equivalence in
the distributed setting, we exhibit a proof method for obtaining lower bounds on the
Le Cam distance between models which, even though without communication con-
straints they behave similarly, display drastically different behavior when distributed
communication constraints are in place. We illustrate this principle using the multi-
nomial model and the many-normal-means-model. For the multinomial model and
the many-normal-means model, although the unconstrained minimax testing rate is?
d{pmnq for both models, we exploit distributed settings in which these models have

different minimax rates to obtain lower bounds on the Le Cam distance of the models
that apply generally, that is to say; these lower bounds apply outside of the distributed
setting as well.

The chapter is structured as follows. First, in Section 6.1, we recall the formal notions
surrounding the Le Cam distance and prove results for general distributed settings
with communication constraints. In Section 6.2, we study the consequences of the
general theory for the multinomial model, obtaining minimax distributed testing rates
for the multinomial model under bandwidth and privacy constraints, as well as a
lower bound on the Le Cam distance between the many-normal-means model and the
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multinomial model. Finally, in Section 6.3, we derive minimax distributed testing
rates for nonparametric regression and density testing using the machinery developed
in Section 6.1.

6.1 Le Cam theory in distributed setting

We introduce some formal notions of Le Cam theory first in Section 6.1.1. Then, in
Section 6.1.2, we study the equivalence of models in the distributed setting.

6.1.1 Preliminary notions of Le Cam theory

A statistical experiment is a set of probability distributions P “ tPf : f P Fu (a
model) on a measurable space pX ,X q (the sample space). For the purpose of simpli-
fication, we shall consider only statistical experiments with Polish sample spaces and
corresponding Borel sigma-algebras. Furthermore, we shall only consider dominated
models, meaning that there exists a sigma-finite measure µ such that Pf ! µ for
all f P F . In a slight abuse of terminology, we shall sometimes refer to P as the
experiment, suppressing the presence of the sample space and indexing set.

Given another statistical experiment with model Q “ tQf : f P Fu indexed by the

same set F and sample space pX̃ , X̃ q, we define the deficiency of P with respect to
Q as

dpP;Qq “ inf
C

sup
fPF

}PfC ´Qf }TV. (6.1)

Here, we use the total variation norm as defined in earlier chapters (see e.g. (1.3)),
the infimum is taken over all Markov kernels C : X̃ ˆX Ñ r0, 1s and the probability
measure PfC : X̃ Ñ r0, 1s is understood as

PfCpAq :“

ż

xPX
CpA|xqdPf pxq. (6.2)

This is equivalent to the more general notion of deficiency of [53] for dominated models
on Polish spaces (see Proposition 9.2 in [161]).

The deficiency dpP;Qq quantifies the degree to which Q can be approximated by an
experiment P. If dpP;Qq ď ϱ, it implies that for bounded loss functions, each decision
procedure within Q has an associated procedure in P that achieves nearly the same
risk, up to a multiple of ϱ.

To make this precise, let F be a measurable space and consider a function ℓ : FˆD Ñ

r0, 1s on a measurable space pD,Dq, such that t ÞÑ ℓpf, tq is measurable for all f P F ,
which we shall refer to a loss functions. We shall consider a decision procedure for
pQ,Dq to be a Markov kernel D : D ˆ X̃ Ñ r0, 1s. If dpP;Qq ď ϱ, there exists
C : X̃ ˆ X Ñ r0, 1s such that for all decision procedures D for pQ,Dq we have that

ż

ℓpf, φqdPfCDpφq ď

ż

ℓpf, φqdQfDpφq ` ϱ, for all f P F .
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Here, the Markov kernel QfD is to be understood in the sense of (6.2) and CD :
D ˆ X Ñ r0, 1s as

CDpA|xq “

ż

DpA|x̃qdCpx̃|xq.

There is also the following reverse implication; suppose that there exists a loss function
ℓ : F ˆ D Ñ r0, 1s on a measurable space pD,Dq, and

inf
C

inf
D

sup
fPF

ˇ

ˇ

ˇ

ˇ

ż

ℓpf, φqdQfDpφq ´

ż

ℓpf, φqdPfCDpφq

ˇ

ˇ

ˇ

ˇ

ą ϱ,

where the two infimums are over all decision procedures D and Markov kernels C :
X̃ ˆ X Ñ r0, 1s. Then, dpQ,Pq ą ϱ. This follows immediately from e.g. Lemma 6.7
in the appendix, since x ÞÑ

ş

ℓpf, φqdDpφ|xq is measurable. In the more extensive
framework considered in e.g. [53], such a reverse implication for risk functions fully
characterizes the deficiency between two models, but this framework is not needed in
what follows.

Le Cam’s deficiency distance between P and Q is then defined as

∆pP,Qq “ max tdpP;Qq, dpQ,Pqu .

This semi-metric becomes a metric whenever P andQ are identified whenever dpP;Qq`

dpQ,Pq “ 0. Two sequences of experiments Pν and Qν are called asymptotically
equivalent if their difference ∆pPν ,Qνq tends to zero as ν approaches infinity. Con-
versely, such sequences shall be called asymptotically nonequivalent if ∆pPν ,Qνq ą c
as ν Ñ 8 for a fixed constant c ą 0.

The final notion we shall recall is that of sufficiency. A statistic S : X Ñ X̃ is sufficient
for the model P if for any A P X there exists a measurable map ψA : X̃ Ñ R such
that

Pf

`

AX S´1pBq
˘

“

ż

B

ψApx̃qdPS
f px̃q for all B P X̃ and f P F .

Here, the measure PS
f is to be understood as the push-forward measure PS

f pBq “

Pf pS´1pBqq. A sufficient statistic allows for transforming observations from one
model to another, “sufficient” model which is equivalent in the sense of Le Cam dis-
tance. That is, if S is a sufficient statistic for P, then the model P 1 :“ tPS

f : f P Fu

satisfies ∆pP,P 1q “ 0.

The next lemma is the Neyman-Fisher factorization theorem gives a useful character-
ization of sufficiency of a statistic for models that admit densities with respect to the
same dominating measure.

Lemma 6.1. Suppose that Pf ! µ for all Pf P P with µ a sigma-finite measure. A

statistic S : X Ñ X̃ is sufficient for P if and only if there exists measurable functions
gf : R Ñ R and h : X Ñ R such that

dPf

dµ
pxq “ gf pSpxqqhpxq for almost every x P X and every f P F . (6.3)
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A proof for both the lemma and the last statement of the previous paragraph can be
found in Chapter 5 of [137].

6.1.2 Equivalence of distributed decision problems

We now turn to the distributed setting considered in this thesis, where j “ 1, . . . ,m
machines each receive data Xpjq drawn from a distribution Pf and sample space
pX ,X q. Each of the machines communicates a transcript based on the data to a
central server, which based on the aggregated transcripts computes its solution to the
decision problem at hand.

We start by stating the distributed setting as given in Section 1.2 in the current con-
text. A distributed protocol for the experiment P with decision space pD,Dq consists of
a triplet tD, tKjuj“1,...,m, pU ,U ,PU qu, where tKjuj“1,...,m is a collection of Markov
kernels Kj : Y pjq ˆ pX ˆ Uq Ñ r0, 1s defined on a measurable space pYpjq,Y pjqq, a
Markov kernel D : D ˆ

Âm
j“1 Ypjq Ñ r0, 1s and a probability space pU ,U ,PU q.

To unpack all this notation: the Markov kernel D takes the role of the decision
procedure, where the decision is to be made on the basis of the transcripts generated
by tKjuj“1,...,m. The transcripts are in turn generated based on the data and a source
of shared randomness independent of the data. The probability space pU ,U ,PU q plays
the role of the source of randomness that is shared by the machines. The distributed
protocol is said to have no access to shared randomness or to be a local randomness
protocol if U is the trivial sigma-algebra.

In terms of random variables, we have Xpjq „ Pf , U „ PU , Y pjq|pXpjq, Uq „

Kjp¨|Xpjq, Uq for j “ 1, . . . ,m and φ „ Dp¨|Y q with Y “ pY p1q, . . . , Y pmqq. This
gives rise to a Markov chain

Xp1q - Y p1q|UPPq
... - ... -

Xpmq -
Y pmq|U

��1

φ. (6.4)

For x “ pxp1q, . . . , xpmqq P Xm, u P U and tKjuj“1,...,m, let x ÞÑ KpA|x, uq be the
Markov kernel product distribution

Âm
j“1K

jp¨|xpjq, uq. Following the notation in the
earlier chapters, given a distributed protocol and i.i.d. data from Pf we shall use
Pf to denote the joint distribution of the data X „ Pm

f , the shared randomness

U „ PU and Y “ pY p1q, . . . , Y pmqq with Y |pX,Uq „ KpY |X,Uq. We have that
Pm
f K “

Âm
j“1 PfK

j and the push-forward measure of Y then disintegrates as

PY
f pAq “ Pm

f PUKpAq “ PUPm
f KpAq “

ż

d
m
â

j“1

PfK
jp¨|Xpjq, uqpAqdPU puq, (6.5)

where the second equality follows from the independence of U with the data X :“
pXp1q, . . . , Xpmqq drawn from Pf .
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We shall consider two types of communication constraints in this chapter: bandwidth
constraints and differential privacy constraints. For the first of these constraints, the
definition of a bandwidth constraint protocol is straightforward and fully overlaps
with the one considered in the rest of the thesis (i.e. Definition 2). A distributed
protocol is said to satisfy a b-bit bandwidth constraint if its kernels tKjuj“1,...,m are
defined on spaces satisfying |Ypjq| ď 2b.

Given a Markov Kernel C : X ˆ X̃ Ñ r0, 1s, a distributed protocol

tD, tKjuj“1,...,m, pU ,U ,PU qu

for the model P, yields a distributed protocol for the model Q:

tD, tCKjuj“1,...,m, pU ,U ,PU qu.

If tKjuj“1,...,m is a b-bit bandwidth constraint, the collection of kernels tCKjuj“1,...,m

do so too, as each CKj is defined on Y pjq ˆ X̃ .

Since the definition of differential privacy depends heavily on what one defines as the
sample space, it is difficult to obtain a similar “transfer of distributed protocols” that
respects the pϵ, δq-differential privacy constraint of Definition 3. Instead, we shall
consider the notion of local pϵ, δq-differential privacy. A Markov kernel K : Y ˆX Ñ

r0, 1s is called locally pϵ, δq-differentially private if

KpA|xq ď eϵKpA|x1q ` δ for all A P Y and x, x1 P X . (6.6)

A distributed protocol shall be called locally pϵ, δq-differentially private if (6.6) holds
for each Kj ; j “ 1, . . . ,m. The difference with Definition 3 is that we essentially
wish to retain privacy for the entire “local sample”, instead of for each observation
in the sample. Llocal differential privacy is a more demanding notion of differential
privacy than what was considered in earlier chapters and it is less general, as it
cannot accomodate for the fact that the datums in a server belong to e.g. different
individuals. The restriction to local differential privacy arises naturally, due to the
fact that sample spaces (and thus datums) can differ between different experiments.
The following lemma shows that local pϵ, δq-differential privacy, just like bandwidth
constraints, carry over from one model to the other.

Lemma 6.2. Let pX ,X q and pX̃ , X̃ q be measurable spaces and consider Markov
kernels C : X ˆ X̃ Ñ r0, 1s and K : Y ˆ X Ñ r0, 1s. If K is b-bit bandwidth
constraint, so is the Markov kernel CK : Y ˆ X̃ Ñ r0, 1s. If K is locally pϵ, δq-
differentially private, so is CK.

Proof. The first statement has been remarked on earlier in the section. For the
second statement, arbitrary x̃, x̃1 P X̃ and A P Y . Using that C is a Markov kernel
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and applying (6.6) to K yields

CKpA|x̃q “

ż

KpA|xqdCpx|x̃q “

ż ż

KpA|xqdCpx|x̃qdCpx1|x̃1q

ď eϵ
ż

KpA|x1qdCpx1|x̃1q ` δ “ eϵCKpA|x̃1q ` δ,

which shows CK is pϵ, δq-differentially private.

In an abuse of notation, let D denote the entire distributed protocol (triplet)

tD, tKjuj“1,...,m, pU ,U ,PU qu

for the experiment P (indexed by F) with decision space pD,Dq. Given D and a loss
function ℓ : F ˆ D Ñ r´1, 1s, we define the distributed risk of D in P for ℓ as

RPpD, ℓq :“ sup
fPF

ż ż ż

ℓpf, φqdDpφ|yq d
m
â

j“1

PfK
jp¨|Xpjq, uqpyqdPU puq,

We are now ready to formulate a straightforward consequence for the distributed
risk, following from models being close in Le Cam distance. This finding, formu-
lated in Lemma 6.3, shall serve as one of the main tools for deriving the main results
of this chapter. It states roughly that, whenever there is a b-bit bandwidth con-
strained distributed protocol that achieves a certain risk is one model and there is
small deficiency with the other model relative to the number of machines, there exists
a b-bit distributed protocol that achieves comparable risk for the other model. A sim-
ilar statement holds under local differential privacy constraints. If there is a locally
pϵ, δq-differentially private distributed procedure in the one model and there is small
deficiency with another model, it means that there is comparable risk for the privacy
constraint distributed decision problem.

Lemma 6.3. Let m P N. Consider two experiments P and Q with indexing set F ,
satisfying mdpQ;Pq ď ϱ for some ϱ ą 0. Let JP and JQ denote the class of b-bit
bandwidth constraint shared randomness protocols for the models P and Q respectively.

Then, for any loss function ℓ : F ˆ D Ñ r0, 1s,

inf
DPJQ

RQpD, ℓq ´ inf
DPJP

RPpD, ℓq ď ϱ,

where in the infimum, in an abuse of notation, D denotes the entire distributed pro-
tocol triplet tD, tKjuj“1,...,m, pU ,U ,PU qu.

The same statement holds for JP and JQ denoting the classes of b-bit bandwidth
constraint local randomness protocols, distributed protocols satisfying (shared or local
randomness) local pϵ, δq-differential privacy constraints.
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Remark 12. The result, might seem rudimentary as not much more than the triangle
inequality seems to be going into the proof. However, the statement is sufficient to
derive minimax rates for distributed goodness-of-fit testing in models other than the
many-normal-means model and the signal-in-white-noise model considered in the pre-
vious chapters. What is more, in Section 6.2, the lemma is leveraged to obtain lower
bounds on the deficiency between two models whenever two models have (substan-
tially) different distributed risks for the same decision problem under communication
constraints. This exemplifies also that, even though models Pm “ tPm

f : f P Fu

and Qm “ tQm
f : f P Fu are close in Le Cam distance, distributed decision problems

formulated in terms the models P and Q, can have greatly different performance in
terms of associated risks.

Proof. By e.g. Theorem 2 in [137], mdpQ;Pq ď ϱ implies that there exists a kernel
C : X ˆ X̃ Ñ r0, 1s such that

sup
fPF

}Pf ´QfC}TV ď ϱ{m. (6.7)

By Lemma 6.2, the kernels K̃j :“ CKj , j “ 1, . . . ,m all satisfy a b-bit bandwidth
constraint or local pϵ, δq-differential privacy constraint if the collection tKjuj“1,...,m

does. That is, given a distributed protocol for P, tD, tKjuj“1,...,m, pU ,U ,PU qu P JP ,

the distributed protocol D̃ “ tD, tCKjuj“1,...,m, pU ,U ,PU qu is an element of JQ.

Using the fact that ℓ is bounded by one and Lemma 6.8 in the appendix, it follows
that

RQpD̃, ℓq ´ RPpD, ℓq ď }PU
m
â

j“1

PfK
j ´ PU

m
â

j“1

QfCK
j}TV

ď

m
ÿ

j“1

}PUPfK
j ´ PUQfCK

j}TV.

By Lemma 6.9 in the appendix,

}PUPfK
j ´ PUQfCK

j}TV ď }PUPf ´ PUQfC}TV “ }Pf ´QfC}TV,

which combined with (6.7) finishes the proof.

In the remainder of this text, we shall constrain ourselves to a particular bounded
risk function and distributed decision problem; distributed hypothesis testing. The
following corollary formalizes the statement at the start of the paragraph for testing
a simple null versus a composite alternative hypothesis in the distributed setting. To
that extent, consider a test of the hypotheses

H0 : f “ f0 versus the alternative hypothesis f P H1 (6.8)
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and an experiment P with indexing set F satisfying tf0u Y H1 Ă F . Consider for
m P N a distributed testing protocol for the model P to be a distributed protocol
T ” tD, tKjuj“1,...,m, pU ,U ,PU qu, where in a slight abuse of notation, we shall also
use T to denote the (possibly randomized) test T |Y „ Dp¨|Y q. Recalling the notation
PY
f “ Pm

f PUK as given in (6.5), define the distributed testing risk for the hypotheses
in (6.8) and the model P as

RPpT,H1q :“ PY
f0DpT |Y q ` sup

fPH1

PY
f p1 ´DpT |Y qq .

Here, DpT |Y q :“ Dpt1u|Y q, but one can equivalently consider a deterministic measur-

able map T :
m

Π
j“1

Ypjq Ñ r0, 1s without loss of generality. Let T b
SRpPq (resp. T b

LRpPq)

denote the set of shared randomness (resp. local randomness) distributed testing pro-

tocols for P satisfying a b-bit bandwidth constraint. Similarly, let T
pϵ,δq

SR pPq (resp.

T
pϵ,δq

LR pPq) denote the set of shared randomness (resp. local randomness) distributed
testing protocols for P satisfying a local pϵ, δq-differential privacy constraint. Define
the same classes for the model Q in the obvious way. Using Lemma 6.3, we obtain
the following result.

Corollary 6.1. Consider experiments P,Q such that mdpQ;Pq ď ϱ for ϱ ą 0. It
holds that

inf
TPT pPq

RPpT,H1q ď inf
TPT pQq

RQpT,H1q ` 2ϱ,

where T is either T b
SR,T

b
LR,T

pϵ,δq

SR or T
pϵ,δq

LR .

Proof. Given tT, tKjuj“1,...,m, pU ,U ,PU qu P T pPq, Lemma 6.3 applied to the loss
function

ℓpf, tq :“ t1tf0upfq ` p1 ´ tq1H1
pfq

and using that tf0u YH1 Ă F gives

PY
f0DpT |Y q ď QY

f0DpT |Y q`ϱ and sup
fPH1

PY
f p1 ´DpT |Y qq ď sup

fPH1

QY
f p1 ´DpT |Y qq`ϱ

for some distributed testing protocol tD, tK̃juj“1,...,m, pU ,U ,PU qu in T pQq, which
yields the first statement.

The result above yields that for experiments with matching indexing sets, matching
hypotheses and that are close in Le Cam distance, the minimax separation rates (see
Section 1.1 for a definition) for the hypotheses is the same in distributed settings, as
long as m is not too large compared to the Le Cam distance between the models. We
remark that a similar result can also be obtained for the meta-analysis “combination
of real-valued test-statistics” framework considered in Chapter 4.

The implications of Lemma 6.3 have implications beyond the testing framework.
Whilst in distributed estimation settings, the loss function under consideration is
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typically not bounded, rates can still be derived in probability. That is, if the mini-
max rate for the distance d on F in the model Pν is ρν , the bounded loss function

ℓνpf, gq “ 1 tdpf, gq ď Cρνu for C ą 0

can be used describe minimax estimation rates (in probability) between models P and
Q. Since this thesis is about testing, we shall not pursue this direction any further
beyond this remark.

In the next sections, we will explore the consequences of Corollary 6.1 for minimax
distributed testing rates for both bandwidth- and privacy constraints.

6.2 Distributed multinomial observations under com-
munication constraints

The multinomial distribution describes n discrete random variables that take one of d
mutually exclusive states, applying to any setting in which you sample independently
from a probability distribution on a discrete set.

Recently, there have been numerous applications in areas that handle large samples
of multinomial data over extensive domains, such as population genetics [166, 196]
and computer science; where it is used for e.g. information retrieval [228, 177], speech
and text and classification [126], text mining [49] and large language models [168].

This has sparked recent interest in studying the statistical decision theoretic proper-
ties of the multinomial model, see [27] for an overview. It has been extensively studied
in the context distributed inference under differential privacy- and bandwidth con-
straints, see e.g. [101, 78, 30, 113, 58, 59, 17, 16, 13]. For distributing testing under
privacy- and bandwidth constraints specifically, much is still to be uncovered, with
minimax rates only having been obtained for the case of having just one draw from a
discrete distribution per machine [9, 10, 15] at the time of writing. For some investi-
gations into the multiple observations case, see [73, 99].

The multinomial model describes sampling independently from a probability distri-
bution on a discrete set. We start by giving a formal description of the model in the
distributed setting. Let Sd denote the d´ 1-dimensional probability simplex

#

q “ pq1, . . . , qdq P r0, 1sd :
d
ÿ

i“1

qi “ 1

+

.

In the distributed multinomial model, each machine j “ 1, . . . ,m observes data X̃pjq

taking values in t1, . . . , dun

X̃pjq “ pX̃
pjq

1 , . . . , X̃pjq
n q „ Q ” Qn,q, X

pjq

i
i.i.d.
„ Multinomialp1, qq for q P F (6.9)
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where

F “

"

q P Sd :
maxi qi
mini qi

ď R

*

(6.10)

for some fixed constant R ą 4. The statistical decision problem of interest shall be
that of uniformity testing, i.e. distinguishing the hypotheses

H0 : q “ q0 versus H1 : q P tq P F : }q ´ q0}1 ě ρu “: Hρ, (6.11)

with q0 “ pq01, . . . , q0dq “ p1{d, . . . , 1{dq P Sd. We note that the results can easily be
extended to the case where q0 “ pq01, . . . , q0dq P F , with e.g.

maxi q0i
mini q0i

ď R{4.

The latter assumption allows for (slightly) more flexibility than uniformity. How-
ever, some sort of uniformity assumption is critical, as the minimax rates for the
multinomial model depend on the “degree of uniformity” of null hypothesis (see [28]).
Outside of the (approximately) uniform case, goodness-of-fit testing exhibits different
phenomena compared to the many-normal-means model.

The minimax rate for the hypothesis above in the m “ 1 case is ρ2 —
?
d

n , as was
established in [163] and [206]. For distributed data, minimax rates have been derived
in [9, 10] for the hypothesis test above under both privacy- and bandwidth constraints
for the case where n “ 1. This case corresponds with receiving only one observation
per machine. For their lower bounds, the authors use clever series expansions of a
combinatorial nature that are difficult to generalize to the large n case.

Theorems 6.1 and 6.3 below will partly extend these results by giving minimax rates
in a regime where n is large. We will do so by comparing the statistical experiment
of the multinomial observations to that of the Gaussian many-normal-means model
considered in Chapters 2 and 3 of the thesis.

Consider for q P F and i “ 1, . . . , d the random variables

X
pjq

i “
?
qi `

1
?
2n
Z

pjq

i (6.12)

Zpjq “ pZ
pjq

1 , . . . , Z
pjq

d q „ Np0, Idq. Let Pf ” Pn
f denote the distribution of Xpjq “

pX
pjq

1 , . . . , X
pjq

d q. Let P denote the corresponding experiment. It is shown in [57] that
Q is close to P in the Le Cam metric when d is relatively small compared to n. More
precisely, it follows from Theorem 1 and Section 7 in [57] that

∆pP,Qq ď CR
d log d

?
n

, (6.13)

where CR ą 0 is a constant depending only on R. Combining this with Corollary 6.1
and the lower bound results from Chapter 2, we obtain the following result.
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Theorem 6.1. For any sequences m ” mν , b ” bν , d ” dν and n ” nν such that
md Ñ 8 whilst

md log d{
?
n

νÑ8
Ñ 0,

the minimax separation rate in the distributed multinomial model Q for testing the
hypotheses (6.11) under a b-bandwidth constraint is given by

ρ2 —

ˆ

d
?
d^ bmn

˙

ľ

˜ ?
d

?
mn

¸

(6.14)

in the case of having access to shared randomness. In the case of having only access
to local randomness, it is given by

ρ2 —

ˆ

d3{2

pd^ bqmn

˙

ľ

˜ ?
d

?
mn

¸

. (6.15)

Remark 13. The rates obtained for the L1-norm separated alternatives in the multino-
mial model, can be seen to correspond to L2-separated alternative hypothesis rates in
the many-normal-means model. While this might seem odd up on first reading, these
are natural ‘equivalent hypotheses’ to consider. To see this, consider that the total
variation distance in the many-normal-means model (n “ 1) satisfies (see e.g. [72])

}P?
q1 ´ P?

q2}TV — }
?
q1 ´

?
q2}2.

On the other hand, we have that }q1 ´ q2}TV “ }q1 ´ q2}1{2 (see e.g. Lemma 6.6).
An explicit comparison of these hypotheses shows up in the proof of the theorem.

We discuss a similar result for distributed testing under local differential privacy
constraints later on in the section, in the form Theorem 6.3. We provide a proof for
both the aforementioned theorem and the one above at the very end of the section,
but before doing so, let us consider the ramifications of Theorem 6.1.

The distributed b-bit bandwidth constraint minimax rate for the hypotheses (6.11)
in the multinomial model with n “ 1 is established in [9, 10]. Specifically, they find
that

ρ2 —

#

d

m
?
2b^d

in case of access to shared randomness,
d

?
d

mp2b^dq
without access to shared randomness.

(6.16)

Several aspects of this minimax rate are intriguing. Firstly, there is no elbow effect,
as is observed in the “large n case” for the same model and hypothesis (see (6.14)
and (6.15)). Secondly, the benefit (i.e. efficiency gain) from an increase in bandwidth
is exponential, compared to the polynomial factor observed in the Gaussian model.
We shall delve into this “communication super-efficiency” phenomenon further below.

The multinomial model considered thus far, where we draw n independent and indenti-
cally distributed draws taking values in t1, . . . , du, is equivalent to the Multinomialpn, dq
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model in which one observes N pjq “ pN
pjq

1 , . . . , N
pjq

d q taking values in t1, . . . , nud,
where

N
pjq

k ” N
pjq

k

´

X̃pjq
¯

“

ˇ

ˇ

ˇ

!

i : pX̃pjqqi “ k
)
ˇ

ˇ

ˇ
. (6.17)

Let Q1 denote the model generated by the observations N pjq in (6.17). It easily
follows from Neyman-Fisher factorization (e.g. Lemma 6.1), that model is equivalent
to Q, meaning ∆pQ,Q1q “ 0. When n is large compared to d, one could standardize
the count statistics N pjq to obtain a statistic that tends towards a d-dimensional
Gaussian random vector. When d and m are not too large with respect to n, one
can obtain transcripts and corresponding test statistics from these approximately
Gaussian vectors, that resemble those one would consider in the Gaussian model, and
attain the corresponding minimax rates.

Since the observation N pjq takes values in t1, . . . , nud, the full data can be transmitted
whenever there are at least d log2 n-bits are available per machine. However, recalling
that the observation X̃pjq takes values in the space t1, . . . , dun, the cardinality which
is bounded above by 2n log2 d, we also obtain that the full data can be transmitted
whenever n log2 d-bits are available. Consequently, whenever

b Á d log2pn` 1q ^ n log2 d,

the distributed problem has the same minimax separation rate for the hypothesis

in (6.11) as the unconstrained problem with nm observations; ρ2Q —
?
d

mn . For the
Gaussian problem, this is only the case whenever b Á d, as can be seen from The-
orem 2.3. This indicates a kind of “tipping point” occurring whenever n gets small
compared to d, where in a bandwidth constraint distributed setting, the testing prob-
lem in for the Gaussian model starts to exhibit very different behavior. More generally,
it means that, even though models Pm “ tPm

f : f P Fu and Qm “ tQm
f : f P Fu

could be close in Le Cam distance, distributed decision problems formulated in terms
the models P and Q, can have greatly different performance in terms of associated
risks.

Interestingly, this does not imply that the multinomial model is “easier” from a dis-
tributed testing under bandwidth constraints perspective, as there are regimes in
which the Gaussian model has a solution whereas the multinomial model does not
and vice versa. It indicates that the “communication complexity” of the sample space
matters in the respective decision problems. We can leverage this fact, combined with
Corollary 6.1, to obtain a lower bound on the Le Cam distance between the multino-
mial model and the Gaussian model; which is the content of the next theorem.

Theorem 6.2. There exists constants C, c ą 0 such that for any n, d P N with

d

n logpdq
ě C and n ě

?
d logpdq (6.18)

it holds that
dpQ,Pq ě c, (6.19)
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where P is the experiment generated by the observations in (6.12), Q is generated
according to (6.9), both indexed by F as given in (6.10).

The conclusion of the theorem, that for such large d compared to n, the multino-
mial model is asymptotically nonequivalent to the Gaussian model, is unsuprising for
uniform-like distributions q. The proof of the theorem, however, uses the distributed
bandwidth constraint results derived earlier in perhaps an interesting way: it lever-
ages that there exist distributed, b-bit bandwidth constraint settings in which the
(distributed) multinomial model allows for consistent goodness-of-fit testing, whereas
the (distributed) Gaussian model does not. The result then readily follows by Corol-
lary 6.1. The fact that the separation in the respective (distributed) testing risks
occurs for a constant number of machines, yields that the two models are asymp-
totically nonequivalent whenever (6.18) holds. This reasoning crucially exploits the
differing minimax rates that occur under the bandwidth constraint, since without such
a constraint, the same goodness-of-fit testing problem of (6.11) would have similar
minimax performance for both of the models. Whilst it is unlikely that the condition
d{n logpdq Á 1 is “tight” for the above non-equivalence result, the proof technique
used in the theorem could be of interest for other settings where non-equivalence is
suspected due to differences in the models’ sample spaces.

We now turn to the case of local differential privacy constraints. Before stating the
theorem, let us avoid possible confusion by stressing that the privacy constraints con-
sidered in the earlier chapters of the thesis study a setting more general than local
differential privacy. Here, we shall require that a distributed protocol transcript gen-
erating Markov kernels tKjujPrms satisfy (6.6). We stress that this type of differential

privacy guarantee concerns the local data X̃pjq as the “unit of privacy” or as an
“individual”, even X̃pjq consists of multiple (i.e. n) observations.

For the Gaussian models studied in Chapters 2, 3 and 5, local differential privacy is
a special case corresponding to “n “ 1” in the results found in these chapters. This
translates to guaranteeing differential privacy for a single observation

Xpjq “
?
q `

1
?
2n
Zpjq (6.20)

per machine j “ 1, . . . ,m in the Gaussian model considered in this section. Whilst

the above mode is equivalent to observing i “ 1, . . . , 2n i.i.d.
?
q ` Z

pjq

i observations
classically, under privacy constraints there is a pronounced difference.

The rates under local differential privacy for the Gaussian signal detection problem
follow from Theorems 2.4 and 3.2 by considering “n “ 1” in the setting of those
chapters and considering

?
n-rescaled signal in the (single) observation received at

each machine: Xpjq “
?
nf ` Zpjq. The hypotheses considered are H0 : f “ 0 versus

the alternative

f P Hρ :“
␣

f P Rd : }
?
nf}2 ě ρ1, }

?
nf}2 ď

?
nM

(

,
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where ρ1 is the minimax rate for the single observation model under differential pri-
vacy, and setting ρ “ ρ1{

?
n we obtain the minimax rate corresponding to (6.20).

For details, we defer the reader [52]. In this “rescaled” version of the problem, the
minimax rate for pmnq´1 ď ϵ ď 1 and logp1{δq À logpmndq is given by

ρ2 — poly-logpd,m, n, 1{δq

$

’

’

&

’

’

%

d
mnϵ2 if ϵ ě

?
d?
m
,

?
d?

mnϵ
if 1?

md
ď ϵ ă

?
d?
m
,

1
mnϵ2 if ϵ ă 1?

md
,

(6.21)

in case of locally pϵ, δq-differentially private shared randomness protocols and

ρ2 — poly-logpd,m, n, 1{δq

$

’

’

&

’

’

%

d
?
d

mnϵ2 if ϵ ě d?
m
,

?
d?

mnϵ
if 1?

md
ď ϵ ă d?

m
,

1
mnϵ2 if ϵ ă 1?

md
,

(6.22)

in case of non-shared randomness protocols. In the above, the poly-logpd,m, nq factor
should be understood as a factor at most of poly-logarithmic rate in d, m and n.
Because only the local case is considered, a lot of the phase transitions observed in
the earlier chapters are not observed (the ones that occur when ϵ ě 1{

?
n). Leveraging

asymptotic equivalence between the two models, we obtain the following theorem.

Theorem 6.3. Consider sequences m ” mν , d ” dν and n ” nν such that md Ñ 8,

md log d
?
n

νÑ8
Ñ 0,

n´1{4 ! ϵ ” ϵν ď 1 and δ ” δν À pmdq´p for some p ě 2. The minimax separation
rate in the distributed multinomial model Q for testing the hypotheses (6.11) using
locally pϵ, δq-differentially private protocols is (6.21) in the case of having access to
shared randomness. In the case of having only access to shared randomness, it is
given by (6.22).

Remark 14. Also in the case of privacy, there is a difference between the one ob-
servation per machine case minimax rate (n “ 1) and the multiple observations per
machine with local differential privacy case. The minimax rate in the multinomial for
n “ 1 is worked out to be

ρ2 —

#

d
mϵ2 in case of access to shared randomness,
d

?
d

mϵ2 without access to shared randomness.
(6.23)

(see [9, 15]). Comparing this rate to the rate obtained in Theorem 6.3, we observe
phase transitions in the distributed testing problem for multinomial model under local
differential privacy constraints which are not observed if the number of observations
locally is small compared to the cardinality of the sample space.
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6.2.1 Proofs of Theorems 6.1, 6.3 and 6.2

Proof of Theorems 6.1 and 6.3. In what follows, let T denote a class of distributed
protocols satisfying either a b ” bν-bit bandwidth constraint or a local pϵ, δq-differential
privacy constraint for ϵ ” ϵν , δ ” δν , allowing either for shared randomness or only
local randomness.

For any sequences m ” mν , d ” dν and n ” nν with CRmd log d{
?
n “ op1q, it

follows from Corollary 6.1 and the bound (6.13) that the testing risks satisfy

inf
TPTQ

RQν
pHρν

, T q “ inf
TPTP

RPν
pHρν

, T q ` op1q. (6.24)

Let ρ˚ ” ρ˚
ν be the minimax rate of the P-distributed problem, over the class TP , in

the sense that ρ˚ equals (up to constants) the right-hand side of (6.14), (6.15), (6.21)
or (6.22). We split the proof into showing that ρ˚ is an upper and lower bound for
the Q-distributed problem over the class TP .

The rate ρ˚ is an upper bound (up to a poly-logarithmic factor) for the minimax rate
in Q: Write, for q P F ,

?
q “ p

?
qiqiPrds. Since X

pjq ´
?
q0 is a sufficient statistic for

Xpjq, the model (6.12) is equivalent in the Le Cam sense the one generated by

Xpjq “
?
q ´

?
q0 `

1
?
2n
Zpjq with Zpjq „ Np0, Idq, (6.25)

for q P F , which we shall denote by P̃. Consequently, by another application of
Corollary 6.1, it suffices to show

inf
TPTP̃

RP̃pHρν , T q Ñ 0.

If }q ´ q0}1 ě ρ, Lemma 6.10 implies that }
?
q ´

?
q0}2 ě ρ{2. Consequently, if

ρ ” ρν " Mνρ
˚ where ρ˚ is of equal order of the minimax rate for the respective

class of distributed protocols TP and Mν is an appropriately large factor (of poly-
logarithmic order in case of differential privacy constraints), a distributed protocol T P

TP exists for the Gaussian model that achieves the separation rate for whenever H0 :
?
q ´

?
q0 “ 0 versus Hρ : }

?
q ´

?
q0}2 ě ρ{2. By the established equivalence of the

minimax risks (6.24), this implies that a protocol T P TQ exists for the multinomial
model as well. Thus, ρν is an upper bound for the minimax separation rate for the
class of distributed protocols TQ of the multinomial model.

The rate ρ˚ is a lower bound for the minimax rate in Q: Suppose that ρ ” ρν is of
smaller order than the minimax rate ρ˚ of the class TP , in the sense that ρ˚{ρ Ñ 8

as ν Ñ 8. We aim to use the Bayes risk lower bound of Lemmas 2.12 and 2.17, which
apply to a Gaussian prior. To accommodate a Gaussian prior with sufficient mass
on the alternative hypothesis, we first need to address the “constraint on the signal”
imposed by

řd
i“1 qi “ 1 for q P F .

To that extent, consider without loss of generality d to be divisible by two. Let

IR :“ r´pR ´ 1q{pR ` 1q, pR ´ 1q{pR ` 1qs. For all pfiqiPrd{2s P I
d{2
R {

?
d, there exists
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a qf :“ pqfi qiPrds P F such that qfi “ 1{d ` fi{
?
d for i “ 1, . . . , d{2 and qfi “

1{d ´ fi´d{2{
?
d for i “ d{2 ` 1, . . . , d. To see that qf P F , note that

řd
i“1 q

f
i “ 1,

qf ě 0 and

max
1ďi,kďd

qfi

qfk
ď max

cPIR

1 ` c

1 ´ c
“ R.

Define F 1 as the set

#

pqiqiPrds P F : pfiqiPrd{2s P
I
d{2
R?
d

s.t. qfi “ 1{d` p1 ´ 21iąd{2q
fi´d1iąd{2{2

?
d

for i P rds

+

and

H 1
ρ :“

␣

q : q P F 1, }q ´ q0}1 ě ρ
(

.

We have F 1 Ă F , which in turn implies that H 1
ρ Ă Hρ. Combined with the fact that

the testing risk decreases by considering smaller alternative hypotheses, this results
in

inf
TPTP

RPpT,Hρq ě inf
TPTP

RPpT,H 1
ρq. (6.26)

Define gf “ p1{2qpf,´fq P Rd. By Pinsker’s inequality,

›

›

›

›

Pnm?
qf ´

?
q0

´ Pnm
gf

›

›

›

›

TV

ď 1 ^

c

mn

4
DKLpP?

q´
?
q0 ;Pgf q

“ 1 ^

?
mn

2

›

›

›

›

b

q0 ` 2gf {
?
d´

?
q0 ´ gf

›

›

›

›

2

“: Df ,

where Pn?
q´

?
q0

denotes the distribution of (6.25) and the square root is to be under-

stood as applied coordinate wise.

Let π “ Np0, d´1pρ˚q2Γq for a symmetric, idempotent matrix Γ P Rd{2ˆd{2 with
d{4 ď rankpΓq ď d{2.

We have that

inf
TPTP

RPpT,H 1
ρq ě inf

TPJP

„

P0T pY q `

ż

Pgf p1 ´ T pY qqdπpfq

ȷ

´ 2

ż

Dfdπpfq

´ π
´

f : f R pIR{
?
dqd{2 or

›

›

›
pqfi qiPrds ´ q0

›

›

›

1
ă ρ

¯

.

By Lemma 6.4, the model tPgf : f P I
d{2
R {

?
du is equivalent to the model generated

by the observations

S
pjq

i :“ fi `
1

?
n
Z

pjq

i (6.27)
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for i “ 1, . . . , d{2. Since F 1 is bijective with pIR{
?
dqd{2, the aforementioned equiva-

lence and Corollary 6.1 implies that

inf
TPJP

„

P0T pY q `

ż

Pgf p1 ´ T pY qqdπpfq

ȷ

“ inf
TPJP̃

„

P1
0T pY q `

ż

P1
f p1 ´ T pY qqdπpfq

ȷ

(6.28)
where P̃ is the model generated by the observations in display (6.27) for i “ 1, . . . , d{2
and P1

f denotes the distribution of the distributed protocol with data generated from

f P P̃.

It follows from Lemma 2.12 in the case of bandwidth constraints or Lemma 2.17
in the case of privacy constraints (using that ρ ! ρ˚ in both cases) that the latter
distributed testing risk is lower bounded by

1 ´ op1q ´ π
´

f P Rd{2 : f R pIR{
?
dqd{2 or

›

›

›
pqfi qiPrds ´ q0

›

›

›

1
ă ρ

¯

´ 2

ż

Dfdπpfq.

(6.29)
Addressing the third term in the display above; the theorem(s) assume thatmd log d{

?
n

tends to zero as ν Ñ 8, b ě 1 and ϵ " n´1{4, we have that ρ˚ ! 1{
a

logpdq, which
implies that

fi P IR{
?
d for all i “ 1, . . . , d{2, (6.30)

as }
?
dfi}8 Ñ 0 with π-probability tending to one (see e.g. Lemma 3.27).

Next, we show that }pqfi qiPrds ´ q0}1 ě ρ with π-probability tending to one. Since
řd

i“1 |qfi ´ q0| “ 2
řd{2

i“1 |fi{
?
d|, we have that for some constants c, c1 ą 0,

π
`
›

›qf ´ q0
›

›

1
ă ρ

˘

ď π
´
›

›

›
f{

?
d
›

›

›

1
ă ρ

¯

ď 1 ´ Pr

ˆ

}ΓZ}1 ě c1d
ρ

ρ˚

˙

.

where in the expression on the right-hand side, Z „ Np0, Id{2q. Since ρ ! ρ˚ and Γ
is idempotent with rank of the order d, we can conclude that the expression vanishes.
This takes care of the third term in (6.29).

For the last term in (6.29), the Taylor approximation
?
1 ` y ´ 1 “ y{2 ´ y2{8 `

y3

16p1`η
5{2
y q

for some η P r0, ys, combined with the fact that }
?
df}8 “ oπp1q yields

ˇ

ˇ

ˇ

ˇ

1
?
d

ˆ

b

1 `
?
dfi ´ 1 ´ fi{2

˙
ˇ

ˇ

ˇ

ˇ

ď

?
df2i
4

on a set of π-probability tending to one. This yields that
ż

Dfdπpfq À

ż

1 ^
?
mnd

›

›pf2i qiPrd{2s

›

›

2
dπpfq À

?
mnρ2.

Since the theorem(s) assume that md log d{
?
n

νÑ8
Ñ 0, b ě 1 and ϵ " n´1{4, the right-

hand side of the above display vanishes when ρ˚ satisfies either of the bounds (6.14),
(6.15), (6.21) or (6.22).
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Proof of Theorem 6.2. Let TQ,TP denote the class of distributed b-bit bandwidth
constrained testing protocols with b P N, m P N, d P 2N and n P N and no access to
shared randomness for the models Q and P, respectively. We note here that under
the conditions of the theorem, we can assume d and n are both larger than some
constant; and in particular we can assume d P 2N without loss of generality. Assume
d and n satisfy (6.18), for a constant C to be set later. The proof follows by the fact
that the distributed testing problems have different minimax testing rates, for certain
values of b and m.

Consider the hypothesis test given in (6.11), with H0 : q0 “ p1{d, . . . , 1{dq P Sd and
Hρ as in the display.

Set b “ rn log2pdqs. When b ě n log2pdq, the observations X̃pjq in the multinomial
model as given in (6.9) are valid b-bit transcripts, since |t1, . . . , dun| ď n log2pdq.
These transcripts are therefore sufficient for the nondistributed / unconstrained model
Qm, i.e. corresponding to observations

X̃ “ pX̃p1q, . . . , X̃pmqq „ Qq,nm for q P F .

Consequently, the distributed, b-bit bandwidth constraint testing risk for Q is equal
to the testing risk Qm;

inf
TPTQ

RQpHρ, T q “ inf
T

RQmpHρ, T q.

This means that, for all α P p0, 1q, there exists Cα ą 0 and a distributed protocol T
satisfying a b-bandwidth constraint for distributed experiment Q such that

inf
TPTQ

RQpHρ, T q ă α whenever ρ2 ě Cα

?
d

mn

where Hρ as defined in (6.11), as the minimax rate for the unconstrained problem

with mn observations is ρ2Qm :“
?
d{pmnq (see e.g. Theorem 3 in [163]).

On the other hand, whenever mb “ mrn log2pdqs ď d, the minimax rate for the
distributed testing risk of P for the (comparable) hypotheses

H0 : q “ q0 versus H̃ρ : }
?
q ´

?
q0}2 ě ρ

is bounded from below by ρ2P —
?
d{p

?
mnq, as a consequence of Theorem 2.3. Specif-

ically, following the proof of Theorem 6.1 above, we have that

inf
TPTP

RPpHρ, T q ě inf
TPTP̃

RP̃pH̃ρ, T q,

where
H̃ρ :“

!

f P pIR{
?
dqd{2 : }f}1 ě ρ

)

,
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for IR :“ r
?
2p1 ´

?
Rq{

?
1 `R,

?
2p

?
R ´ 1q{

?
1 `Rs, P̃ is generated by the obser-

vations

Xpjq “ f `
1

?
n
Zpjq

for Zpjq „ Np0, Id{2q, indexed by f P pIR{
?
dqd{2 and the class TP̃ is to be understood

as the b-bit bandwidth constraint distributed testing protocols for the model P̃ and
j “ 1, . . . ,m machines.

Lemma (2.12) implies that for all α P p0, 1q the latter is bounded by

α ´Np0, c´1{2
α d´1ρ2Γq

´

H̃c
ρ

¯

,

for a symmetric, idempotent matrix Γ P Rd{2ˆd{2 with d{4 ď rankpΓq ď d{2 α P p0, 1q,

whenever ρ2 ď cα
?
d?

mn
for some small enough constant cα ą 0. By the same analysis

as conducted in the proof of Theorem 6.1 above (using that n ď logpdq), we find that
the second term is at most α{2 for cα ą 0 small enough. Summarizing, we find in
particular that for some constant cα ą 0,

inf
TPTP

RPpT,Hρq ą 1{3,

for all ρ2 ď c
?
d{p

?
mnq and m,n, b, d such that mb ď d, where the number 1{3 is

chosen without particular significance.

Whenever mb “ mrn log2pdqs ď d,

inf
TPTQ

RQpHρ, T q ă 1{6 ă 1{3 ă inf
TPTP

RPpHρ, T q. (6.31)

for some Cα ą 0 large enough and cα ą 0 small enough. Take the constant C “

rC2
α{c2αs such that if m “ C, it holds that

Cα

?
d

mn
ď ρ2 ď cα

?
d

?
mn

, with ρ2 :“ Cα

?
d

?
M

?
mn

.

Now suppose that CdpQ,Pq ď 1{6. Corollary 6.1 then implies in that

inf
TPTP

RPpHρ, T q ď inf
TPTQ

RQpHρ, T q ` 1{6 ă 1{3.

This contradicts (6.31). We conclude that

CdpQ,Pq ą 1{6, (6.32)

whenever d{rn log2pdqs ą C. The result now follows with c “ 1{p6Cq.
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6.3 Distributed testing rates for nonparametric mod-
els

In this section, we revisit the results for goodness-of-fit testing in the nonparametric
signal-in-white-noise model under communication constraints studied in Chapter 5
and exhibit how these results extend to goodness-of-fit testing in other nonparametric
models.

Specifically, we revisit the distributed setting in which j “ 1, . . . ,m machines each
observe

dX
pjq

t “ fptqdt`
1

?
n
dWt (6.33)

where f P L2r0, 1s. We shall denote the experiment generated by the observed sample
path Xpjq, indexed by F Ă Hs,Rr0, 1s, for s ą 0 and R ą 0 as Ps,R.

We discuss the extension of the distributed testing rates for goodness-of-fit test-
ing with two other nonparametric models, namely nonparametric regression (Sec-
tion 6.3.1) and nonparametric densities (Section 6.3.2), for both the adaptive and
nonadaptive settings.

Before deriving results for the other models, we briefly recall the results derived in
Chapter 5 as they apply to our setting here.

In the case of bandwidth constraints, a tight minimax rate for the model (6.33) is
derived in Theorem 5.1 when the smoothness of the underlying alternative is known.
Theorems 5.2 and 5.3 provide tight rates (up to a log-logpmnq factor) whenever s is
in a given range rsmin, smaxs.

For privacy constraints, the theory derived in this section concerns local differential
privacy constraints for nonparametric regression and nonparametric density testing.
The appropriate comparison in terms of the minimax rates for these respective testing
problems under local differential privacy constraints is to a distributed testing problem
corresponding to (6.33), where the “individual” for which the privacy guarantee is to
be satisfied is Xpjq. We stress that “n” plays a different role here than what is
considered in Chapter 5, where n is the number of “individuals for which privacy is
to be guaranteed”, per machine. In (6.33), n takes the role of the “noise level”, but
bares no relationship to the privacy guarantee.

The minimax rates for the testing problem under local DP of H0 : f “ 0 versus
f P Hs,Rr0, 1s with }f}2 ě ρ, s ą 1{2, for data generated according to (6.33) can
be obtained by an easy adjustment to the proof of Theorem 5.4 in Section 5.3.1
(i.e. considering the single observation case for the rescaled model given by the SDE

dX
pjq

t “
?
nfptqdt ` dWt, we refer the reader to [52] for details) yields that the
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minimax rate ρ satisfies

ρ2 —

$

’

&

’

%

pmnϵ2q
´ 2s

2s`1 if m´ 1
2n

1
4s ď ϵ ď 1,

p
?
mnϵq´ 2s

2s`1{2 if m´ 1
2n´ 1

4s`2 ď ϵ ă m´ 1
2n

1
4s ,

pmnϵ2q´1 if ϵ ă m´ 1
2n´ 1

4s`2 ,

(6.34)

for locally pϵ, δq-DP shared randomness protocols. For local randomness protocols,
we have

ρ2 —

$

’

&

’

%

pmnϵ2q
´ 2s

2s`3{2 if m´ 1
2n

1
2s´1{2 ď ϵ ď 1

p
?
mnϵq´ 2s

2s`1{2 if m´ 1
2n´ 1

4s`2 ď ϵ ă m´ 1
2n

1
2s´1{2 ,

pmnϵ2q´1 if ϵ ă m´ 1
2n´ 1

4s`2 .

(6.35)

We show that, under local differential privacy constraints, these rates for the signal-
in-white-noise model of (6.33) extend to goodness-of-fit testing in the nonparametric
regression model and nonparametric density testing, in Sections 6.3.1 and 6.3.2, re-
spectively.

6.3.1 Nonparametric regression

We consider the following version of the fixed design version of the nonparamet-
ric regression model, where machines j “ 1, . . . ,m each observe random variables

X
pjq

1 , . . . , X
pjq
n satisfying

X
pjq

i “ fpi{nq ` Z
pjq

i , (6.36)

under the probability distribution Qf for f P L2r0, 1s and Z
pjq

1 , . . . , Z
pjq
n i.i.d. standard

Gaussian random variables. The above model is sometimes thought of as a discretized
version of (6.33). Observations are in practice often discrete, although it is tempting
to replace it with a continuous version of (6.33), which is more convenient to work
with as it avoids discretization effects.

In the random design nonparametric regression model we consider, machines j “

1, . . . ,m each observe random variables pX
pjq

1 , ζ
pjq

1 q, . . . , pX
pjq
n , ζ

pjq
n q satisfying

X
pjq

i “ fpζ
pjq

i q ` Z
pjq

i under Qf , (6.37)

with Z
pjq

1 , . . . , Z
pjq
n i.i.d. standard Gaussian random variables and ζ

pjq

1 , . . . , ζ
pjq
n i.i.d.

uniformly distributed on r0, 1s, independent of Z
pjq

1 , . . . , Z
pjq
n .

Variations of the above model include non-equispaced or non-uniform random design,
or non-Gaussian errors, for which much of the theory that follows can also be extended
to, as long as the required asymptotic equivalence with (6.33) can be established. See
for example [40] for results on more general fixed- and random design and [110] for
non-Gaussian errors.



248 6. Statistical equivalence under communication constraints

For f P Hs,Rr0, 1s, let Qfxd be the experiment generated by the observations in (6.36)
and let Qrdm be the experiment generated by the observations in (6.37). Outside of
the distributed setting, this model is well-studied, with both minimax estimation and
testing rates known, see e.g. [90, 122]. In the distributed, communication constrained
setting, only the estimation rates have been derived [187, 231, 47], with the testing
minimax rates unknown until now. Leveraging Corollary 6.1, we are able to (partly)
derive these rates.

Specifically, consider the goodness-of-fit testing problem H0 : f ” 0 P L2r0, 1s against
the alternative hypotheses that

f P Hs,R
ρs

:“ tf P Hs,Rr0, 1s : }f}L2 ě ρs and }f}Hs ď Ru,

for ρs ą 0. The minimax distributed testing risk for the above hypotheses and a
distributed testing procedure T for the model Q ” Qs,R P tQfxd

s,R,Qrdm
s,R u is given by

RQs,R
pHs,R

ρs
, T q “ QY

0 T pY q ` sup
fPHs,R

ρs

QY
f p1 ´ T pY qq ,

where QY
f denotes the marginal distribution of the transcripts when the data is gen-

erated from Qf . For some class of distributed protocols JQ for the model Qs,R, we
shall compare the distributed testing risk with that of the model Ps,R over a class of
distributed protocols JP . In the nonadaptive setting, this means we compare

inf
TPJQs,R

RQs,R
pHs,R

ρs
, T q to the quantity inf

TPJP
RPs,R

pHs,R
ρs

, T q.

When the regularity of the true underlying signal is unknown (but assumed to lie in a
given range rsmin, smaxs), it is desirable for a method to adapt to the true underlying
smoothness. For a given range 1{2 ă smin ă smax ă 8, the adaptive testing risk

inf
TPJQs,R

sup
sPrsmin,smaxs

RQs,R
pHs,R

ρs
, T q

is to be compared to

inf
TPJPs,R

sup
sPrsmin,smaxs

RPs,R
pHs,R

ρs
, T q.

Bounds on the Le Cam distance between nonparametric regression and the signal-in-
white-noise model were initially derived in [40], here we use the ones derived in [174].
For fixed design points, we shall take the Le Cam distance bound of Theorem 2.8 of
the aforementioned paper, which gives

∆pPs,R,Qfxd
s,Rq ď CsRn

1{2´s (6.38)

for a constant Cs ą 0 depending only on s ą 1{2. The assumption s ą 1{2 is
strictly necessary here for asymptotic equivalence, see Remark 4.6 in [40] for a counter
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example. For the i.i.d. uniform design case, the same paper (Theorem 4.8) offers the
Le Cam distance bound

∆pPs,R,Qrdm
s,R q ď CsRn

1´2s
2`4s (6.39)

for a constant Cs ą 0 depending only on s ą 1{2.

We present the minimax testing rates for distributed nonparametric regression un-
der both bandwidth and privacy constraints, known and unknown s, across three
theorems. We defer the proofs of these three theorems until the end of this section.

The first theorem gives the minimax rates for distributed nonparametric regression
under bandwidth constraints, for both fixed and random design, when s is known.
The rates are the same as those derived for the signal-in-white-noise model, where all
observed regimes occur depending on the values of s,m, n and b.

Theorem 6.4. Let R ą 0, s ą 1{2, Qs,R P tQfxd
s,R,Qrdm

s,R u and let b ” bN , m ” mN

and n ” N{m be sequences of natural numbers such that

mn1{2´s Ñ 0 in case Qs,R “ Qfxd
s,R, (6.40)

mn
1´2s
2`4s Ñ 0 in case Qs,R “ Qrdm

s,R .

Take T pbq P tT
pbq

SR ,T
pbq

LR u and let ρ ” ρn,b,m,s be a sequence of positive numbers
satisfying

ρ2 —

$

’

’

&

’

’

%

N´ 2s
2s`1{2 , if b ě N

1
2s`1{2 ,

´?
bN

¯´ 2s
2s`1

, if n
1

2s`1{2m
´2s

2s`1{2 ď b ă N
1

2s`1{2 ,

p
?
mnq

´ 2s
2s`1{2 , if b ă n

1
2s`1{2m

´2s
2s`1{2 ,

(6.41)

if T pbq “ T
pbq

SR , or

ρ2 —

$

’

’

&

’

’

%

N´ 2s
2s`1{2 if b ě N

1
2s`1{2 ,

pbNq
´ 2s

2s`3{2 if n
1

2s`1{2m
´s`1{4
2s`1{2 ď b ă N

1
2s`1{2 ,

p
?
mnq

´ 2s
2s`1{2 if b ă n

1
2s`1{2m

´s`1{4
2s`1{2 ,

(6.42)

if T pbq “ T
pbq

LR . It holds that

inf
TPT pbq

RQpHs,R
ρ1 , T q Ñ

#

1 if ρ1 ! ρ,

0 if ρ1 " ρ.

The next theorem shows that, when s is unknown, but in some fixed range 1{2 ă

smin ď s ď smax ă 8, the adaptive minimax rate for distributed nonparametric
regression under bandwidth constraints matches that of the distributed signal-in-
white-noise model, as derived in Theorems 5.2 and 5.3.
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Theorem 6.5. Let R ą 0, 1{2 ă smin ă smax ă 8 be given and consider for

s P rsmin, smaxs, Qs,R P tQfxd
s,R,Qrdm

s,R u. Let b ” bN , m ” mN and n ” N{m be
sequences of natural numbers such that

mn1{2´smin Ñ 0 in case Qs,R “ Qfxd
s,R,

mn
1´2smin
2`4smin Ñ 0 in case Qs,R “ Qrdm

s,R . (6.43)

Take T pbq P tT
pbq

SR ,T
pbq

LR u. Consider for s P rsmin, smaxs a sequence of positive num-
bers satisfying ρs ” ρn,b,m,s satisfying the minimax rate conditions of Theorems 5.2

and 5.3, i.e. (5.13)-(5.15) in case T pbq “ T
pbq

SR or (5.14)-(5.16) in case T pbq “ T
pbq

LR .

It holds that

inf
TPT pbq

sup
sPrsmin,smaxs

RQpHs,R
ρ1
s
, T q Ñ

#

1 if ρ1
s ! ρ,

0 if ρ1
s " plog logpNqq1{4ρs.

Theorem 6.5 is a direct consequence of Corollary 6.1 and the Le Cam distance bounds
of (6.38) and (6.39). It essentially says that adaptation is equally difficult in dis-
tributed nonparametric regression under bandwidth constraints as in the signal-in-
white-noise model.

The next theorem shows that, under the local differential privacy constraints, the
rates of the distributed signal-in-white-noise model transfer to the distributed non-
parametric regression setting as well, both under fixed and random design. As in the
bandwidth constraint setting, this even holds in the adaptive setting.

Theorem 6.6. Let R ą 0, 1{2 ă smin ă smax ă 8 be given and for s P rsmin, smaxs,

take Qs,R P tQfxd
s,R,Qrdm

s,R u. Consider sequences of natural numbers m ” mN and

n :“ N{m such that N “ mn Ñ 8, ϵ ” ϵN in pN´1, 1s and δ ” δN À pmnq´p for
some constant p ě 2.

Take Tpϵ, δq P tTSRpϵ, δq,TLRpϵ, δqu (i.e. either the class of shared or local random-
ness distributed locally pϵ, δq-DP distributed protocols), let ρs ” ρn,m,ϵ,δ be a sequence
of positive numbers satisfying (6.34) in case Tpϵ, δq “ TSRpϵ, δq or (6.35) in case
Tpϵ, δq “ TLRpϵ, δq.

If in addition, m,n and s ą 1{2 satisfy (6.40), it holds that

inf
TPTpϵ,δq

RQpHs,R
ρ1 , T q Ñ

#

1 if ρ1 ! ρs,

0 if ρ1 " logp1{δq log3pNqρs.

If (6.43) holds, we furthermore have that

sup
sPrsmin,smaxs

inf
TPTpϵ,δq

RQpHs,R
ρ1
s
, T q Ñ

#

1 if ρ1
s ! ρs,

0 if ρ1
s " logp1{δq log5pNqρs.
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Proof of Theorems 6.4, 6.5 and 6.6. Corollary 6.1 implies that, for any sequences of
distributed protocols T ” TN in TQ there exists a sequence of distributed protocols
T̃ ” T̃N in TP

|RQs,R
pHs,R

ρs
, T q ´ RPs,R

pHs,R
ρs

, T̃ q| ď m∆pPs,R,Qs,Rq. (6.44)

The same statement holds when the roles of TQ and TP are reversed. Combin-
ing (6.40) with the bounds of (6.38) and (6.39), the right-hand side tends to zero.
Consequently, the statement of Theorem 6.4 follows now by Theorem 6.4.

If
sup

sPrsmin,smaxs

m∆pPs,R,Qs,Rq Ñ 0,

(6.44) implies that

inf
TPTQ

sup
sPrsmin,smaxs

RQs,R
pHs,R

ρs
, T q ě inf

TPTP
sup

sPrsmin,smaxs

RPs,R
pHs,R

ρs
, T q ` op1q.

Since (6.44) also holds with the roles of TQ and TP are reversed, the above statement
holds with the reverse inequality also, from which we can conclude that

inf
TPTQ

sup
sPrsmin,smaxs

RQs,R
pHs,R

ρs
, T q “ inf

TPTP
sup

sPrsmin,smaxs

RPs,R
pHs,R

ρs
, T q ` op1q.

Consequently, the Le Cam bounds (6.38)-(6.39) combined with (6.43) and Theo-
rems 5.2 and 5.3 yield the statement of Theorem 6.5.

Through the same steps, Theorem 6.6 follows from the results of Chapter 5, in par-
ticular the local differential privacy minimax rates as given in (6.34) and (6.35).

6.3.2 Nonparametric density testing

Through a similar strategy, rates can be obtained for nonparametric density testing,
which is closely related to the multinomial model discussed in Section 6.2. Consider a
distribution on r0, 1s with Lebesgue density q. LetQn

q denote the product distribution.
Each machine j “ 1, . . . ,m observes

Xpjq “ pX
pjq

1 , . . . , Xpjq
n q, with X

pjq

i
i.i.d.
„ q. (6.45)

Consider for some κ ě 2 the set

Qs,R “

"

q P Cs,Rr0, 1s : q ě 0,

ż 1

0

qptqdt “ 1, }q}8 ď κ, }1{q}8 ď κ

*

,

where Cs,Rr0, 1s is the set of s-smooth Hölder functions with Hölder-norm bounded
by R ą 0, see Section 5.5.3 for a definition. In a slight abuse of notation, we let Qs,R

also denote the model generated by the observations of (6.45) with the Lebesgue
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densities q P Qs,R, i.e. the set consisting of the probability measures on r0, 1sn given
by A ÞÑ

ş

A
pbn

i“1qqpsqds with q P Qs,R.

For the above model, the minimax rates in the nondistributed case are known for
both estimation and testing, see e.g. [89, 95]. In the distributed case, the rates are
derived under bandwidth constraints in the case of a large number of observations
locally in [30, 226] or for the case of each machine having just one observation locally
(n “ 1) in [14]. Under differential privacy constraints, only the case where each
machine has just one observation (n “ 1) has been studied in the context of estimation
in [79, 176, 134, 43] and testing in [136]. Below, we derive the local differential privacy
rate for multiple draws of the density per machine (i.e. n " 1).

Let q0 denote the Lebesgue density of the uniform distribution on r0, 1s and consider
the testing problem of the hypotheses

H0 : q “ q0 versus q P Hs,R
ρs

:“
␣

q P Qs,R X Hs,Rr0, 1s : }q ´ q0}1 ě ρ
(

. (6.46)

Let PQ denote the model corresponding to observations generated by the observation

dX
pjq

t “
a

qptqdt`
1

?
2n
dW

pjq

t . (6.47)

Theorem 2 in [172] gives the following bound on the Le Cam distance between this
signal-in-white-noise model and the model generated by (6.45);

∆pPs,R,Qs,Rq ď Cs,κRn
1´2s
2`4s , (6.48)

for a constant Cs,κ depending only on κ ą 0 and s, with s ÞÑ Cs,κ bounded on
1{2 ă s ď 1. Leveraging Lemma 6.3, we can use the above bound to obtain that the
rates governing goodness-of-fit testing in the signal-in-white-noise model as studied
in Chapter 5 also govern density testing. We summarize the minimax rate results
for distributed density testing under either bandwidth or local differential privacy
constraints, known and unknown regularity, in a single theorem below.

Theorem 6.7. Let 1{2 ă smin ď smax ď 1, κ,R ą 0 be given and consider a sequence
m ” mN , n :“ N{m such that

mn
1´2smin
2`4smin Ñ 0. (6.49)

Let JQ denote either shared or local randomness distributed protocols under either
a b ” bN -bandwidth constraint or pϵ, δq-differential privacy constraint and let ρs the
minimax rate of Theorem 6.4 or (6.34)-(6.35) for each type of protocol, respectively.
Assume in addition that ϵ ” ϵN and δ ” δN satisfy m1{4n´1{4 ! ϵ ď 1 and logp1{δq —

logN .

For each of the choices of JQ described above there exists a positive sequence MN ,
at most of poly-logarithmic order in N , such that

sup
sPrsmin,smaxs

inf
TPJQ

RQpHs,R
ρ1
s
, T q Ñ

#

1 if ρ1
s ! M´1

N ρs,

0 if ρ1
s " MNρs.
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Remark 15. The restriction to Cs,Rr0, 1s X Hs,Rr0, 1s instead of just Cs,Rr0, 1s in
the alternative hypothesis of (6.46) is made for simplicity, aligning the alternative
hypothesis with the results in Chapter 5 for the signal-in-white-noise model that are
only derived for Sobolev spaces. As remarked in the aforementioned chapter, the
minimax rates derived for the signal-in-white-noise model are the same for Cs,Rr0, 1s

alternatives as for Hs,Rr0, 1s alternatives, up to a logarithmic factor.

In the unconstrained case, the theorem recovers the minimax goodness-of-fit density
testing rate for the hypothesis (6.46) as derived in [120] (up to logarithmic factors).
Furthermore, under the restricted setting of the theorem, distributed density testing
is shown to be approximately equally difficult as the signal-in-white-noise detection
problem considered in Chapter 5, for both bandwidth and local differentially privacy
constraints.

The proof is less straightforward than that of the theorems concerning nonparametric
regression, as the null- and alternative hypotheses of (6.46) do not immediately trans-
late to the hypotheses studied for the signal-in-white-noise model. To that extent,
the proof has similarities with the proof of Theorem 6.1.

Proof. The Le Cam distance bound of (6.48) and Corollary 6.1 together imply that
for every sequence of distributed protocols T ” TN in JQ there exists T 1 ” T 1

N in
JP such that

ˇ

ˇ

ˇ
RQpHs,R

ρ1
s
, T q ´ RPpHs,R

ρ1
s
, T 1q

ˇ

ˇ

ˇ
ď m∆pPs,R,Qs,Rq. (6.50)

The same statement is true with the roles of JQ and JP reversed. The condi-
tions (6.49) and (6.48) give an upper bound on the right-hand side of the above
display, uniformly in s P rsmin, smaxs. Consequently,

inf
TPJQ

sup
sPrsmin,smaxs

RQpHs,R
ρ1
s
, T q “ inf

TPJP
sup

sPrsmin,smaxs

RPpHs,R
ρ1
s
, T q ` op1q. (6.51)

Since Xpjq ´
?
q0 is a sufficient statistic in the model Ps,R, we can (by another appli-

cation of Corollary 6.1), consider the model Ps,R to be generated by

dX
pjq

t “

´

a

qptq ´ 1
¯

dt`
1

?
2n
dW

pjq

t . (6.52)

We split the remainder of the proof into showing “ρs is an upper bound” and “ρs is
a lower bound” for the minimax rate.

The rate ρs is an upper bound for the minimax rate (up to logarithmic factors): We
start by noting that the L1-norm is bounded above by a multiple of the Hellinger
distance (Lemma 6.10 in the appendix). That is,

}q0 ´ q}1 ď 2

d

ż 1

0

p
?
q0psq ´

?
qpsqq

2
ds,
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which implies that the function
?
q0 ´

?
q has L2-norm bounded from below by ρs{2

whenever q P Hs,R
ρs

. The function x ÞÑ
?
x has a bounded derivative on the domain

p1{L,8q and can be smoothly extended to a function on R that vanishes at 0 and has
a bounded derivative on R. Since q is assumed to be in Cs,Rr0, 1s X Hs,Rr0, 1s and
1{κ ď |q| ď κ, by e.g. Theorem 2.87 in [26] we obtain that

}
?
q}Hsr0,1s ď CκR

for a constant Cκ ą 0 depending only on κ and clearly a similar bound holds for
?
q ´

?
q0. Consequently, it holds that

inf
TPJP

sup
sPrsmin,smaxs

RPpHs,R
MNρ1

s
, T q Ñ 0

by Theorems 5.2, 5.3 and 5.5 for each of the classes considered for JP , corresponding
minimax rates ρs and appropriate (at most) poly-logarithmic in N factor MN . As
a consequence of (6.51), the adaptive testing risk vanishes for the adaptive density
testing risk.

The rate ρs is a lower bound for the minimax rate (up to logarithmic factors): Fix an
arbitrary s P rsmin, smaxs. We consider a similar prior on L2r0, 1s as the one used in
the proofs of Theorem 5.1 and Theorem 5.4. That is, for L P N let the linear operator

ΨL : R2L Ñ L2r0, 1s be defined by

ΨLf̃
L “

2L´1
ÿ

i“0

f̃iψLi,

for f̃L “ pf̃0, . . . , f̃2L´1q P R2L and tψli : l ě l0, i “ 0, . . . , 2l ´ 1u forming an

orthonormal S-smooth wavelet basis such that
ş1

0
ψlipsqds “ 0 for all l ą L0 for some

fixed L0 ą l0, S ą smax and compactly supported (see Section 5.5.3 for a definition).

As ΨL is measurable, πL ˝Ψ´1
L defines a probability measure on the Borel sigma alge-

bra of L2r0, 1s for any probability distribution πL on the Borel sigma-algebra of R2L .

To that extent, let πL “ Np0,Γq, with Γ “ C2´Lρ2sM
´2
N Γ P R2Lˆ2L for a symmetric,

idempotent matrix Γ P R2Lˆ2L with rankpΓq — 2L and C ą 0 a constant. Taking
L ” Ls “ r1 _ 1

s logp1{ρsqs, it follows by the proof of Theorem 5.1 (or Theorem 5.4)
that

πL ˝ Ψ´1
L

`

Hs,Rr0, 1s
˘

“ 1 ´ op1q.

Furthermore, for a fixed constant R1 ą 0,

πL ˝ Ψ´1
L

´

Cs,R1

r0, 1s

¯

ě 1 ´ Pr

ˆ

M´1
N ρ1`1{p2sq2Ls`1{2 max

1ďiď2L
|Zi| ě

?
CR1

˙

,

for Z1, . . . , Z2L i.i.d. standard Gaussian. By Lemma 3.27, the probability on the
right-hand side tends to zero for MN "

a

logpNq, meaning that f is in the s-smooth
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Hölder ball of radius R1 with probability tending to one. Similarly, by Lemma 3.27,

πL ˝ Ψ´1
L p}f}8 ď ρsq “ 1 ´ op1q.

Setting qf “ 1`f we can conclude that for f „ πL˝Ψ´1
L , qf is in Cs,Rr0, 1sXHs,Rr0, 1s

with probability tending to 1. Furthermore, qf is a probability density, since |f | ď 1

and
ş1

0
fpsqds “ 0. To see the latter, note that L Ñ 8 as ρ Ñ 0, for which we have

ż 1

0

fpsqds “

2L´1
ÿ

k“0

fLk

ż 1

0

ψLkpsqds “ 0 @L ą L0. (6.53)

So, }f}1 ě ρs{MN implies that qf P Hs,R

M´1
N ρs

. The latter condition holds with πL˝Ψ´1
L -

probability 1`Op1{Cq. To see this, note that the wavelets are compactly supported,
ş1

0
|ψLkpsq|ds Á 2´L{2, so it follows that

ż

}f}1dπL ˝ Ψ´1
L pfq Á ρsM

´1
N 2´LE}ΓZ}1 Á ρsM

´1
N ,

where Z „ Np0, I2Lq and the last step follows from the fact that Γ is idempotent and
has rank of the order 2L. By the fact that

ż

}f}21dπL ˝ Ψ´1
L pfq ď

ż

}f}22dπL ˝ Ψ´1
L pfq À Cρ2s{M2

N ,

we obtain that, for a large enough choice of C ą 0,

πL ˝ Ψ´1
L p}f}1 ď ρs{MN q ď πL ˝ Ψ´1

L

ˆ

MN

ρs

ˇ

ˇ

ˇ

ˇ

}f}1 ´

ż

}f}1dπL ˝ Ψ´1
L pfq

ˇ

ˇ

ˇ

ˇ

ą C{2

˙

which by Chebyshev’s inequality and the abound on the second moment is of the
order 1{C.

The rest of the proof follows along a similar argument as the one used in the proof of
Theorem 6.1. Consider the model P 1

s,R to be generated by

dX
pjq

t “
fptq

2
dt`

1
?
2n
dW

pjq

t . (6.54)

By Pinsker’s inequality,

}Pnm
f ´ Pnm

g }TV ď

c

mn

2
DKLpPf ;Pgq “

?
mn

?
2

}f ´ g}2

for any f, g P L2r0, 1s and with P 2n
f{2 denoting the distribution of (6.54). Consequently,

the probability distribution corresponding to j “ 1, . . . ,m i.i.d. draws of (6.54) is at
most

Df :“
?
mn }

?
q ´ 1 ´ f{2}2
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far away in total variation distance from the probability distribution of the j “

1, . . . ,m i.i.d. draws of (6.52). Via the Taylor approximation
?
1 ` y´1 “ y{2´y2{8`

y3

16p1`η
5{2
y q

for some η P r0, ys, the display above with q “ 1 ` f is further bounded

by
?
mn

›

›f2
›

›

2
{2, where it is used that |f | ď 1{2 for all N large enough. The latter

quantity is less than
?
mnρ2s{4 with probability tending to one under πL˝Ψ´1

L . Let P1
f

denote the joint distribution of the transcripts Y “ pY p1q, . . . , Y pmqq corresponding
to the distributed protocol T and the data X “ pXp1q, . . . , Xpmqq with Xpjq governed
by (6.54). Combining the above with Lemma 6.9, it follows that

inf
TPJP

sup
sPrsmin,smaxs

RPpHs,R
ρ1
s
, T q ě

inf
TPJP

sup
sPrsmin,smaxs

„

P1
0T pY q `

ż

P1
f{2p1 ´ T pY qqdπLs˝Ψ´1

Ls
pfq

´πLs
˝ Ψ´1

Ls

`

f : qf R Hs,R
ρs

, }f}8 ď ρs
˘

´
?
mnρ2s{4

ȷ

.

It was established earlier in the proof that for C ą 0 large enough, the second term
on the right-hand side can be made arbitrarily small. In case of ρs corresponding to
the minimax rate under bandwidth constraints, we have that

?
mnρ2s À

?
mn

ˆ

1
?
mn

˙
2
3

Ñ 0 as mn Ñ 8,

where it is used that s ą 1{2 and m{n Ñ 0 by (6.49). Under differential privacy
constraints, we similarly have that

?
mnρ2s À

?
mn

ˆ

1
?
mnϵ

˙
2s

2s`1{2

À
m1{6

n1{6ϵ2{3
Ñ 0

whenever ϵ " m1{4n´1{4. By combining the above with (6.51), we conclude that

inf
TPJQ

sup
sPrsmin,smaxs

RQpHs,R

M´1
N ρs

, T q “ 1 ´ op1q,

by (the proofs of) Theorems 5.2, 5.3, 5.5 for bandwidth and local differential privacy
constraints for appropriately large but at most poly-logarithmic factorsMN , finishing
the proof.

Chapter acknowledgements: The quote at the start of the chapter is from [220].

6.4 Appendix

The lemmas in this section are well known in the literature, but we provide proofs for
completeness. The first lemma below is used in the comparison of the multinomial
model to the many-normal-means model.
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Lemma 6.4. Let d P 2N, F Ă Rd{2, and consider for i “ 1, . . . , d independent
random variables Xi “ hi ` σZi with σ ą 0 and Zi „ Np0, 1q satisfying

hi “

#

aifi if i ď d{2,

´aifi´d{2 if i ą d{2,

for some f P F and a “ paiqiPrds P Rd. Let P denote the model generated by the
observations X :“ pX1, . . . , Xdq „ Pf , f P F and let Q denote the model generated
by

X̃i “ pai ` ad{2`iqfi `
?
2σZi, for i “ 1, . . . , d{2,

with Zi
i.i.d.
„ Np0, 1q and f P F .

Then, ∆pP,Qq “ 0.

Proof. We shall show that the statistic S “ paiXi ´aiXd{2`1qiPrds is sufficient for the
model P by using Neyman-Fisher (Lemma 6.1). We have

dPf

dP0
pXq “

d

Π
i“1

exp

ˆ

σ´1Xihi ´
1

2σ2
h2i

˙

“
d{2

Π
i“1

exp

ˆ

σ´1paiXi ´ aiXd{2`1qfi ´
1

σ2
f2i

˙

“ eσ
´1SJf´ 1

σ2 }f}
2
2 .

In distribution, X̃ “ pX̃iqiPrds is equal to S, which implies ∆pP,Qq “ 0 per Lemma 6.1.

The following lemmas are well known but included for completeness.

Lemma 6.5. Let Pf denote the distribution of a Npf, σIdq distributed random vector
for f P Rd and let Pn

f denote the distribution of n i.i.d. draws (i.e. Pn
f “

Ân
i“1 Pf ).

It holds that
›

›Pn
f ´ Pn

g

›

›

TV
ď

n

2σ
}f ´ g}2 .

Proof. By Pinsker’s inequality,

}Pn
f ´ Pn

g }TV ď

c

n

2
DKLpPf ;Pgq.

A straightforward calculation gives that the latter is bounded by
?
n

2σ }f ´ g}2.

The following lemma relates the total variation distance between P,Q to the L1-
distance between corresponding densities.
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Lemma 6.6. Let P,Q be probability measures dominated by a sigma-finite measure
µ with corresponding probability densities p “ dP

dµ and q “
dQ
dµ . It holds that

}P ´Q}TV “
1

2

ż

|ppxq ´ qpxq|dµpxq.

Proof. See e.g. Section 2.4 in [204].

The next lemma gives a useful characterization of the total variation distance between
two probability measures.

Lemma 6.7. Let P be a signed, bounded measure defined on measurable space pX ,X q

and suppose that P ! ν for a sigma-finite measure ν. It holds that

}P }TV “
1

2
sup

"
ż

fdP : |f | ď 1 and f : X Ñ R is measurable

*

. (6.55)

Proof. Consider the Jordan measure decomposition P “ P` ´ P´, where P`, P´

are both positive, bounded measures such that P` K P´. For any measurable f ,
tf ě 0u, tf ď 0u P X , so |f | ď 1 means that

ż

fdP ď

ż

f1tfě0udP
` ´

ż

f1tfď0udP
´

ď

ż

1tfě0udP
` `

ż

1tfď0udP
´

ď }P`}TV ` }P´}TV ď 2}P }TV.

For the other direction, note that f “ signpp ´ qq is measurable and bounded by 1,
which gives

1

2

ż

fdP “
1

2

ż

|p´ q|dν “ }P ´Q}TV,

where the last equality follows from Lemma 6.6.

Lemma 6.8. Let P “
Âm

j“1 Pj and Q “
Âm

j“1Qj for probability measures Pj , Qj

defined on a common measurable space pX ,X q, with probability densities pj , qj for
j “ 1, . . .m. It holds that

}P ´Q}TV ď

m
ÿ

j“1

}Pj ´Qj}TV.
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Proof. The measures Pj and Qj admit densities with respect to Pj ` Qj , which we
shall denote by pj and qj , respectively, with

p :“
m

Π
j“1

pj “
d
Âm

j“1 Pj

d
Âm

j“1pPj `Qjq
and q :“

m

Π
j“1

qj “
d
Âm

j“1Qj

d
Âm

j“1pPj `Qjq
.

Writing µ “
Âm

j“1pPj `Qjq and applying Lemma 6.6 we obtain

}P ´Q}TV “
1

2

ż

|
m

Π
j“1

pjpxjq ´
m

Π
j“1

qjpxjq|dµpx1, . . . , xmq. (6.56)

By the telescoping product identity

a1 ¨ a2 ¨ ¨ ¨ am ´ b1 ¨ b2 ¨ ¨ ¨ bm “

m
ÿ

j“1

paj ´ bjq
j´1

Π
k“1

ak
m

Π
k“j`1

bk (6.57)

and Fubini’s Theorem, the right-hand side of (6.56) is bounded by

m
ÿ

j“1

1

2

ż

|pjpxjq ´ qjpxjq|dpPj `Qjqpxjq “

m
ÿ

j“1

}Pj ´Qj}TV.

The following lemma can be seen as a data processing inequality for the total variation
distance.

Lemma 6.9. Let pX ,X q and pY,Y q be two measurable spaces and let K : Y ˆX Ñ

r0, 1s be a Markov kernel. For any probability measures P,Q defined on X it holds
that

}PK ´QK}TV ď }P ´Q}TV.

Proof. This follows immediately from the representation in Lemma 6.7 combined with
the fact that, for |f | ď 1, x ÞÑ

ş

fpyqdKpy|xq is a measurable function bounded by 1,
since K is Markov kernel. Hence,

sup
A

|PKpAq ´QKpAq| “
1

2
sup
f

ż ż

fpyqdKpy|xqdpP ´Qqpxq

ď
1

2
sup
f

ż

fpxqdpP ´Qqpxq.

The next lemma bounds the L1-distance }p ´ q}1 between densities with a multiple
of the Hellinger distance 2´1{2}

?
p´

?
q}2.
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Lemma 6.10. For two probability densities p, q with respect to µ, it holds that

1

2

ż

|ppxq ´ qpxq| dµpxq ď

d

ż

´

a

ppxq ´
a

qpxq

¯2

dµpxq.

Proof. The result follow from the Cauchy-Schwarz inequality and the fact that
ş

pdµ “
ş

qdµ “ 1. See e.g. [204] for details.



Discussion

The results of this thesis mathematically characterize and quantify the impact of vari-
ous communication constraints in distributed hypothesis testing, where we have inves-
tigated bandwidth constraints, differential privacy constraints, and a meta-analysis
setting.

The specific statistical task that is central to the thesis is that of “signal detection” or
“goodness-of-fit” testing, where we wish to decide between a null hypothesis that the
data is generated by a particular specified “null” probability distribution, versus the
alternative hypothesis that the data is generated by another probability distribution
belonging to a family of alternatives.

The results provide insight into how the statistical problem of testing gets more diffi-
cult depending on the severity of the bandwidth or privacy constraint. The theory is
derived in an abstract distributed setting, in which we havemmachines (e.g. locations;
hospitals, sensors, servers, etc.). Each of the j “ 1, . . . ,m machines communicates
a transcript on the basis of a local independent sample of n data points drawn from
an unknown distribution. Each transcript has to satisfy a certain communication
constraint. In case of a bandwidth constraint, the transcript is considered to contain
at most b-bits of information. In case of privacy constraint, the transcript Y pjq must
satisfy a differential privacy constraint governed by two parameters ϵ and δ, where
smaller values for ϵ and δ give stronger privacy guarantees. Chapter 4 concerns a
meta-analysis setting, where the constraint comes in the form of restricting the type
of test statistics communicated by each of the machines to those that are “typical”
when only the outcome of studies are published (e.g. a test outcome or p-value).

Within the minimax paradigm, the theory in this thesis captures the difficulty of the
various distributed and constraint testing problems, in terms of the characteristics of
the underlying model and statistical setting. That is to say, it describes the difficulty
in terms of the minimax separation rate as a function of b in the bandwidth constraint
setting and ϵ and δ in the differential privacy constraint setting, as well as m, n and
d (or in terms of the regularity hyperparameter “s” in the case of a nonparametric
model formulation).

261



262 6. Statistical equivalence under communication constraints

Chapter 2 and 3 together establish the minimax rate for the canonical many-normal-
means model for both bandwidth and privacy constraints. The first of these two
chapters focusses on proving impossibility theorems for these settings. Where typical
proof techniques in the literature used for e.g. estimation minimax rates fall short, the
chapter exhibits a novel framework which proves fruitful in deriving distributed testing
minimax separation rates. Chapter 3 establishes that the rates of the impossibility
theorems are indeed sharp, by exhibiting methods that attain these rates. Hence, the
methods derived in the former chapter are optimal in terms of the minimax separation
rate.

The results of Chapter 2 and 3 fully establish the bandwidth constraint rates in a
testing setting, where previously rigorous study of performance of distributed band-
width constraint problems has been mostly conducted for estimation. In terms of the
privacy results, the findings of these two chapters contribute to the existing literature
by establishing the minimax testing (and estimation) rates under differential privacy
a fully general distributed setting, where earlier literature derived optimality results
only in the case of local differential privacy (i.e. n “ 1) or central differential privacy
(i.e. m “ 1).

The results of Chapter 2 and 3 testing are contrasted with known results for esti-
mation under bandwidth constraints and differential privacy constraints, where the
latter optimality results are novel and derived in Chapter 2 also. Here, multiple fun-
damental differences between estimation and testing which occur under the presence
of communication constraints are uncovered. Where classically the high-dimensional
testing problem is already fundamentally different from estimation, it is revealed that
these differences persist and are in many ways exacerbated under bandwidth and
privacy constraints.

In the presence of bandwidth or differential privacy constraints, it turns out that
there are more possibilities in terms of testing than for its natural estimation coun-
terparts. In the presence of these constraints, consistent testing is possible in regimes
where consistent estimation is not. Furthermore, testing is subject to many phase
transitions, in which different testing strategies need to be adopted for optimal per-
formance, whereas estimation under these constraints typically be performed by a
single procedure. That consistent testing is ‘easier’ than estimation and has more op-
tions in terms of different consistent testing strategies, conversely means that showing
impossibility results turns out to be much more involved, as is exhibited in Chapter 2.

In Chapter 4, the theory derived in Chapter 2 and 3 is extended to the setting of meta-
analysis, by establishing a connection between meta-analysis and distributed learning
under bandwidth constraints. This chapter provides a unified, theoretical framework
for evaluating the behavior of standard meta-analysis techniques, such as Fisher’s
and Bonferroni’s method. In the normal means model, it is shown that by combining
the locally optimal chi-square statistics at a meta-level one can gain a factor of

?
m

compared to using just a single trial. Nevertheless, regardless of the choice of the
combination method, a factor of

?
m^

?
d is lost compared to the scenario when all



6.4. Appendix 263

data from all trials are at our disposal. This loss in efficiency, as captured by the
minimax separation rate, is the same as the one suffered under a 1-bit bandwidth
constraint in the many-normal-means model, as exemplified by the theory derived in
the earlier Chapters 2 and 3.

In Chapter 5, the minimax rate for goodness-of-fit testing in the nonparametric dis-
tributed signal-in-white noise model is derived, for both bandwidth- and privacy con-
straints settings. The nonparametric signal-in-white-noise model is a natural exten-
sion of the finite dimensional many-normal-means model considered in the previ-
ous chapters. This nonparametric model serves as a benchmark for nonparametric
goodness-of-fit testing, and the results here follow from the theory established in
Chapter 2 and 3. As an added difficulty, we consider the setting where the true
smoothness s of the underlying signal parameter is unknown. When the smooth-
ness s is unknown, the results and methods of the earlier chapters do not transfer as
straightforwardly to the nonparametric problem. It is shown that rate optimal meth-
ods can adapt to the unknown regularity s of the underlying function with a cost of
at most additional logarithmic factors in both the bandwidth and differential privacy
constraint settings, where we characterize the cost of adaptation exactly under the
former constraints.

In Chapter 6, some bandwidth and privacy results of the earlier chapters are shown to
extend to other models as well, such as the multinomial model, nonparametric densi-
ties and nonparametric regression. The focus of this chapter is distributed goodness-
of-fit testing under communication constraints, and the minimax rates for the afore-
mentioned models are derived by leveraging existing model comparisons from the
literature in the distributed setting. The chapter also exemplifies a scenario in which
the distributed bandwidth constraint testing problem with n observations from the d
dimensional multinomial model behaves drastically different from its many-normal-
means model counterpart. The latter fact is used to show that these models are
asymptotically nonequivalent when d{n is large.

A remarkable finding that is consistent across each of the constraint types and models
considered, is that there is fundamentally a benefit of having access to shared random-
ness in the distributed setting. For certain constraint budgets, the improvement over
protocols that rely solely on local sources of randomness is strict. In real applications
without interaction, one should always use shared randomness if at all possible.

The theory in this thesis can be extended in many directions. In Chapter 6, we
learn that depending on a relation between d and n, the multinomial model and
many-normal-means model do not always exhibit the same behavior under band-
width or privacy constraints. Understanding these differences well can give insights
into the impact of the model on the cost of communication constraints. Further-
more, this provides a lens to understand differences between models outside of the
distributed context. To understand these problems better, one might require to adapt
the Brascamp-Lieb inequality type of argument to a non-Gaussian setting or use a
different technique altogether.
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Other extensions apply to the many-normal-means and signal-in-white-noise settings
as well. To list a few, one could consider different alternative hypotheses, alternatives
that are sparse in an appropriate sense or a multiple testing setting. Another extension
is to consider settings in which variances of the noise are unknown. In principle, since
variances can be estimated at an n´1{2-rate locally in each machine (see e.g. [183]), one
could conjecture that this leaves the established rates unchanged (up to logarithmic
factors as observed in [47]), but this has not been verified by the author beyond the
back of an envelope. Furthermore, whilst our analysis supports differing budgets to
the extent that ϵj — ϵk, δj — δk, bj — bk and nj — nk, it would be interesting
to consider settings in which the machines are heterogeneous in their constraints and
number of observations, such as considered in the estimation results of [189, 51]. Since
differential privacy is not the only formal notion of privacy, other notions of privacy
could be considered. Lastly, the distributed setting considered here is a federated
setting where data is observed and shared “at once” to a single “central server”.
Architectures in which machines share transcripts, for example, sequentially, do not
fall under this scope and merit their own study.
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[226] A. Zaman and B. Szabó. Distributed nonparametric estimation under commu-
nication constraints. arXiv preprint arXiv:2204.10373, 2022.

[227] R. Zamir. A proof of the Fisher information inequality via a data processing
argument. IEEE Transactions on Information Theory, 44(3):1246–1250, May
1998. ISSN 00189448. doi: 10.1109/18.669301. Number: 3.



Bibliography 283

[228] C. Zhai and J. Lafferty. A study of smoothing methods for language models
applied to information retrieval. ACM Transactions on Information Systems
(TOIS), 22(2):179–214, 2004.

[229] Y. Zhang, J. Duchi, M. I. Jordan, and M. J. Wainwright. Information-theoretic
lower bounds for distributed statistical estimation with communication con-
straints. Advances in Neural Information Processing Systems, 26, 2013.

[230] Y. Zhu and J. Lafferty. Distributed nonparametric regression under commu-
nication constraints. In J. Dy and A. Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 6009–6017. PMLR, 10–15 Jul 2018.

[231] Y. Zhu and J. Lafferty. Distributed nonparametric regression under commu-
nication constraints. In International Conference on Machine Learning, pages
6009–6017. PMLR, 2018.





Publications

Published
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