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Chapter 1

Introduction

In this thesis, we study distributed hypothesis testing under bandwidth and privacy
constraints. Hypothesis testing is concerned with making a decision on the truth or
falsehood of a statement on the basis of data that may provide evidence in support
of, or against said statement. In a distributed setting, however, such data is not
readily available in one “location”, meaning that there is no “central” access to the
complete data. This scenario commonly occurs when data is observed or stored at
multiple locations, such as hospitals, sensors or servers, from which the data cannot
be shared in full because of communication limitations. Constraints on the sharing of
data arise for various reasons, such as limited bandwidth, issues concerning privacy
or ownership of the data.

Hypothesis testing enjoys a large body of classical literature studying theoretically
optimal performance in terms of statistical power, the ability to correctly discern the
falsehood of a statement based on data. Nevertheless, in the presence of commu-
nication constraints, classical statistical methods that are designed with having full
access to the data in mind, no longer apply. Distributed methods aim to overcome
these barriers by providing mechanisms that operate within these limitations on what
can bed communicated, by e.g. preserving privacy or using only a limited amount of
bandwidth.

When it comes to the performance of these methods, the communication constraints
might severely affect the quality of the statistical inference, for instance by dimin-
ishing the statistical power that could be obtained under availability of the complete
data. For example, a technique that does not abide by privacy constraints has full
utility in the sense that it can give the classically optimal “full data” answer, whereas
maintaining full privacy may prevent the data owner from disclosing anything about
the data at all. Thus, there is often a trade-off between the quality of statistical infer-
ence and privacy. Similarly, in order to satisfy a bandwidth constraint, the data may
need to be compressed, which could result in loss of information and consequently a
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worse performance. Another example can be found in meta-analysis, where combining
test statistics or test outcomes from independent trials or experiments is a popular
method when only the outcome of studies are published (e.g. a test outcome or p-
value). This can be seen as a communication constraint and a form of compression
also, which similarly might result in a loss of statistical power.

This introduces an important question that lies at the heart of this thesis: What
is the anticipated loss of statistical power under communication constraints? What
are the possibilities and limitations when operating under bandwidth constraints,
when assuring a certain level of privacy, or when performing meta-analysis solely on
the basis of study outcomes? The answers to these questions, i.e. knowing what is
theoretically possible and quantifying the impact of communication constraints on
performance is of great importance when conducting statistical analysis within such
contexts.

Quantifying the trade-off between privacy and statistical power means that researchers
and data analysts can make an appropriate balance between data privacy and mean-
ingful analysis. It enables a conscious choice in terms of the amount of privacy that
is sacrificed for the sake of accuracy in the data analysis and gives insight in how to
design studies such that high statistical power can be combined with adequate privacy
guarantees.

The capacity to transmit data does not match the capacity to generate or process
data in many modern applications. By knowing the bounds of what can and cannot
be achieved, systems can be designed to work as efficiently as possible within such
bandwidth constraints. It allows organizations to make informed decisions about
where and how much to invest in infrastructure. Furthermore, for inherently band-
width constraint settings such as voting systems or meta-analysis on the basis of test
outcomes, it is important to understand to what extent substantial statistical power
can be expected at all.

Starting a few decades ago, investigations into distributed settings with bandwidth
and other information constraints originated in the electrical engineering community,
under the names “decentralized decision theory / the CEO problem” e.g. [199, 20,
203, 33, 133] 197] or “inference under multiterminal compression” (see [198] for an
overview). These were largely motivated by applications where data is by construction
observed and processed locally, such as astronomy, meteorology, seismology, surveil-
lance systems, wireless communication, military radar or air traffic control systems.
With the advent of the internet and big data, interest in distributed methods with
bandwidth constraints increased further. Modern machine learning settings often con-
cern settings where inference is centralized, while training data remains distributed
over numerous clients. Examples of such “federated learning” or “edge computing”
settings are siloed data centers, such as hospitals, or networks of cellphone users, in
applications such as word prediction, face or voice recognition, Siri or Google Assis-
tant, driverless cars or even earthquake prediction [142] [130], 114, BT, 160, 63]. In
such settings, bandwidth often forms a limited/costly resource, or an outright bottle-



neck [I31].

Similarly, with advances in electronic record keeping, privacy has become a more
and more pressing issue in the modern era. In various scientific fields, there is an
increased awareness of privacy issues, for example in the medical sciences [135] or
social sciences [162]. In the internet era, also societal awareness towards privacy issues
has been heightened, paralleling the rise of consumer engagement with tech industry
products [66], including many of the federated learning applications mentioned in the
previous paragraph.

Methods that preserve privacy have been around in the statistics community for some
time, starting in the 1980s [0, 81]. The current leading formal privacy framework
is that of differential privacy, as introduced in [82]. Differential privacy is a mathe-
matical guarantee, describing whether results or data sets can be considered “privacy
preserving” and hence can be openly published. Whilst many other privacy frame-
works exist, this notion of privacy holds a prominent position both theoretically and
practically, finding application within industry giants like Google [93], Microsoft [74],
Apple [25], as well as governmental entities such as the US Census Bureau [175].

Rigorous study of performance under bandwidth constraints has been mostly con-
ducted for estimation problems. Bandwidth constraints have been studied for the
many-normal-means and parametric models in e.g. [229] [77, 180} 39, 219 113 46, [45],
as well as nonparametric models, including Gaussian white noise [230], nonparamet-
ric regression [I87], density estimation [30], general, abstract settings [I91] and online
learning [207]. Distributed adaptive estimation methods under bandwidth constraints,
where adaptation occurs to the unknown regularity of the functional parameter of in-
terest, were derived in [I87, [I88] [47].

For distributed testing under bandwidth constraints, much less is known. In [6], the
authors consider a setting in which each machine obtains a single observation from a
distribution on a finite sample space and derive lower bounds for testing uniformity
of this distribution. Similar distributed uniformity testing is considered in [7], where
matching upper bounds are exhibited for this setting. [I2] derives bounds that are
optimal for the Gaussian setting in case of 1-bit bandwidth constraints for a single
observation of the many-normal-means model.

The literature on the theoretical properties of differential privacy can be mostly di-
vided into those studying local differential privacy or central differential privacy. In
local differential privacy, the privacy protection is applied at the level of individual
data entries or observations. This is a stringent form of differential privacy because
each “item” of data is independently given privacy protection. In the other extreme,
central differential privacy, only the inference output needs to satisfy the differential
privacy constraint, meaning that if the output is a test, only the final decision needs
to satisfy a differential privacy constraint.

Distributed estimation under local differential privacy has been studied for the many-
normal-means model, discrete distributions and parametric models in [78] [79] [5] 223],
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and density estimation [I76, 134, 43]. Testing under local differential privacy has
been studied for discrete distributions in [T03] [I8T], [3] [4] [34] [9] [I5] and nonparametric
densities in [136]. In [44], the authors consider estimation of a quadratic functional
under local differential privacy constraints, which has connections to goodness-of-fit
testing. Estimation in the central setting was investigated in [127) 48| 50]. Private
testing in the central setting, where all data is available on a single machine, has been
studied by [2], 54, [157] for discrete distributions and the many-normal means model.

In-between local differential privacy and central differential privacy, there are general
distributed settings. Here, privacy is applied at a level ‘sample’ level (sometimes called
‘user’ level), where for example different entities, such as hospitals, are concerned
about sharing their data with other entities due to privacy concerns for their patients.
In such settings, differential privacy needs to apply at the level of the local sample,
e.g. the patient pool of each hospital. Investigations into this more general setting
have been much more limited, with only estimation being considered in [147, 18],
which study estimation for discrete distributions and [I41], [I58] which study mean
estimation.

Contrary to some literature that defines “communication constraints” solely as band-
width constraints, we we broaden the term to include both bandwidth and privacy
constraints. This use of the terminology is appropriate when considering that both
types of constraints, both limit information sharing, albeit in different ways. Further-
more, both types of communication constraints will be studied using similar mathe-
matical techniques.

This brings us to specifying the aim of this thesis.

1.0.1 The aim of the thesis

The aim of this thesis is to mathematically characterize and quantify the impact of
bandwidth and differential privacy communication constraints in distributed hypoth-
esis testing. That is to say, we wish to gain insight into how the statistical problem
of testing gets more difficult depending on the severity of the communication con-
straint. The statistical task this thesis centers around is that of hypothesis testing,
where the type of hypothesis test we shall consider will be that of “signal detection”
or “goodness-of-fit” testing, where we wish to decide between the null hypothesis that
the data is generated by a particular specified “null” probability distribution, ver-
sus the alternative hypothesis that the data is generated by some other probability
distribution belonging to a family of alternatives.

The theory shall be derived in an abstract setting in which we have m locations (e.g.
hospitals, sensors, servers, etc.) which we shall refer to as machines. Each of the
j = 1,...,m machines communicates a transcript Y ?) on the basis of a local inde-
pendent sample of i = 1,...,n data points Xi(J ) drawn from an unknown distribution.
Each transcript Y) has to satisfy a certain communication constraint. In case of a
bandwidth constraint, the transcript Y') may contain at most b-bits of information



(details are given in Section [1.2.1]). In case of privacy constraint, the transcript ¥ ()
must satisfy a differential privacy constraint governed by two parameters € and 9,
where smaller values for € and § give stronger privacy guarantees (we defer the details

to Section |1.2.2)).

In modern applications, it is common that the number of data samples is small com-
pared to the dimension of statistical model, such as in functional data or large his-
tograms. For some settings, the dimensionality is a known, finite number, say d € N.
For nonparametric models, data is infinite dimensional and appropriate statistical
techniques in such cases require adaptation. In such adaptive settings, the certain hy-
perparameters such as the “effective dimension” or “regularity” are unknown, and in
order achieve optimal performance, the statistical procedure should be able to adapt
to the unknown hyperparameter in a data driven way.

The theory in this thesis aims to capture the difficulty of the testing problem in terms
of the characteristics of the underlying model and statistical setting. That is to say,
to capture the difficulty as a function of b in the bandwidth constraint setting and e
and 0 in the differential privacy constraint setting, as well as m, n and d (or in terms
of the regularity hyperparameter “s” if the model is nonparametric).

In order to effectively do so, we restrict ourselves to certain canonical statistical mod-
els. The main focus is the d-dimensional many-normal-means model, which offers the
benefit of tractable analysis whilst also capturing the principle phenomena of testing
under communication constraints. As a canonical nonparametric setting, we shall con-
sider goodness-of-fit testing in the signal-in-white-noise model, where we investigate
the case where the regularity of an underlying signal is unknown. Here, goodness-of-
fit testing is to be understood in the sense of [I123], which bares a close relationship
with “classical” nonparametric goodness-of-fit testing in the sense of [23], [182] [67) 21T]
(see e.g. Section 1.4 in [123] and the introduction to Chapter [f]).

These models typically serve as benchmark models for many other models in the
statistical literature, as it has been a long-standing and consistent finding that models
that describe seemingly very different data and dynamics, can still be subject to very
similar phenomena, such as the asymptotic minimax risk coinciding as the number of
samples grows. That this holds in the distributed communication constraint setting
as well finds mathematical substantiation in Chapter [6] Leveraging existing results
on distance between statistical models, it is shown that the detection boundary for
the Gaussian model occurs in certain other models, such as for discrete distributions
but also more complicated statistical models as well.

Lastly, throughout the thesis, we contrast the results in the thesis for testing with
known results for estimation under communication constraints. There are many con-
nections between estimation and testing. However, classically the high-dimensional
testing problem is fundamentally different from estimation. We uncover even more
fundamental differences between estimation and testing which occur under the pres-
ence of communication constraints.
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1.0.2 On the structure of the thesis

This section provides an overview of the layout of the thesis and describes how the
progression of ideas is structured.

The introduction continues with formally outlining the problem of hypothesis test-
ing under communication constraints. Here, some pages are spent outlining and
motivating the minimax paradigm for goodness-of-fit hypothesis testing. Then, the
distributed setting is formally introduced, where we formally specify what the band-
width constraints and privacy constraints that will be considered in the thesis are,
and give a motivation for them.

Chapters[2 and 3] together establish the key optimality results which lay the foundation
for the concepts and results in the subsequent chapters. Chapter [2] establishes the
fundamental boundaries on what is possible performance wise within the statistical
problem of signal detection in the Gaussian model. It provides insights into what
levels of performance under communication constraints are theoretically unattainable,
with an emphasis on the techniques that are required to show this. On the other
hand, Chapter [3| presents various methods that successfully achieve the performance
boundary outlined in Chapter [2, demonstrating approaches and techniques that are
optimal in terms of the bounds laid out in Chapter[2} These two chapters can be read
in any order, but together form the theoretical basis for much of the later chapters.

Chapter [4 establishes a link between the bandwidth constrained setting and meta-
analysis, from which optimality results for meta-analysis are obtained. Chapter
concerns nonparametric goodness-of-fit testing, in which the dimension of the model
is infinite and the quality of inference is dependent on an unknown hyperparame-
ter which requires so called ‘adaptive methods’ in order to attain optimal inference.
Chapters [4 and [5] can be read independently of each other.

The final chapter, Chapter [f] is dedicated to extending the results from the first four
chapters to other statistical models using Le Cam theory. It is perhaps best saved for
last as this chapter uses results from Chapters and [5] unless one wants a sneak
peek into the broader applicability of the results beyond the Gaussian models of the
earlier chapters.

In each chapter, proofs are given for results whenever the result is key, the technique
novel, or when the proof is short and (perhaps) insightful. Some proofs are moved to
the appendix, of which each chapter has its own. These proofs are typically either of
a (purely) technical nature or concern well known results and therefore only included
for completeness.

Unless indicated otherwise, all results in this thesis are original in the sense that they
are based on original proofs or original combinations of existing results by the author
and collaborators. They are based on joint works [193], [195] with Botond Szabd and
Harry van Zanten,[194] with the aforementioned authors and Aad van der Vaart, and



1.1. STATISTICAL HYPOTHESIS TESTING: FORMAL PRELIMINARIES 7

the works [52, [5I] with T. Tony Cai and Abhinav Chakraborty. The final chapter is
based [215], which benefited from comprehensive proofreading by Aad van der Vaart.

1.1 Statistical hypothesis testing: formal prelimi-
naries

“A good technical writer, trying not to be obvious about it, says everything
twice; formally and informally. Or maybe three times.” -Donald E. Knuth

In this thesis, we shall study hypothesis testing through the lens of statistical deci-
sion theory as developed by [I59, 216]. Statistical decision theory is concerned with
decision-making under uncertainty, where the decision is to be made on the basis of
observed data. For a more general introduction see e.g. [32]. In what follows, let
the random variable X, defined on some measurable space (X, Z"), denote the ob-
served data. We shall consider a family of possible probability distributions of the
data, P = {P; : £ — [0,1]] f € F}, which we refer to as the statistical model. The
indexing set F shall be called the parameter space.

The statistician is concerned with designing a rule of how to make the decision based
on the data. In order to assess the quality of the decision rule, we shall be concerned
with the distribution of outcomes from the decision rule under the distributions P; € P
as if Py was the true distribution truly generating the data.

A hypothesis test is a particular kind of statistical decision problem, where the statis-
tician needs to decide whether to reject a statement called the null hypothesis, which is
a statement about the distribution of the data. We shall be concerned with goodness-
of-fit testing for a simple null hypothesis, where the null hypothesis is a statement of
the form: “X follows the distribution Py,”, where fo € F is a fixed element. Such
a null hypothesis could represent the scenario where a disease or defect is absent, or
the case where a treatment has no effect.

The opposing statement of the null hypothesis is called the alternative hypothesis,
which states that data comes from some other distribution Py, belonging to a class
of alternative distributions H; < P\{Py,}. The alternative hypothesis is sometimes
what one hopes or might expect to establish, for example that a treatment has an
effect of a certain magnitude or the presence of a signal. When H; consists of more
than one element, it is called a composite alternative hypothesis.

This type of goodness-of-fit testing is what we shall be concerned with in this thesis.
It corresponds to situations in which one wishes to assess how well one particular “ex-
planation” of the data fares against a class of alternative explanations. For example,
in linear regression, one might want to test whether a group of explanatory variables
with corresponding vector of coefficients f have an effect on outcome variable, which
could be expressed as testing the null hypothesis that f = 0 versus the alternative
hypothesis of f # 0. Or, one might want to test whether the data is distributed



8 1. INTRODUCTION

according to some particular density, Hy : f = fo, versus the alternative hypothesis
that f belongs some specified (nonparametric) class of densities. For a more general
discussion of hypothesis testing problems, we refer the reader to [139, [123].

When testing a null hypothesis, making the incorrect decision comes in two flavors.
In one case, the statistician could decide to reject the null hypothesis whilst it is true:
X does in fact follow the distribution Py,. This mistake; of incorrectly rejecting the
null hypothesis, shall be referred to as a Type I error. The other kind of mistake, is
to not reject the null hypothesis, even though it is false. This shall be referred to as
a Type II error.

A decision rule deciding between the two hypotheses shall be referred to as a test.
Formally, a test T is a random variable, possibly depending on the data, taking
values in a space of cardinality two, e.g. {DO NOT REJECT,REJECT}. Given a test
of a null hypothesis “X follows the distribution Py,”, the Type I error probability of
T or the level of T is Py, (T = REJECT). Here, we use Py to denote the probability
distribution governing both 7" and X, where X is marginally distributed according to
Py. The probability of making the correct decision given a test T and Py € Hy, i.e.
P;(T = REJECT), is called the power of the test T against Py. Similarly, the Type II
error probability of the test T under Py is P¢(T = DO NOT REJECT). To assess the
power or probability of making a mistake of the second kind against the alternative
hypothesis as a whole, one needs to specify which “alternative” distribution Py # Py,
is under consideration, since P;(T" = DO NOT REJECT) might vary across different
Py e Hy. Given the class H; and a test T, the worst-case Type II error probability is

sup P;(T = DO NOT REJECT).

PreHy
We shall concern ourselves with studying how well an alternative hypothesis can be
distinguished from the null hypothesis in terms of achieving “minimal” worst-case
Type II error probability with tests that also have a “minimal” Type I error prob-
ability. While this approach may appear cautious, doing so provides assurances for
differentiating between the null hypothesis and the entire set of alternative hypothe-
ses, without being tied to a specific distribution within the alternative class. This
statistically guarantees validity of the procedure, irrespective of the a priori unknown
truth.

Given a class of alternatives, it is natural to ask what is the best possible testing
performance, in terms of worst-case Type II error probability. Given a level « € (0,1),
we quantify the best possible performance by the minimaz Type II error probability
for tests of level o, which we define as

Bp(a, Hy, H1) = inf sup Py(T = DO NOT REJECT),
T PfEHl

where the infimum is over all tests of level at most «.

The choice of the class of alternatives H; is important to the statistical analysis. If one
takes “too small” of a class, it might mean that it does not include, or is in some sense
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“too far” from distributions which in reality could explain the data. When testing a
theory, it is desirable to rule out alternatives that are “close to the theory” or may
produce behavior that “looks like the theory” but that are in fact not the theory
at all. On the other hand, if one chooses “too large” of a class for the alternative
hypothesis, it might not be distinguishable from the null hypothesis at all, which in
turn leads to unduly conservative expectations regarding the optimal performance of
a test. This brings us to the concept of minimax separation between the hypotheses.

In what follows, consider a collection of alternative hypotheses H, indexed p > 0, such
that H, c H, for p < p’. We will call p the separation between Hy and the alternative
hypothesis (H,). The map p — fp(c, Ho, Hp) is a decreasing function, meaning that
the testing problem increases in difficulty as p decreases. Now, let us consider a
collection of models {P, : v € I}, where each model P, has a corresponding null
hypothesis Hy = Hp,, and alternative hypotheses, H, = H.,,, p > 0. The minimaz
separation at «, 3 € (0, 1) is given by

Pk g i=inf{p>0:PBp, (a,Ho,H) < B}, vel

The minimax separation effectively captures what is the smallest degree of separation
at which the null hypothesis can be distinguished from the alternative hypothesis,
as the alternative hypothesis “grows closer” to Hy as p decreases. The index v can
be related to certain features of the model, such as the number of observations, the
dimension of the data or other characteristics corresponding to the model P,,. This
is exemplified at the end of the section, where we present the many-normal-means
model. In this model, the relevant characteristics are the dimension of the data d and
the number of observations n. The minimax separation for the many-normal-means
model as a function of d and n tells us how the statistical problem depends on these
model characteristics. For instance, it could tell us what the gain in terms of power is
when we obtain additional observations, or how much more complicated the problem
becomes as the dimension grows.

Often, the minimax separation is characterized by giving upper and lower bounds on
it, which we shall express here as a function of v. This provides a coarser lens, but in
somewhat complex statistical models, such upper and lower bounds on the minimax
separation are the best that one can hope for. We shall call a nonnegative function
V — py.q,p an upper bound for the minimax separation rate whenever p* a.p S Pra,B
It is a lower bound for the minimaz separation rate if p, o5 < py g It is ‘the’
minimazx separation rate whenever pl,a 3 = Pva,p- In slight abuse of terminology,
we shall sometimes simply refer to the minimax testing rate, or the minimax rate,
whenever the context should be clear. Grasping the minimax rate offers insights
into the dynamics of a statistical problem as its attributes change. The minimax
testing framework, as developed in [94] [121], (140, 18], provides a robust foundation
for addressing hypothesis testing within complex statistical contexts, such as high-
dimensional and nonparametric settings.
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In problems where data consists of multiple independent, identically distributed ob-
servations that increase as (a function of) v, it (typically) makes sense to analyze the
testing risk of a test T,

Rp,(Hp,,T) := Py, (T = REJECT) + sup P¢(T = DO NOT REJECT)
Pf:VEHpu

and study sequences of models P, and p, such that the minimazx testing risk

infr Rp, (Hp,,T) tends to either zero or one. This is easier to analyze instead
of the minimax separation at different «, 8 € (0,1) and yields (typically) the same
conclusion. To see this, suppose that 8p, (o, Hy, H,,) < § for all v large enough, for
some [ € (0,1) such that « + 8 < 1. Under (typical) assumptions on the minimax
rate, any other desired level o/ and level worst-case Type II error probability 5’ < 8
can be achieved by repeating a testing procedure of level o and worst-case Type II
error probability 8 a constant number of times (see e.g. Lemma in the appendix
of Chapter [3[ for a more precise statement).

We exemplify the minimax framework outlined above with a statistical problem that
is canonical for goodness-of-fit-testing; signal detection in the many-normal-means
model. The many-normal-means model postulates that we observe data X satisfying

1
A
where f € R? is the unknown signal, Z is an unobserved noise vector with a d-
dimensional standard Gaussian distribution, and 1/n is the signal-to-noise ratio. Note
that this is equivalent to observing n independent copies of a Ny(f, I;)-vector. The
corresponding statistical model Py, 4, indexed by the parameter set R?, consists of
distributions Py such that X is governed by given f € R?. Testing for the pres-
ence of a signal in the normal-means model translates to testing the null hypothesis
Hy : f = 0 that the sequence is identically equal to 0. Rejecting this hypothesis means
declaring that there is a non-zero signal. The difficulty of distinguishing between the

two hypotheses depends on signal strength, the noise ratio n and dimension d. Given
separation p > 0, one could translate this to the test of hypotheses

X=f+—7 (1.1)

Hy: f=0 versus H, : | f|2 > p, (1.2)

The separation p tells us for what signal size (by which we mean the Euclidean norm
of f) a signal can be meaningfully distinguished from 0. For this testing problem, it
is known that the minimax separation satisfies

Vd Vd

Caf =~ < (pfz,d,a,ﬁ)2 < Ca,ﬂj»

where cq 8, Cq,g > 0 are constants depending only on the tolerated Type I and Type
IT errors o and 3. This can be found in e.g. [29], but it also follows as a corollary to
results in this thesis. The (squared) minimax rate for this problem is consequently
given by v/d/n.
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The quantity v/d/n indicates how the difficulty of the statistical problem changes as
the dimension d and number of observations n change. The factor \/ﬁ/n in this case,
indicates that the as the number of observations increases faster than the square root
of the dimension, we can guarantee detection of signals of a smaller size, since every
f e R? with | f|3 > Ca,ﬁ% can be detected with probability at least 8 by a test of
level at most o, where C, g > 0 is a constant depending only on o and 8. On the

v

other hand, the class of signals with | f[2 < ca 3% cannot be distinguished from 0
with testing risk smaller than o + 3, whenever ¢, g > 0 is small enough. This means
in particular that, given sequences n = n,, d = d,, and p = p,, we cannot consistently
distinguish classes of signals f such that |f|3 < p?> = o(v/d/n) from f = 0. The
square root, of the dimension here is particularly interesting, as it implies that certain
small signals can still be detected even when the dimension is larger than the number
of observations. This is not the case for estimation in the Euclidean norm, where we
find that we cannot consistently estimate if d is of larger order than n, as we shall
discuss next.

In the canonical estimation problem in the many-normal-means model, one is con-
cerned with finding an estimate of the true parameter f when the data X is generated
by Ps. An estimator is a measurable function f on the sample spac taking values
in F = R%. Loosely speaking, a good estimator uses the data to produce an estimate
that is (hopefully) “close” to the true parameter f. The minimax estimation risk for
the Euclidean norm is given by

N 2
inf sup E; | £(X) - 1|,
f feRrd 2

where the infimum is taken over all measurable functions f : X — F. It can be shown
that the above expression is bounded between cd/n and Cd/n for fixed constants
¢,C > 0 (see e.g. [204]). This means that, for sequences n = n,, d = d,, such that
d/n converges to a constant (or diverges), no estimator is guaranteed to converge
to the true underlying parameter, even as n tends to infinity. Interestingly, even as
the estimation problem becomes easier with larger n, the dimension increasing at an
equal or faster rate prevents the estimation problem from having a consistent solution.
However, as previously discussed, for such sequences d and n, the testing problem is
solvable in the sense that signals above the v/d/n threshold can be detected as n tends
to infinity. In particular, when v/d/n — 0 whilst d/n > 1, consistent testing is possible,
whilst consistent estimation is not. The testing problem is easier than the estimation
problem in the sense that it is possible to distinguish between the null-hypothesis
and the alternative, even when the seperation between them is much smaller than the
possible accuracy of estimation. Thus, optimal testing requires different procedures
than those used for estimating unknown parameters.

1Or a possibly enlarged probability space allowing for f to be a random measurable function of
the data.



12 1. INTRODUCTION

We shall continue the study of signal detection in the many-normal-means model in
the distributed setting under communication constraints in Chapters and 4l The
reason for studying this Gaussian problem, besides it being of practical importance,
is that it is simple from technical point of view yet allows for exhibition of various
principle phenomena that occur in the distributed setting. Using Le Cam’s theory of
experiments and asymptotic equivalence, Chapter [6] shows that some of the main re-
sults in the many-normal-means model translate to other, more complicated statistical
models, such as regression and density testing, both parametric and nonparametric.

1.1.1 Notation and notions

Most of the notation used in the thesis shall be introduced throughout the text itself.
Certain notions will be used so frequently that it makes sense to briefly go through
them here.

We shall frequently abuse notation when speaking about sequences, where “a sequence
ay” is used to refer both to the collection {ay}, .y as well as individual elements of
the sequence ay, where the reader is to discern which is which based on the context.
For two positive sequences ay and b, let ax < by denote that a/br, = o(1). For two
nonnegative functions f, g defined on the same domain D, let f < g if the inequality
f(z) < Cg(z) holds for all x € D for some universal positive constant C. Similarly,
we write f = g if f < g and g < f hold simultaneously. Every once in a while, such
notations will be used in the thesis without providing proper function notation, for
example by saying “when mb < d”. Such a statement is then to be understood as:
“for all sequences m = my, b = b, and d = dj, such that mb < d”.

We use the notations a v b and a A b for the maximum and minimum, respectively,
between two real numbers a and b. For k € N, [k] shall denote the set {1,...,k}.
Throughout, ¢ and C denote universal positive constants which value can differ from
line to line. The Euclidean norm of a vector v € R? is denoted by |v|. and its i-th
coordinate by (v);. Throughout, I € R%*4 denotes the identity matrix and ¢y € R?
the vector of all ones. For a subset V' of a vector space and scalars v € R, the set vV
is to be understood as {yv : v e V}. For vectors v = (vy,...,v;) € V¥, let ¥ denote
their average, i.e. k=1 Zle v;. Given a matrix M € R?*4 the norm M > |M| is the
spectral norm and Tr(M) is its trace.

We shall define the total variation distance between two probability measures P and
@ defined on a measurable space (X, Z") as

[P = Qv := sup [P(A) — Q(A)]. (1.3)
AeX

For two sigma algebras 2, %, we let 2" ® ¢ denote the smallest sigma algebra
containing 2~ x #. Given measurable spaces (X, .2") and (V,%), a Markov kernel
K (between (X, Z") and target (¥,%)) is a map K = K(-|-) : # x X — [0, 1] with
the following two properties:
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e The map = — K(A|z) is measurable for all A e #'.
e The map A — K(A|z) is a probability measure on % for every x € X.

If S is a random variable on a probability space (X, 2", P), we let P¥ denote its push-
forward measure, i.e. the measure defined by P°(B) := P(S~!(B)). We shall use E
and E¥ as the expectation operator corresponding to P and P°. For statistical models
defined on a measurable space (X, Z"), we shall use regular capital letters such as
Py, with f typically indicating the indexing parameter f € F. In these cases, for
a measurable function h : X — R, Py(h) is to be understood as the expectation of
h, i.e. { h(z)dPs(z). Random variables X,Y,Z form a Markov chain X —Y — Z
whenever their joint distribution P(X:Y-%) disintegrates as

dPXY:2) — gpX gpY X gp21Y

In displays such as the one above this sentence, we shall use the short hands “left-
hand side” and “right-hand side” to refer to the left-hand side and right-hand side of
the relational operator (e.g. the equality sign) in the display, respectively.

Certain terminology shall be used purely to indicate the “role” of the object within
the statistical framework considered. For example, the words sample space and deci-
sion space are both to be understood “just” as measurable spaces; the terminology
indicating the role they play in the statistical decision problem. In that light, a
statistic is nothing more than a measurable map between two measurable spaces, the
measurable space of the data is called the sample space. When we are concerned with
hypothesis testing, we shall consider the decision space {0,1}, where 0 corresponds
to DO NOT REJECT and 1 with REJECT. A test is then simply to be understood as a
statistic taking values in {0, 1}.

We shall use the notions of o-sub-Gaussian and o-subExponential random variables
as defined in [210] and use stochastic-O-notation “Op” and “op” as defined in [205].

1.2 Distributed inference

Consider a measurable space (X, Z") with a statistical model P = {P; : f € F}
defined on it. In the distributed framework, we consider j = 1,...,m machines, each
receiving data X () drawn from a given distribution P; e P. Each of the machines
communicates a transcript based on the data to a central server, which based on
the aggregated transcripts computes its solution to the decision problem at hand. In
case of a hypothesis test, we shall call the combination of the process generating the
transcripts and the test based on the transcripts a distributed testing protocol.

Definition 1. A distributed testing protocol for the model P consists of a triplet
{T,{K7}7,, (U, % ,PY)}, where { K7} is a collection of Markov kernels K7 : ) x

X x U — [0,1] defined on a measurable space (YU), # (1)) T ®T=1 YU - 0,1} is
a measurable map and (U, % ,PY) is probability space.
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The test T decides on the basis of the transcripts generated from the data by the
kernels {K J }i=1,...,m, which form the conditional distribution of transcripts given the
data. The transcript from kernel K7, which takes values in Y9, shall be denoted
by Y). The probability space (U, % ,PV) is used to (possibly) generate a source of
randomness (independent of the data) that is shared by the machines. The distributed
protocol is said to have no access to shared randomness or to be a local randomness
protocol if PV is trivia In an abuse of notation, we shall often refer to the entire
triplet {T', {K7};=1, . m, U, % ,PY)} using just T.

.....

The statistical model underlying the distributed protocol plays an (ambient) role in
the definition of a distributed protocol. In most of the thesis, the statistical model
under consideration is clear from the context, and we shall simply say “distributed
testing protocol” without stating for which underlying model. An exception to this
is Chapter [6] where multiple models are under consideration in the same context.

Given a distributed protocol and i.i.d. data from P; we shall use P; to denote the
joint distribution of ¥ = (Y ... Y(™) the data X under Pp" and the shared
randomness U ~ PV, Writing = (z™),...,2(™) e X™, let  — K(A|z,u) denote
the Markov kernel ®;n:1 K7(-|zU) u) (i.e. the product measure). The independence
structure of the data yields that P{"K = @;n:l P¢K7 and the push-forward measure
of Y can be seen to disintegrate as

PY (A) = P'PUK(A) =PUP/"K(A) = JJK(A|x,u)dP}"(x)dIP’U(u),

where the second equality follows from the independence of U with the data drawn
from Py. The above disintegration of the push-forward measure of Y and the product
structure of K can be interpreted as (X,Y,T(Y)) forming a Markov chain given U,
in the sense of the diagram

X0 — yOr—
L., T(Y). (1.4)

x(m) —— y(M)|U/

In Chapter [0} the above definition is generalized further to general decision problems.
This generalization is straightforward. Because it is interesting to draw parallels with
certain estimation problems throughout the thesis, we informally describe distributed
estimation problems. A distributed estimation protocol consists of a similar triplet as
a distributed testing protocol, differing only in the decision function; which we shall
call estimator and denote by f : R, Y@) — F. We shall consider F to be equipped

with some metric ¢ and the corresponding Borel sigma-algebra. The estimator f is
required to be measurable. The estimation risk is then defined as

sup E¢((f, f).
feF

2Meaning that U ~ PV is a degenerate random variable / % is the trivial sigma-algebra.
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The next section introduces a specific kind of distributed protocol, namely those that
are bandwidth constrained.

1.2.1 Bandwidth constrained distributed protocols

“2019: Now 325 Mbps. The regression line has R?> = .99, meaning that
Nielsen’s Law explains 99% of the variability in the data. Beyond uncanny.
One small change is that when I first wrote about this in 1998, the best-fit
growth rate for the 1984-1998 data was 53% (which I rounded to 50%),
whereas the best-fit growth rate for the larger data set of 1984-2019 is 49%
per year (which still rounds to 50%).” - Jakob Nielsen

The kind of bandwidth constraints considered in this thesis is a limitation on the
number of bits that a transcript can consist of. That is, when a distributed protocol
satisfies a bandwidth constraint, each of the machines can only communicate a limited
number of bits to the central server.

Definition 2. A distributed protocol is said to satisfy a b-bit bandwidth constraint
if its kernels {Kj}j:L___ m are defined on measurable spaces (YU), 9y satisfying

|y(j)| < 2b forj=1,...,m.

We use Zflg) and 98(&) to denote the classes of all local randomness and shared
randomness distributed testing protocols with communication budget b per machine,
respectively.

Such a constraint is of concern in settings where data is observed, stored and/or pro-
cessed locally and then required to be “compressed” when communicated to a central
server. Note that the bandwidth constraint as defined here does not involve any
notion of time or back-and-forth communication between the machines. In settings
where it makes sense to consider bandwidth per unit of time (such as when describing
up- and download speed), b should be interpreted as the total number of bits allowed
to be communicated over a fixed amount of time.

Historically, computational power has increasedﬂ at a faster rate than bandwidt}ﬂ To
speed up computation, it could make sense to distribute computation across servers,
but for large data one might consequently run into bandwidth limitations as a bot-
tleneck. In such settings, it is natural to consider the bandwidth and the data to be
rather large, where the latter could be large in terms of dimensionality.

In other settings, bandwidth might be naturally scarce or costly. One could think of
cellphone networks, where the total bandwidth is to be divided across all users, or
sensors which gather data at a much higher resolution than they have the capacity to
transmit, such as low energy sensors. Very low bandwidth settings capture for example

3Through e.g. the doubling of transistors every two years by “Moore’s law” [154], which is stipu-
lated to result in a roughly 60% increase in computational power year over year.
4The roughly 50% year of year increase in bandwidth is sometimes referred to as “Nielsen’s law”.
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voting problems, where decisions are made on the basis of “yes” or “no” outcomes
only, which can be seen as a 1-bit bandwidth constraint. A classical example of such a
setting is meta-analysis on the basis of test outcomes. In fact, in Chapter [4] we shall
employ bandwidth constraint bounds to obtain rates for meta-analysis in settings
where only a study outcome in the form of a single real valued test statistic such as
a p-value is available.

1.2.2 Privacy constrained distributed protocols
“Anonymized data isn’t.” - Cynthia Dwork

The notion privacy considered in the thesis is that of differential privacy as put forward
by [85]. Differential privacy provides a mathematical framework that guarantees
preservation of privacy, in a notion akin to cryptographical guarantees [84].

What differentiates privacy from cryptographic protocols is that in the latter the
goal is to protect data by giving selective access. The goal of a differential privacy
constraint is that individuals within a dataset have their identity protected whilst (a
part or version of) the dataset is publicly accessible.

The latter goal is the same as anonymization, which aims to to protect the identity of
individuals by obfuscating certain information. Differential privacy, however, provides
much stronger framework than anonymization. Anonymization, in principle, allows
to reconstruct the identity of individuals given enough data or side information, see
e.g. [156] 83 87]. Differential privacy on the other hand, guarantees that the identity
of individuals cannot be reconstructed with certainty, regardless of the amount of side
information available.

Formally, a differential privacy constraint on a transcript in our setting is formulated
as follows.

Definition 3. Let € > 0,8 > 0. The transcript Y9) generated from K7, u € U is said
to be (e, d)-differentially private if

KI(Alwy, .. xiy . wp,u) < eKI(Alwy, .. xh . xp,u) + 0 (1.5)

for all Ae &), Ty X1, Ty € X, 1€ {L, ... n}.

Small values of € and § ensure that, even when the transcript ¥ ) is publicly available,
the individuals within the sample (i.e. z1,...,z,) underlying Y ) are unidentifiable.
The notion of differential privacy offers a very strong privacy guarantee: even when
the entire sample is known, up to one individual, that one individual remains uniden-
tifiable.

We shall elucidate the latter statement formally: Even if an entire sample (21, ..., x,)
is known except for the individual corresponding to the index i = 1, deciding between
Hy: 21 = vor Hy : 1 = w cannot be done with a testing risk less than 1— (e —1)—4.
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To see this, note that test T = T(Y ) of level a (i.e. KI(T = 1|v, za, ..., &p,u) = @),
has Type II error

KT = 0lw, w2, ..., 2p,u) = 1 — KI(T = 1w, x2, ..., 2,,u) (1.6)
>1—eK)(T =1|v,29,...,20,u) —6 =1 —e‘a — 4.

That is, any test with a nontrivial level, has close to trivial power when ¢ > 0 and § > 0
are small. This extends to the alternative hypothesis x; # w, as the power calculation
holds uniformly over the sample space. Such a guarantee is sometimes called plausible
deniability: each individual can plausibly deny their presence or absence in a dataset,
thereby protecting their identity even if the rest of the data is known.

The sizes of € and ¢ depend heavily on the application. Typically, € < 1 is considered,
as a value of € = 3 already allows arbitrary power for tests of level 0.05. For this
thesis, we shall take ¢ < 1 for simplicity, but minimax rate results do not change
when considering any range for which e = O(1).

Protocols satisfying the above definition for § = 0 are often called “pure” differentially
private protocols, whereas for § > 0 the protocols are sometimes called “approxi-
mately” or “impure” differentially private protocols. In this text, we shall sometimes
write e-differentially private protocols instead of (e, 0)-differentially private protocols,
and use DP as a shorthand for “differentially private”. The ¢ parameter allows for
catastrophic privacy breaches: with probability at most § transcripts which that re-
veal the identity of individuals in the sample could be released. When 4 is small, this
may still be acceptable.

Typically, § decaying polynomially in the number of observations is deemed accept-
able, e.g. § « (mn) P with p > 1. Larger values of § can permit somewhat pathological
situations. For example, § = 1/n permits privacy protocols that with positive prob-
ability violate the privacy of a random individual. In such a “bad-luck-lottery”, one
data point of the machine can be released with probability 1/n. This is (0,1/n)-DP,
yet exposes a person’s information with probability 1—(1—1/n)™. Similarly, § 2 1/m
allows for at least one machine to give up privacy of its sample with nonvanishing
probability.

We note that for the definition of differential privacy, the sigma-algebra underlying
the space of transcripts is important. The larger the sigma-algebra, the stronger
the privacy constraint. For our purposes, when deriving differentially private testing
protocols, it suffices to consider R? equipped with the Borel sigma-algebra. The lower
bounds hold for general sigma-algebras as well, as long as the quantities considered
in the proof are appropriately measurable.

A distributed differentially private (testing) protocol is one in which the transcripts
generated satisfy , or more specifically, as in the following definition.

Definition 4. A distributed testing protocol {T,{K7}™,, (U, % ,PY)}, is said be a

j=1 U
distributed (e,0)-differentially private testing protocol if {K7};_; . . satisfies (1.5)
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for all we U.

Lastly, we note that the use of shared randomness does not affect the privacy guaran-
tee provided by the protocol, as under the current definition, the guarantee of (|1.6))

is not affected if the outcome of the shared randomness is known. We use ﬂL(f‘{’é) and

98(1;’6) to denote the classes of all local- and shared randomness (e, 0)-differentially
private distributed testing protocols, respectively.

1.3 Main results for the many-normal-means model
under bandwidth and privacy constraints

“A model is some way of reducing the actuality of the world, to something
where you can readily give a narrative for what actually occurs. Where
you can make an abstraction of what is happening and answer questions
that you care about.” - Stephen Wolfram

In this section, we describe the minimax rate for this distributed signal detection
problem under bandwidth- and differential privacy constraints. We revisit the many-
normal-means model considered in Section [L.1} now formulated in the distributed
setting. In the distributed version of the above normal-means model, the mn obser-
vations are divided over m machines. Equivalently, each local machine j € {1,..., m}
observes 4 ,

X =f+ 2P, (1.7)

with 29 ii.d. N(0,1,) for i = 1,...,n, with f € R

The hypotheses remain unchanged; we wish to test the null hypothesis that f = 0
versus the alternative hypothesis that

feH,={feR": |fl.=p}. (1.8)
The test is to be conducted on the transcripts Y = (Y(l), ceey Y(m)), where each of
machine j = 1,...,m has generated its transcript Y (9) on the basis of the underlying

data X0) = (ij), . ,X,(Lj)) and possibly a shared source of randomness U. Following
the framework outlined in the previous section, the test is to be conducted by using
a distributed testing protocol, {T, {K’ };11, U, % ,PY)}, where the Markov kernels

map from the underlying sample space R?*¢,

In this section, we present the main results for this model where the distributed
protocol is either satisfying a b-bit bandwidth constraint or a (e, §)-differential privacy
constraint. These are spread across two results, Theorems and The first,
which describes the detection boundary under bandwidth constraints, is given in
Section [1.3.1] The second describes the detection boundary under (e, §)-differential
privacy constraints, presented in Section Deriving these results is the focus of
Chapters [2] and
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The phenomena occurring within the many-normal-means model extend to other
models and testing problems, such as the nonparametric signal-white-noise model
discussed in Chapter the multinomial model, regression or density testing (see
Chapter @ or to meta-analysis (Chapter . We give an interpretation of these phe-
nomena in this section, to provide the reader a flavor of the intricacies encountered
in distributed, communication constrained settings.

1.3.1 Detection boundary under bandwidth constraints
The following theorem captures the detection boundary corresponding to the goodness-

of-fit test of (1.8]) in the many-normal-means problem under bandwidth constraints.

Recall that <7L(§ and ﬁs(lg), respectively denote the classes of all local randomness
and shared randomness distributed testing protocols with a communication budget
of b-bits per machine.

Theorem 1.1. Consider any sequences n =n,, d =d,, m =m, and b= b, in N.
For any sequence of nonnegative numbers p = p, such that

= Vd («/bfd/\m) (19)

0 for any M, — oo,
1 for any M, — 0.

it holds that

il’lf R(HJM,,;» T) i
Te?s(g)

Similarly, in the case of only local randomness, if

g X (L A, (1.10)

mn \ b A

we have that
0 for any M, — oo,

inf R(HM,,paT) — {1 for any M, 50

Te 3;?

When m = 1, we obtain the non-distributed (or unconstrained) minimax testing rate
of p?> = +/d/(nm). This makes sense, as even one bit of communication allows for
the single machine to conduct and communicate an optimal test. Furthermore, when
b = d, enough information about the coeflicients can be communicated to obtain the
non-distributed minimax rate also, for both shared- and local randomness distributed
protocols. When the communication budget is smaller than the dimension (b = o(d)),
the class of shared randomness protocols starts to exhibit strictly better performance
than the local randomness ones in scenarios as long as d = o(mb). That is, as long
as the total communication budget mb of the system exceeds the dimension d of the
parameter, shared randomness protocols achieve a strictly better rate than the local
randomness ones. This remarkable phenomenon is further explored in Chapter



20 1. INTRODUCTION

particularly in Section[3:3] This feature disappears when the dimension is larger than
the total communication budget (i.e. mb = o(d)), at which point there exists a one-
bit local randomness protocol achieving the optimal rate of p?> = v/d/(y/mn) in both
cases.

Consistent distributed testing turns out to be possible even for small values of b and
m or n, as long as y/mn is large enough compared to v/d. This stands in contrast to
estimation in the d-dimensional Gaussian mean model, where in the squared Lo-loss
as considered in Section is subject to a lower bound rate of p? 2 d?/(bmn), as
exhibited in Theorem Comparing the latter estimation rate with the testing rate
shows that there are multiple scenarios in which distributed estimation is not possible
consistently whereas consistent distributed testing is. What is not necessarily unique
to the distributed setting, is that estimation is more difficult in terms of dimensional
dependence. However, this phenomenon is further exacerbated in the distributed
setup under bandwidth constraints. For example, when b = 1, consistent estimation
under bandwidth constraints requires m >» d, whereas distributed testing only requires
mn? > d.

Another stark difference with estimation is that, as long as mb = o(d) in the shared
randomness case or mb? = o(d?) in the local randomness case, an increase in com-
munication budget does not lead to a better rate in testing. However, in estimation,
an increase in small budgets can lead to an exponential improvement in convergence
rate when the budget is very small, as found in [46].

Finally, we remark that the phenomenon of shared randomness offering improvement
in terms of error rate is also not observed in the estimation problem considered in
Section In Chapter [3] Section we go into why this is.

1.3.2 Detection boundary under differential privacy constraints

The following theorem describes the detection boundary in the many-normal-means
problem under (¢, §)-differential privacy constraints. The goodness-of-fit test we shall
consider here is null hypothesis f = 0 versus the alternative hypothesis

fer:={fe]Rd : M}Hf“g}p},

where M > 0 is a constant that can be taken arbitrarily large. Such a restriction is

commonplace in the differential privacy landscape, see e.g. [128]. We recall that ﬁL(f{’é)

and ,?S(lg’é) denote the classes of all local- and shared randomness (¢, §)-differentially
private distributed testing protocols, respectively.

Theorem 1.2. Consider any sequences of natural numbers n = n,, m = m, such
that mn — w0, d=d,, e =€, € (mn)~1,1] and § = 6, < (mnd)~P for some constant
p=2. Let p=p, be a sequence of positive numbers such that

2 d Vd 1
po = (mn\/ne2 A 1Vne2 A d/\ (mn\/m\/ mn262>> . (1.11)
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Then,

0 for any M, » \/log(1/5)log®(mnd),

inf  R(Hwm,,T) — {1 for any M, — 0

Teﬁs(;&)

Similarly, for

2 = dvd Vd 1
= (rnn(ne2 A d) /\ (\/mnm\/ mn262>> ) (1.12)

we have that

0 for any M, » +/log(1/8)log®(mnd),

inf , R, T) = {1 for any M, — 0

TeﬂL(;é)

The derived rate indicates that the distributed testing problem under privacy con-
straints undergoes multiple phase transitions, resulting in different regimes where €
affects the detection boundary differently. Specifically, a smaller €, which implies a
stronger privacy guarantee, leads to an increased detection threshold. When § de-
creases as a polynomial of d, m and n, its impact on the detection boundary is limited
to a logarithmic factor, making its effect on the error rate minor compared to that of
€.

For m = 1, the theorem describes the optimal separation rate for the testing problem
in the central DP setting; where all data is available on a single machine. In this
case, our theorem recovers the result of [I57]. When e < 1/4/n, the privacy constraint
affects the rate polynomially. In contrast, for € 2 1/4/n, the rate approximates
the classical minimax rate, up to logarithmic factors. Thus, the privacy constraint
significantly impacts the rate only when e is relatively small compared to the number
of observations n whenever m = 1. That testing is more difficult under central DP
constraints might be surprising, since in the central setting, a transcript can consist
of just a binary outcome. However, when e is relatively small enough (¢ < 1/4/n),
the privacy constraint still forms a bottleneck. This is in contrast to the bandwidth
constraint setting, where the detection boundary is not affected by the communication
budget when m = 1.

When n = 1, we establish the optimal separation rate for the testing problem in the
local DP setting. Here, € can be seen to always have a pronounced effect on the rate.
This makes sense, as in this case, the privacy constraint is applied at the observation
level, which is comparatively costly. The optimal rate unconstraint rate of \/d/mn
cannot be reached for values of e that align with conventional differential privacy
considerations (i.e. € < 1) in this case.

In the general federated setting, with m » 1, we see that m and n come into play
with different powers in the minimax rate whenever € < d/n. This means that if one
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distributes N = mn observations across m machines, the task becomes more chal-
lenging as the N observations are spread over a greater number of machines, rather
than having many observations on a smaller number of machines. This phenomenon
of benefitting from large local samples is not unique to testing, as we shall see in the
estimation rates derived in Section [2.5.6] Here, it is found that the Lo-risk minimax
estimation rate under (e, §)-differential privacy is d?/(mn?e?) whenever privacy con-
straints are binding (¢ < 4/d/n). The main difference with the estimation problem,
is that the estimation rate does not exhibit the phase transitions that are observed in
the testing problem.

The distributed testing problem under privacy constraints can be seen to be subject
to multiple phase transitions, resulting in different “regimes” where e affects the
detection boundary differently. We shall interpret these regimes and phase transitions
below. In most regimes, € has a polynomial impact on the detection boundary. The
impact of § on the detection boundary is no more than a poly-logarithmic factor in
n,m and d. This is true for the entire range of §’s that decrease faster than (nmd)~?,
with p > 2, where the power of the poly-logarithmic factor is unaffected by the choice
of p. Whilst this means that the effect of § on the error rate is minor compared to
that of €, fully capturing the impact of § on the error rate is an interesting future area
of research, but beyond the scope of this thesis.

When the privacy constraints are binding (e < 4/d/n), the first phase transition in
the testing problem occurs whenever € = 1/d/(mn) in the case of shared randomness,
€ = d/y/mn in case of local randomness protocols with € < 1/4/n or € =< d/(y/mn)
in case of local randomness protocols with ¢ > 1/4/n, respectively. These particular
phase transition corresponds to shifting from a “high-privacy-budget”, in the sense
that € is relatively large compared to d, 1/m and 1/n, to a “low-privacy-budget”.
In the high-privacy-budget regime, the relatively lenient privacy constraint enables a
distinct testing strategy from the one in the low-privacy-budget regime. Whenever
€ = +/d/n, the optimal unconstrained rate of v/d/mn is achieved by these differentially
private methods. There are certain values of d, m,n, where some of these regimes do
not occur, for any value of € < 1. When € > 1/4/n, the phase transitions between
the high-privacy-budget regime and low-privacy-budget regimes still occur, but at
different values of € in case of local randomness protocols.

In the high-privacy-budget regime, there is an improvement in the minimax rate when
shared randomness is allowed. This highlights a phenomenon that is remarkably sim-
ilar to the bandwidth constraint setting; the delineation into high- and low-budget
regimes, where only in the high budget regime, there is benefit to having access to
shared randomness. The root cause of this advantage bears resemblance across both
types of constraint settings. In the high-privacy-budget regime, the optimal strat-
egy mirrors that of the optimal high-bandwidth approach. Specifically, this entails
transmitting transcripts that essentially allow (partial) reconstruction of the original
data at the central machine (see Chapterfor details). For both types of constraints,
there is benefit to the increased coordination between the machines that the shared
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randomness allows.

Another similarity between the privacy and bandwidth constraint settings is that the
shared randomness advantage disappears in the low-budget scenario. The optimal
testing strategies under both types of constraints bear a resemblance as well, where
in both cases, locally optimal tests (or their corresponding test statistics) are essen-
tially averaged, yielding a testing strategy that can essentially be viewed as a type
of “majority vote” globally, on the basis of the locally optimal tests. Besides the
testing strategies reflecting this phenomenon, the attentive reader will also find that
the strategy in the proof the lower bound does so too.

Within the low-privacy-budget regime (e < 4/d/(mn) in case of shared randomness,
e < d/y/mn in case of only local randomness), the best possible rate that can be
attained is v/d/(y/mn). What is striking here, is that this rate is achieved for ¢ >
1/4/n, whilst it does not depend on e. Thus, in this regime, one should opt for
the smaller € = 1/4/n, which obtains a stronger privacy guarantee “for free”. This
phenomenon can be explained as follows. Whereas in the high-privacy-budget regime,
the strategy for attaining the corresponding minimax rate is to create synthetic data
which retains certain aspects of the underlying true data, the strategy in the low-
privacy-budget regime is to conduct testing procedures on the local data and combine
only the m outcomes of the local test statistics. When € 2 1/4/n, the “artificial noise”
needed to guarantee the privacy of the local test statistics is negligible in terms of its
effect on minimax rate. Whenever ¢ < 1/4/n, second phase transition occurs where
this “artificial noise” that is added to the locally optimal private test is no longer
negligible. A third phase transition occurs around € = 1/v/mnd, for both shared-
and local randomness protocols. Here, a striking phenomenon occurs whenever € <
1/v/mnd: dimension ceases to be of influence in the minimax rate. Essentially, this
reveals that there is no difference between the one dimensional problem and the
multivariate problem whenever the required privacy guarantee is stringent in relation
to m,n and d.

The latter phenomenon can be explained as follows. Given the condition € < 1/v/mnd,
signals of size larger than (mn?e?)~! are in particular larger than d/n, which is the
local estimation rate. When signals can be estimated consistently locally, dimension-
ality seizes to be a bottleneck. Loosely speaking, given a (very) accurate estimate of
the mean vector f in each machine, the problem almost reduces to a univariate test-
ing problem in the sense that {f, X ( )> can be accurately estimated locally. However,
even if (f, X (G )> can be computed locally, it cannot be communicated without adding
substantial noise due to the stringent privacy constraint stemming from e < 1/v/mnd.
Roughly speaking, retaining privacy for the univariate test statistic (f, X)) is eas-
ier than retaining privacy for a local estimator of the signal (e.g. n=! ZXZ.(J)) as a
whole, which is d-dimensional. The minimax rate reflects this, as it can be seen to
be much smaller than the estimation rate whenever d is large in this regime. This
regime also exemplifies privacy folklore: retaining privacy is easier in testing than
in estimation, as the inference outcome is inherently low-dimensional. Interestingly,
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our findings show that this is not always the case (i.e. this is not observed in the
high-privacy-budget regime).

1.4 Beyond the many-normal-means model

Whilst the many-normal-means model is a canonical benchmark model for continuous
distributions on R?, the multinomial model describes independent draws from distri-
butions on discrete spaces. Consider a sample space X with cardinality d, such that
a probability distribution ¢ can be identified with an element of the d — 1-dimensional
simplex; ¢ : & — [0,1] and }} _ q(x) = 1.

Recently, there have been numerous applications in areas that handle large samples
of multinomial data over extensive domains (i.e. large d and n). For example, in pop-
ulation genetics [166], 196] and computer science; where it is used for e.g. information
retrieval [228] [I77], speech and text and classification [126], text mining [49] and large
language models [168].

In the distributed analogue of this model, each machine j = 1,...,m observes i =

1,...,n ii.d. observations Xi(j) taking values in a discrete space X of cardinality d.
Given some candidate distribution gy on X, a goodness-of-fit test would then be

Hy: q(z) = qo(z) for all z € X versus Hj : |qo — ¢|Tv = p.

The natural comparison to the signal detection problem as described in Section [1.3
with the null hypothesis f = 0, is to test for uniformity, go(z) = 1/d for all x €
X. In Chapter [6] we shall demonstrate that, depending on the values of d and n,
the communication constraint phenomena observed in the many-normal-means model
described in the previous section extend to goodness-of-fit testing for these discrete
distributions too. In particular, we derive the minimax testing rates for the above
hypothesis under bandwidth constraints and differential privacy constraints whenever
n is large enough compared to d and m. At the time of writing, minimax rates only
having been obtained for the case of having just one draw from a discrete distribution
per machine in [9, [0, [I5], so the results here contribute to the literature by deriving
the rates for the large sample regime (i.e. large n compared to d and m).

The many-normal-means model allows for extensions to nonparametric settings too.
In Chapter |5, we shall consider the infinite dimensional signal-in-white-noise model,
which serves as a canonical benchmark model for nonparametric goodness-of-fit test-
ing and has been extensively studied outside of the distributed setting, see [94] 12T
140), 184, [118]. In the distributed setting, the 7 = 1,...,m machines observe i.i.d.
X0 taking values in X < Loy [0,1] and subject to the stochastic differential equation

dX\7) = f(t)dt + aw ) (1.13)

under Py, with {W(f) : 4 € [n],j € [m]} ii.d. Brownian motions and f € Ly[0,1].
Besides the difference in the local observations, the distributed setup considered for
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this model remains exactly the same. The results derived for the alternatives H, in
the finite dimensional model translate to testing in the infinite dimensional model
against the alternative hypotheses

fe Y = {f e H> [0,1] : | f]z, = p and | f|n- < R}. (1.14)

Here, H*T = H*%([0,1]) denotes the Sobolev ball of radius R in the space of s-
smooth Sobolev functions and | - |4+ the Sobolev norm, see Section in Chapter [5]
for the definition.

The problem bares a close relationship with “classical” nonparametric goodness-of-fit
testing in the sense of [23] [182] [67, 2I1], in which we aim to distinguish the null
hypothesis that an i.i.d. sample is generated from a cumulative distribution function
F = Fj versus the alternative hypothesis that F' # Fy. To briefly (and roughly) illus-
trate this relationship, consider a CDF t +— Fy(t) and F(t) := Fy(t) + n~/? S:) f(s)ds

for bounded |f| such that Sé f(s)ds = 0 and an i.i.d. sample (1,...,(, ~ F taking
values in [0,1]. A natural statistic for this problem is the function mapping ¢ € [0, 1]
to

Vn (n—l zn: 1{¢G <t} — Fo(t)> =+/n (n—l i I{¢ <t} — F(t)) + L f(s)ds.

i=1 i=1

The first term on the right-hand side converges weakly to an F-Brownian bridge (see
e.g. Section 19.1 in [205]). This motivates the Gaussian model described by and
test of the hypotheses Hy : f = 0 and alternative as a “benchmark problem”
for nonparametric goodness-of-fit testing, with a class of alternatives of the form
F(t) := Fy(t) +n~1? S(t) f(s)ds with f e H5 .

The smoothness parameter s > 0 determines the difficulty of the classical (non-
distributed, m = 1) nonparametric testing problem as considered in e.g. [123]. Typi-
cally, the regularity of the function is not known in practice and one has to use data
driven methods to find the best testing strategies. In Chapter [5] we derive upper
and lower bounds for distributed tests adapting to unknown regularity under both
bandwidth constraints and differential privacy constraints for the signal-in-white-noise
model. The bounds are tight up to a log-log factor in the case of bandwidth constraints
and up to poly-logarithmic factors in case of differential privacy.

The results for the nonparametric signal-in-white-noise models are extended to var-
ious other nonparametric models in Chapter [f} One such extension is distributed
nonparametric regression, where each machine 57 = 1,...,m observes ¢ = 1,...,n
i.i.d. samples

Xi(j) _ f((fj)) + Zi(j)ﬂ

where Zi(j ) are ii.d. standard Gaussian and Ci(j ) are either fixed or random design

points. When Ci(j) = i/n, the model can be seen as a discretized version of (1.13)).
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Lastly, we shall extend the results to nonparametric density testing. Here, each
machine j = 1,...,m observes ¢ = 1,...,n ii.d. observations from a probability
density f on [0,1], say

X0 = (x@ . xWy i g

The goodness-of-fit test we shall consider is over the class F of all probability densities
f € H*%[0,1] such that f = n="/(s+1) where we consider a hypothesis test of the
form

Ho: f=fo versus Hi: feF, |f— fol1=p,

for some fixed density fy € F. For simplicity, we shall restrict here also test to tests
of uniformity (fo = 1), but with more technical work the results can be extended
to testing for general Sobolev smooth densities fy bounded away from 0. Minimax
distributed testing rates for nonparametric density testing for the above hypothesis
have been studied in [75], [136], but only for the case of privacy constraints with a
single observation per machine. The results in Chapter [6] compliment these results
by providing minimax rates for bandwidth constraints and privacy constraints for the
distributed setting when the number of observations per machine is large.

The extensions from the many-normal-means model to these more complicated models
is one of the reasons warranting the thorough study of the many-normal-means model,
to which we now return in Chapters and [



Chapter 2

Impossibility theorems for
distributed testing

“Once you eliminate the impossible, whatever remains, no matter how
improbable, must be the truth.” — Arthur Conan Doyle

The main results in this chapter come in the form of lower bounds for the minimax
detection thresholds under bandwidth- and privacy constraints for the distributed
signal detection problem presented in the introduction. We recall that in this problem,
each local machine j € {1,...,m} observes

X =f+ 2P, (2.1)

with f € R% and Zi(j) ~ N(0,14),i.id. fori=1,...,n. The null hypothesis constitutes
that f = 0 versus the alternative hypothesis that

feH, = {feR": |f]:> p}. (2.2)

The first of these main results is to be found Section in the form of Theorem
which establishes the lower bounds for the detection threshold for both the shared-
and local randomness distributed testing protocols under bandwidth constraints. The-
orem [2.4] in Section 2.4] establishes the lower bounds for both the shared- and local
randomness distributed testing protocols under (e, §)-differential privacy constraints.
The lower bounds established in each of these theorems are tight (up to log-factors
in the case of Theorem , in the sense that the lower bound rates can be attained
by distributed testing protocols within their respective classes. This is established in
Chapter [3] by providing methods which attain the respective rates posed by the lower
bounds of Theorem [2.3] and Theorem Together with the results from Chapter
we obtain the minimax rates as posed by Theorems and

27
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We note that the aforementioned results are not asymptotic in nature as they hold
for every combination of b, n, m and d under bandwidth constraints and every n,m, d
and 0 < e < 1 under privacy constraints, hence going beyond the classical parametric
framework. We do not present explicit constants for each of the theorems, but these
could in principle be determined through the chosen methods of proof.

However, before deriving the aforementioned lower bounds, we will first take a brief
detour to explore the use of mutual information in obtaining lower bounds for the
distributed testing problem, based on the approach of [193]. The mutual information
technique has been successful in deriving lower bounds for distributed estimation
problems, see e.g. [78, [77, [39, (188, [46, 47 [226]. It is natural to consider this successful
approach for the distributed testing problem as well.

It turns out that the mutual information technique is only partially successful in deriv-
ing the optimal minimax rates for the distributed testing problem. To understand the
limitations of the mutual information technique for the distributed testing problem,
and to fully understand the necessity of the novel approach based on a Brascamp-Lieb
type inequality of Section[2.2] we shall first explore its use in the context lower bounds
in the many-normal-means model.

In Section we start by deriving a mutual information based lower bound for an
estimation problem closely aligned with the testing problem under consideration. We
then turn to the testing lower bound using mutual information in Section [2.1.2

Not only does this approach illustrate the difference between the estimation and
testing problems, but it also serves as a warm-up exercise in terms of understanding
the general approach in deriving lower bounds for both problems. The Brascamp-Lieb
type inequality based proof of Section [2.2]is more lengthy and technical, which means
that some of the intuition might be lost.

2.1 Lower bounds through mutual information

In this section, we shall explore the use of mutual information in obtaining a testing
lower bound. Mutual information is a concept in information theory that measures
the amount of information shared between two random variables. It quantifies the de-
pendency between the variables and provides a way to understand how much knowing
one variable can tell you about the other.

For random variables X,Y we define the mutual information between X and Y as
the Kullback-Leibler distance between the joint distribution and the product of the
marginal distribution:

I[(X;Y) = Dyp, (PYY)|PX % PY).

When X and Y are independent, the mutual information between them is 0, a positive
value for the mutual information indicates dependence between X and Y, where the
dependence is stronger for larger values.
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The concept of mutual information is used in distributed systems to derive lower
bounds on various problems, such as data compression and source coding (see e.g. [65])
or interactive communication [38], but also general minimax theory (see e.g. [221]
229)).

Lower bounds based on mutual information enjoy success as an approach to dis-
tributed estimation for two main reasons. Firstly, its tensorization properties al-
lows exploitation of the Markov chain structure of . Secondly, data processing
arguments allow quantitative capture of the loss of bandwidth constraints. These
properties of mutual information are proven in Section of the chapter appendix.

Before we turn to the testing lower bound using mutual information in Section [2.1.2]
we make a small detour to the corresponding estimation problem, deriving a mutual
information based lower bound for an estimation problem closely aligned with the
testing problem under consideration. This estimation lower bound obtained is not
novel, but serves to exemplify an approach commonly taken for distributed estimation
lower bounds.

2.1.1 A mutual information based lower bound for estimation
under bandwidth constraints

Below, we exemplify the mutual information approach to obtaining a distributed
estimation lower bound, culminating into Theorem The proof of the theorem
is based on [(7] and [39]. The proof is structured in the general framework of the
distributed testing lower bounds in this thesis: the estimation risk is lower bounded by
a type of Bayes risk, which is then further lower bounded, in this case by a variation
of Fano’s inequality. The final step uses “data processing arguments”, e.g. arguments
that capture the loss of information due to the communication restriction.

Theorem [2.1] focusses on bandwidth constraints only, although for local differential
privacy (n = 1) such a bound can easily be derived using the approach below (with
a different data processing argument). However, we shall defer the reader to Sec-
tion m in which we present a novel method to derive a tight (e,d)-differential
privacy lower bound in the same estimation setting for a full range of n € N values.

In what follows for the formulation and proof of Theorem below, we consider no
shared randomness. Specifically, we take U to be degenerate and ignore it completely
in notation. The motivation for this is given in Section in which we show that
for convex loss functions, distributed protocols do not benefit from shared randomness
(Theorem 3.3]). The proof is essentially that of [T7] combined with the data processing
arguments of [193].

Theorem 2.1. LetY = (Y. Y (™) be generated according to a b-bit constrained
distributed estimation protocol (see Sectz’on and Section m} There exists con-
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2

stant ¢, ¢’ > 0 such that whenever p? < C(bA(le’ it holds that
. 2
sup E;p~2 Hf(Y) - fH >c foralld,b,n,meN. (2.3)
feRd 2

Remark 1. This is a (log-factor) tighter version of the lower bound of [77]. The lower
bound is tight for mb/d 2 logn, where notably mb/d — 0 implies that the estimate
on a local machine starts outperforming the central estimate. To uncover the optimal
lower bound rate for the regime when mb/d < log(n) requires a much more extensive
argument, see [46]. Here, it is shown in that whenever b < d/m, p? = d is the minimax
squared Lo-norm estimation rate: for very small bandwidth budgets, the estimation
error blows up linearly in d.

We consider a prior distribution on the parameter f in ; given by F = d~'?pR
with R a d-dimensional vector of independent Rademacher random variables (R;
takes values —1 or 1 with probability 1/2 each). Such choices are typically considered
as “least favorable priors” supported on signals that are difficult to detect, see for
instance Section 3.2 of [I18]. Let Py = PCOYIIF=/guch that under PU"X:Y) we have
the Markov chain structure

Fo_, 1 1 f(Y), (24)

where f : @;n:l YU — R? is some estimator. The following lemma provides lower
bound on the squared Ls-norm estimation risk in terms of the mutual information
between F' and Y. The proof, which we provide for completeness, is based on [77]
and employs a standard multiple testing argument combined with a version of Fano’s
inequality (Lemma in the appendix).

Lemma 2.1. Consider F as above. The following lower bound holds for the estima-
tion risk;

(2.5)

. 2 I(Y: F) +log 2
sup /(1) - 713 > 5 (1- 2. LT EZ),
feRe

Remark 2. The unconstrained estimation lower bound follows by a data processing
inequality I(Y; F) < I(X;F) (Lemma in the appendix) and by showing that
I(X; F) < np?log 2, which follows by the arguments below. Plugging this bound into
the right-hand side of , we see that if p?> « d/n, the estimation risk is strictly
bounded away from 0, which yields p?> = d/n as a lower bound estimation rate. This
lower bound rate is tight, as it can be seen to be attained by the sample mean through
a simple calculation.
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Proof. Lower bounding the supremum over a set by an integral over the same set and
using Markov’s inequality, we obtain for ¢ > 0 that

sup Ef|f(Y) — fI5 = EFEVIF|f(Y) — FI3
€

P (1f(V) = Fl2 > ).
Define A
o(Y) = argmin |f(¥) —r]s.

TE”{ 1,134

By definition of ¢(Y), |f(Y) — ¢(Y)|2 < |f(Y) — F|2. Therefore, on the event that
[f(Y)— F|2 <t, we also have that

[6(Y) = Fla < |f(Y) = Fla + | f(Y) = $(Y)]2 < 2t.

Thus, |¢(Y) — Flg =2t = ||f(Y) — F|2 > t, which in turn implies that

P(If() = Fl2 > t) > P(|6(Y) — Fl> > 2t).

Combining the above chain of inequalities with Fano’s mequahty (Lemma [2.22) —
with V = d=12p{—1,1}? and t = p/2y/2 — we obtain (2.5), following the fact that
{ve {-1,1}¢: Hv—v'”g \/d/2}| < 2972 for all v’ € {— 1 1}d O

Next, we employ data processing arguments to capture the loss of information in the
Markov chain FF — X — Y that necessarily occurs. To do so, we start with the
following “tensorization” upper bound,

Y) < jZ:lI (F;Y(j)),

which follows from applying Lemma (with V' = F and U in the lemma degener-
ate). Writing F, = d~Y/?pRy, for k = 1,...,d, the chain rule for mutual information

(see (2.72) in the appendix) gives

d d
y(]) Z (Fk;Y(j)|R1;k71) - Z (F; y(J) (2.6)
k=1 k=1
where the second equality follows from the fact that Fi,..., F;y are independent ran-

dom variables. Loosely speaking, this identity combined with (2.6)) effectively reduces
the distributed es_timation problem to the sum _of the inf(_)rmation loss of the Markov
chain Fj, — (Xﬁ),...7XT(L]k)) — YU as (Xl(?c)w'er(ij)) is independent of Fj for
l#E.
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The mutual information is necessarily decreasing as we move further along a Markov
chain. Lemma [2.19|in the appendix captures this effect and yields

I(F YD) <1((X$), ... x9); YD) (2.7)

with v = 1. The above inequality (with v = 1) is referred to as the data processing
inequality for the mutual information. The Markov chain F — X0U) — Y0 is
said to satisfy a ~y-strong data-processing inequality if the above inequality holds for
0 < v < 1. Here, v captures a “strict” loss of information. The following lemma
states that, if the likelihood ratio (with respect to the mixture distribution) of the
data is 4/7/2-sub-Gaussian, the mutual information satisfies a strong data processing
inequality. A proof is provided in the appendix (Lemma 7 based on the proof
of [I70] who shows the same result for discrete sample spaces.

Lemma 2.2. Consider random vectors V, W, 1% forming a Markov chain V.— W —
V. Suppose that PYIV=" « PV and that the random variables

d]P)W\V:v
dPW

are ~/7/2-sub-Gaussian for 0 < v < 1, PV -almost surely. Then, the Markov chain
VoWV satisfies the y-strong data-processing inequality (2.7)).

With some effort, it can be shown that the likelihoods of Wj;, = (Xg)7 . 7X7(zj2)5

d]P)ijIFk=’U p
W(W) for ve ﬁ{_l’l} (28)

are 4/Cnp?/d-sub-Gaussian for a universal constant C' > 0 (Lemma in the ap-
pendix). Putting the above together, we have obtained that

m d 2
o o
I(F;Y) < 3 3207 1((XGY, Xg) v ).
j=1k=1

So far, it has not been used that the transcript Y) is bandwidth constraint. At
this point, the lower bound without communication constraints of p? < d/(mn) could
be obtained by showing that I((Xl(fc), e 7Xfl]k)); Y)) = O(1). Under communication
constraints, a better bound is available for the above display whenever b < d. Using

once more that the vectors (Xg), o vaLj/;)) are independent (since Fi,...,Fy are
independent), we obtain

d
DX XD YD) = 1(X 05y ),
k=1

The transcript Y9) takes values in a discrete space Y9) of cardinality at most 2°
under a b-bit bandwidth constraint. Consequently, by standard results for the mutual
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information, I(X(); Y @) < blog(2) (see Lemma in the chapter appendix). To
conclude the proof of the estimation lower bound, we have obtained that

2Cbmnp*
02 log(2) (% + 1)

sup By f(V) — fI3= 2 [1-2. -
feRd

which yields (2.3) whenever p? < cd?/(mnb) for a small enough constant ¢ > 0. To
obtain the “classical”, unconstrained rate, Lemma and the chain rule for mutual
information (see (2.72)) in the appendix) also yield that

d n
I(F;YW) <I(F;xV)) = 1 (P x9).
Whenever d~/2p < 1/4,
I (Fk,XIg‘z)) — Z DKL <N(rd1/2p’ 1)’ %(N(dfl/Qp,l) +N(—d1/2p71))>
re{—1,1,}

2
~ Elogeosh (d-2pN(0,1)) < 22

This yields the statement of the theorem, since we now also have that

log(2) (2mnp? + 1)) .

R 2
sw@mm—m>go—z v
feRE

2.1.2 A mutual information based lower bound for testing un-
der bandwidth constraints

The following theorem establishes a detection threshold for the bandwidth constraint
distributed signal detection problem of using the mutual information approach
as exhibited for estimation in the previous section. The theorem is tight for bandwidth
constrained shared randomness protocols when b = 1, otherwise the technique cannot
successfully capture the tight testing lower bounds, as we shall argue in the next
section. Its proof is described in the remainder of this section.

Theorem 2.2. For any « € (0, 1) there exists ¢, > 0 small enough such that whenever

Vdlym n d) (2.9)

)

,02<Ca

it holds that

inf R(H,,T)>a forany n,m,d,beN.
TEZS,(;)
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Remark 3. It should be noted that we do not optimize for the value of the constant
Co in the proof below and the statement is likely to be still true for larger values of
Ca-

The proof of the theorem relies on three key lemmas, which we state below after
introducing some necessary notations. As a first step, we use the basic fact that the
supremum of the probability of a type two error of a test can be lower bounded by a
Bayesian type two error, i.e. for any prior distribution 7 supported on H,

supP; (T =0) > fH Py (T = 0) dn(f).

feH, o

To further lower bound the risk we construct an appropriate Markov chain and relate
the testing problem to an information transfer problem through the chain. Con-
sider V' ~ Ber(1/2), i.e. V is 0 or 1, each with probability 1/2, independent of the
shared random vector U, such that the random vectors X |(V = 0), j = 1,...,m
follow with f = 0 and XW|(V = 1) follows a Gaussian mixture P, defined
as Pr(A) = {Pt(A)dr(f) for all Borel sets A = RY. Let us denote by P the joint
probability measure describing the corresponding Markov dynamics

- (X(l),U) — y(l)\
\% , F . : - L T (2.10)

where F' ~ w. We then have that for any distributed test T',
RH, T)zPT =1V=0)+P(T =0V =1)=2P(T #V). (2.11)

The right-hand side of (2.11]) can be further bounded from below using the mutual
information between T and V in the chain (2.10)), defined by

I(V,T) = Dgy, (PV*" | PV x P,

where PV, PT and PV*T denote marginal- and joint distributions of V and 7. In-
formally, the mutual information measures how much knowing 7" reduces uncertainty
about V and vice versa. The following lemma fulfills this role, similarly to Fano’s
inequality in the estimation problem.

Lemma 2.3. Let m be a prior on H, and consider the dynamics (2.10). For any

T € T2 we have
R(H,,T) > 1—+/2I(V,T).
Proof. In view of (2.11)) we have
R(H,,T)>1— (P(T = 0|V = 0) —P(T = 0|V = 1))
>1- [PTV=0 — pTIV=1(T — 0)

1— HPT‘V:O _ IPTIV:l”TV-

V
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By the triangle inequality,
HPT\V:O _ ]P>T|V=1HTV < HPT\V:O _ HDT”TV + HIP;T . EDTH/:l”TV-

Applying the second Pinsker bound to the two terms on the right-hand side and using
that 2ab < a? + b2,

BTV=0 — PV Ry < D (BT |BT) + Dyt (BT BT) = 20(V, T),

which completes the proof of the lemma. O

In view of the usual data processing inequality (Lemma in the appendix) we
have I(V,T) < I(V,(Y™,...,Y(™)). The following lemma asserts that, up to an
additional term, this further tensorizes conditionally on the shared randomness.

Lemma 2.4. Consider the dynamics (2.10). We have

IV, (YW, Y < Y 1V, YD) + Y I(FYVU, V). (2.12)

=1 j=1

The proof of this lemma is given in Section [2.5.1] restated as Lemma[2.21] This bound,
combined with Lemma|2.3] allows us to break down the difficulty of the ‘global’ testing
problem in terms of the difficulty of the m ‘local’ testing problems, captured by the
quantities I(V,Y)|U). These conditional local mutual informations quantify the
capacity of the local tests to distinguish a signal drawn from the prior 7 from the zero
signal. The second sum in the display of the lemma captures dependency between the
transcripts and the prior draw F ~ 7. The terms I(F,Y ()|U, V) are similar quantities
to the ones appearing in the estimation setting of the previous section. Essentially,
the second sum captures how well the signal can be estimated by the local tests.

We now discuss the choice of prior distribution 7. Let p := p/\/ﬁ and let R be a
d-dimensional vector of independent Rademacher random variables, and define the
prior 7 as the distribution of p/ VdR. Note that 7 has support contained in H - Since
V, F and XU) are independent of U, conditioning on U does not disrupt the Markov
chain property: we have the chain V|U — F|U — XW|U - Y0 |U.

As a consequence of this choice of prior distribution, the “estimation term” I(F), Yy ) |U, V)
can be handled using strong data processing techniques employed in distributed esti-
mation as in the previous section. Writing Ry, ..., Ryq for the coordinates of R and
write for k < d, Ry := (Ry,..., Ry) and Xl(jl)k = (XZ-(f), .. 7Xi(,g)). Conditionally on
V =0, F = 0 with probability 1, so I(F;Y@W|V = 0) = 0. Conditionally on V = 1,
F = pR. Combining these facts with the chain rule for mutual information (see
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in the appendix),

. 1 ) )
I(F; YWV = 51(F;Y<J>|V =1)= F YOIV =1, Ryp1)

N |

N |

d
21
k=1

d

D U(F YDV = 1),
k=1
where the last equality follows from the fact that the coordinates of R are independent.
Furthermore, Ri|V =1 — (Xl(?e)"’WX'SLJk)”V =1— YWV =1 forms a Markov
chain with (Xi(,i)|Rk, V =1) ~ N(oRg,1). Consequently, by applying Lemma in
conjunction with , we obtain that

2
I(EYD|U,V) < 96%[(X(j),Y(j)|U,V ~1).

Using that YY) is supported on a set of cardinality at most 2°, we obtain that the
2
second term in (2.12) is bounded above by 961”"%.

The loss of information about V resulting from the compression of X ¢)|U into Y0 |U
in this Markov chain is quantified by inequality below, which is a strong data
processing inequality for the information contained on V. Similarly to the approach
in estimation, we prove the strong data processing inequality through proving sub-
Gaussianity of the conditional likelihood ratio and then employing Lemma The
aforementioned sub-Gaussianity is described by the following lemma.

Lemma 2.5 (Public Coin Strong Data Processing Inequality). The likelihood ratios

dpXP|v=0 . dpX V=1 )
X (X(J)) and e (X(J))
are A/CB-sub-Gaussian with
n’p’ if np?
P> 2,
B=1om? .. o (2.13)
4 if np® < 2,

and C > 0 a universal constant.

We obtain the following strong data processing inequality for the local testing problem,
capturing its difficulty of the local testing problem in terms of n, d and p;

I(V,YOIU) < (488 A 1)I(XD, YD|U). (2.14)
By combining the information theoretic inequalities above with the fact that

](X(j)7y(j)|U) < H(Y(j)|U) <b,
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we get that

bmnp?
d

IV, T) < Y. I(V,YDU) + Y I(F,YD|U,V) < 488mb + 96
j=1 j

j=1

Therefore, in view of Lemma [2.3

bmmnp?

R(H,,T) > 1—0\/ (max {np2,2} + 1),
for a universal constant C' > 0. For p satisfying (2.9)), the right-hand side is bounded
from below by « for an arbitrary distributed test.

2.2 The Brascamp-Lieb inequality and testing lower
bound

“I don’t have any particular recipe... Doing research is challenging as well
as attractive. It is like being lost in a jungle and trying to use all the
knowledge that you can gather to come up with some new tricks, and with
some luck you might find a way out.” — Maryam Mirzakhani

In this section, we develop an approach that proves fruitful in deriving tight testing
lower bounds for both bandwidth and differential privacy constraints.

Before describing the novel method, let us reflect on why the usual “estimation ap-
proach” through mutual information does not lead to a tight distributed testing lower
bound. The mutual information approach fails to capture a tight testing communica-
tion constrained lower bound for the full range of bits for multiple reasons. For one,
the bound depends on b even when upper bound methods suggest that there is no
benefit to having additional communication budget (i.e. the regime where mb < d).
In this regime, majority voting (see Section , which requires only 1-bit of in-
formation per machine, turns out to be optimal. In addition, it fails to capture the
increase in testing error when no shared randomness is available, due to the limited
options in choosing the prior due to the requirement of coordinate wise independence.
As we shall see in this section, least favorable priors in the distributed testing setting
exploit the local randommness distributed protocol’s limitations in terms of the extent
to which each dimension of the data is sufficiently “covered” by the protocol’s tran-
scm’ptsﬂ Furthermore, in the case of differential privacy constraints, adequate data
processing techniques are not available for the mutual information whenever n » 1.
Another approach to obtain a distributed testing lower bound is through directly Tay-
lor expanding the (local) likelihoods and bounding the resulting polynomials directly,
see [12]. This approach suffers from the same fate as mutual information; see Section
4 of the aforementioned paper for a description of the issues of this specific approach.

I'We further explore this idea in generality in Section
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Similarly to the mutual information based approach, the approach taken in this section
consists of three steps. The first step is standard; we put a prior on the alternative
hypothesis and lower bound the testing risk by the Bayes risk. Through standard
arguments, the Bayes risk is shown to be lower bounded by a quantity tending to
one if the variance of the Bayes factor (i.e. the likelihood ratio of the prior mixture
with respect to the null distribution) tends to zero. As a second step, we bound
the variance of the Bayes factor using a type of Brascamp-Lieb inequality, which is
a generalization of Young’s inequality [37]. Roughly speaking, the Brascamp-Lieb
inequality we derive “factorizes” the second moment of the Bayes factor into m-times
the second moment of the “local Bayes factors” and a factor that can be interpreted
as the Fisher information of the distributed protocol. The third step consists of data
processing arguments, i.e. inequalities that capture the loss of information resulting
from the privacy and bandwidth constraints. These data processing techniques dif-
fer for bandwidth- and privacy constraints. Hence, they are discussed separately in
Section [2.3| and Section [2.4] respectively. In these sections, we also formally state the
main theorems that are consequently obtained or bandwidth- and privacy constraints.

The rest of this section is dedicated to step one and two as outlined in the previous
paragraph. As a first step, we introduce a prior distribution = on R and lower bound
the testing risk by a type of Bayes risk and the mass of 7 that resides outside of
the alternative hypothesis H,, akin to e.g. [I123]. Recall that P; denotes the joint

distribution of Y, U and X where X follows (I.7) and Y ~ E;{’UKHX, U) =:
IP’}/) K= ]P’}/. For 7 a given distribution on R?, define the mixture distribution PX =
P, on R™ by P.(A) = {P;(A)dr(f), where we recall the notational convention
Pf = Py. For an arbitrary distributed testing protocol T' = {T, {K7}7", PV}, using
that 7' < 1, we can lower bound the testing risk R(H,,T') by the Bayes risk as follows:

Po(T(Y) = 1) +J§€u£ Py(T(Y)=0)=Po(T(Y) =1) JFJP}‘(T(Y) = 0)dr(f)—m(Hp).
’ (2.15)

Consequently, the minimax testing risk satisfies

inf R(H,,T) > inf su (IP’O(T(Y) 1)+ JIPf(T(Y) = 0)dr(f) W(H;)> ,

TeT x
(2.16)
where the supremum is taken over all probability distributions on R?. We note that

the above display means we can adversarially choose 7 contingent on {T’, { K’ Ay PU},

but not the outcome of the source shared randomness U. Let LX‘U="(Y) denote the

Bayes factor of the Bayesian testing problem corresponding to the Bayes risk above;
that is,

d]P)Y|U:u
LY7=Y) = —Fp= (7).
apy1v=n
To lower bound the Bayes risk, in light of the Neyman-Pearson lemma, it should

suffice to show that L}:‘U=H(Y) is close to 1 with high probability. Lemma in
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Section makes this precise, showing that the right-hand side of (2.16]) is further
bounded from below by

1 — supinf <\/(1/2) fEOY‘U” (LK‘U”(Y) - 1)2 dPU (u) + w(HZ)) . (217)
K s

To lower bound the testing risk further, it suffices to show that for some prior 7 on
R? with little mass outside of H », the variance of the Bayes factor conditionally on
the shared randomness U, is small while integrating over PY.

This brings us to the crux of the proof, Lemma [2.6] below. We first introduce some
notation. Denote the “local” and “global” likelihoods of the data as

, . dP7} . m dP}

LX)y = L (x0)), Zp(X):= —L

X0 = TL0), 00 =[]

and the mixture likelihoods as

(X(j)),

T

A = [ ZiXDyin() and 2,06) = [ ZC00an(1)

In view of the Markov chain structure, the probability measure dP(x,u,y) disinte-
2
grates as d]P’YKX’U):(x’“)dIPf (x)dPY (u)dr(f). Using this, E(})/lU:u <L¥|U:u(Y)) can

be seen to equal

9 2
Y,U:u] = j ( j zﬂ@)W(y)dPé‘m) dPy 177 (y),
2.18)

where it is used that K(-|z,u) < IP%/lU:u(-)7 P;X’U)—almost surely (Lemma .
Using Fubini’s theorem (“decoupling” in X)), we can write the above display as

Ey "™ Eo [zr(X)

j L(1) L (w2 qu (w1, w2)A(BY x BY) (1, 2), (2.19)
where
dK(-|z1,u dK(|zo,u —u
qu(z1,72) ::J dp(ngu)(y) dﬂngzu)(y)dPOYU (). (2.20)

Since K (-|x,u) and_ ]P’OY‘U:" are product measures on Y = ®;n:1 YU), we can write
qu(T1,72) = 171 ¢ (21, 22) where

j K](yj|xj7u)KJ(y]|$J7u) YD |U=u
q;(xl,xz):j o IOl ) gy =y, (2.21)
Py (y7)

The map (21, z2) — ¢, (x1,22) can be seen as capturing the dependence between the
original data X and a random variable X’ with conditional distribution

XllX =~ J‘d[E1>0X|(Y’U)=(y’”)dIPJY\(X,U):(ac,u)7 (2.22)
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which is sometimes referred to as the “forward-backward channel”, stemming from
the fact that X — Y — X’ forms a Markov chain. An easy computation using the
law of total expectation shows that the covariance of ¢, (x1,x2)d(Py x Py)(x1,x2),

X mn mn
J (x;) (xlT xQT) qu(x1,22)d(Py X Py)(x1,xo) € RZMndx2mnd (2.23)
is equal to ¥, := Diag (Eil, o Sn o yml EZ‘") € R2Zmndx2mnd fq).

wit o (1o =i
u E_’]uz Id 9

=i oy 1)

with
.
YW U= u] .

Y, U = u] Eo [X@

Define also

= =g Vg lZX(J EO[ZX

We are now ready to state the lemma that forms the crux of our distributed testing
lower bound proofs, both in the case of bandwidth and differential privacy constraints.

T

U=u

YO U=u

(2.24)

Lemma 2.6. Suppose that (z1,22) — qu(x1,22) is bounded and that 7 is a centered
Gaussian distribution on R®. Then,

Sgﬂ' xl)gﬂ(IQ)qu(xlva)d(]pg( X POX)(SE17I2)
jl;Il S.,g# (ﬁjl)f# (sz)q%(${7 xﬂz)d(]pé((ﬂ ]IDX(J))(x17 1‘%)

(2.25)

s bounded above by

§-Zn(@1) L (22)dN (0, 8 (@1,22)
jﬁl § 2 (a]) L (x})dN (0,50 (2], 23)

The lemma has the following interpretation: the ratio of the second moment of the
Bayes factor of the “global Bayesian hypothesis test” that of the product of second
moments of the “local Bayes factors”, is maximized over the class of forward-backward
channel with covariance ¥ when the forward-backward channel is Gaussian.

There is an existing literature on Brascamp-Lieb inequality in relation to information
theoretical problems, in relation to mutual information [56, 145, [146]. The proof
of Lemma relies on a different method of proof however, namely that of [T43].
The fact that the prior 7 is Gaussian is vital to the proof technique, which exploits
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the conjugacy between the prior and the model which enables the use of techniques
from [143].

The proof of the lemma is presented at the end of the section. We first describe how
it is of consequence to the testing lower bound, which is the content of Lemma
below.

Lemma 2.7. Define
AT = f e " X Ed(n x 7)(f, g) (2.26)

and

BT . .HlEé/(J)lU:’U.EO [fﬁ (X(])) YW U= u] . (2.27)
j=

If (x1,22) — qu(x1,22) is bounded and if 7w is a centered Gaussian distribution on
RY, it holds that

2
By (LX) < AT B

The above lemma describes how the variance of the Bayes factor given U is bounded
by two factors. Ome factor depends on the Fisher information of the transcripts’
likelihood at f = 0 given U = u; E, := >}7" =/.. In this sense, A] captures how well
the transcript allows for “estimation” of f. The second factor can be seen as the m-
fold product of the local Bayes factors, capturing essentially the power of combining
the locally most powerful test statistics; the likelihood ratios.

Proof of Lemma[2.7. We start by noting that BT is equal to the denominator of ([2.25)).
By Lemma [2.6]

EYIU= (LX‘U=“(Y))2 § L (1)L (22)dN (0, %) (21, 22)

11§21 (2]).22 (])aN (0,5 (], )

.BT.

By the block diagonal matrix structure of X, the denominator in the first factor of
the right-hand side satisfies
m

i |22 22 eh)av 0.9l o) = i [V i ) (1.9
J= J=

= [ [ =dr < m)(1.9)

Jj=1

> 11 S Ehgdrxm)(f9) _ .
j=1

Through the expression for the moment generating function of the Gaussian, the
numerator of A7 is equal to

Jgﬂ(xl)gﬂ(@)djv(o,2)(951,352) _ fefT S d(n x 1) (f, g).
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O

What is left to show in this step, is that for # = N(0,T), I' € R?*? can be chosen such
that the A7 - BY is small enough whilst also ensuring that 7(Hp) is controlled. We
start with the latter. For a given ¢, > 0, set o := ,ocgl/éld_l/2 and I' := ¢°T for some
I € R¥*? to be specified later, separately for the shared- and non-shared randomness
protocols. The remaining mass ’/T(H;) can now be seen to equal

w(f : If13 < p?) = Pr (27TZ < y/eud) (2.28)

where Z is a d-dimensional standard normal vector. If I is symmetric, idempotent and
has rank (proportional to) d, the concentration inequality in Lemma yields that
the probability on the right-hand side of the above display can be made arbitrarily
small for small enough choice of ¢, > 0.

Suppose that for some constant ¢ > 0,
=T —
VT Eu\fFH <ec. (2.29)

If T e R4 is symmetric, idempotent with rank proportional to d and m = N(0, 0°T),
standard results for the Gaussian chaos, e.g. Lemma 6.2.2 in [210] combined with (2.29)
and the fact that |[VT| < 1, yield that

AT < exp (CQ4TI ((WTEu\fF)Z)) 7

for a constant C' > 0 depending only on c. As a final step of the testing risk lower
bound technique, we use essentially a geometric argument to sharpen this bound in
case the distributed protocol does not enjoy shared randomness. The d x d matrix

Ey = Z;”:l ZJ geometrically captures how well Y allows to “reconstruct” the com-

Q2

pressed sample X. When U is degenerate, Z, is “known” to the prior, and I’ can be
chosen to exploit “direction” in which =, contains the least information. This brings
us to the Lemma [2.8] below, which summarizes our testing risk lower bound up to the
data processing step, with which we continue in Section 2.3 for bandwidth constraints
and Section for privacy constraints. We finish this section by proving the lemma
below and then, last but not least, by proving the Brascamp-Lieb type inequality of
Lemma

Lemma 2.8. Let a € (0,1) and suppose that the map (1, 22) = qu(v1,72) defined
in (2.20)) is bounded for all distributed testing protocols in 7. Let m = N(O, 0°T),
with ¢ := and T' € R g symmetric, idempotent with rank(T) € [|d/2],d].

0111/4,;1/2
Assume that p is such that 0*|Z,| < ¢ PY-a.s. for some constant ¢ > 0. It then holds
that Tln; R(H,,T) and in particular the Bayes risk

€

inf sup (IP’O(T(Y) 1)+ fpf(T(Y) = 0)dr(f) — W(H;)>

TeT
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are lower bounded by

1—sup \/(1/2) f (A,Br —1)dPY (u) — SlipT((HS), (2.30)
K T

where the supremum is taken over all kernels corresponding to distributed testing
protocols in 7, the second supremum over all symmetric, idempotent T' € R¥*? with

|d/2] < rank(T) < d, BT is as in ([2.27) and

ot
A, =exp (C N =] Tr (2 )) (2.31)
for some ﬁ:ved constant C > 0 depending only on ¢ > 0. Furthermore, if U is degen-
erate and Wd2 Tr(Z) < ¢, - ) holds with

A, = exp <C pdg Tr(Z,) > : (2.32)

for some fized constant C' > 0 depending only on ¢ > 0.

Proof. In case of shared randomness (i.e. U not being degenerate), simply taking
I' =1, noting that Tr(Z2) = |=.] Tr(uu) and combining the results earlier in the

section (from (2.17) onwards) leads to and (2:31).

—_

Now assume U is degenerate and write =, = E. The matrix = is positive definite

and symmetric, therefore it possesses a spectral decomposition V " Diag(&y, ..., &)V
Without loss of generality, assume that {&; = & > -+ = £q with corresponding eigen-
vectors V = (v1 --- wa). Let V denote the d x [d/2] matrix (v|g/2j4+1 -+ va)-

The choice of prior may depend on =, to see this, note the order of the supremum
and infimum in and the fact that = solely depends on the choice of kernel. To
that extent, set I' = VV . It holds that

Z Z (vk)?=[d/21-
i=1k=|d/2]+

The choice T is thus seen to satisfy the conditions of symmetry and positive definite-
ness and is idempotent with rank [d/2].

Since the eigenvalues are decreasingly ordered,

[I

d/2\ Zfz\f
d -

By orthogonahty of the columns of V, VTEV = Diag(&[a/2)+1 - - -»&a)- The condition

of (2.29)) reduces to
PV 2T <

2

d/2 < Wdz (E)
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Note that
=T = B d 4
Tr(VE E2NVD)?) =T (VTEV)?) = D) & <dedyy < ~Tr(E)?,
i=|d/2]+1
which implies in turn that
4 T =17 2 p* 2
o'Tr (V'EV)?) < 4cad3Tr(:)

2.2.1 Proof of the Brascamp-Lieb type inequality

We shall prove Lemma , which is a slightly more general version of Lemma
To see this, note that for £ = 1,2 in display , x], are projections of zj on the
coordinates indexed by {(j — 1)dn + 1,...,jdn}, respectively. Since K is a Markov
kernel, the function ¢, € Ll(R2d”m Py x Py) is nonnegative and it is bounded by the
assumption of Lemma [2.6] Furthermore,

dK (-|ze,u
[ auterss) dpoan) - J%(y) [ axier.w anan)
dP}
dK —u
- [Ez ) gy -1,

dPy ™ (y)

Squ(:cl,xg) dPy(z2) =1 and
inQu($17x2)d(P0 x Po)(w1,72) = indPo(xi) =0eR™ (2.33)

fori=1,2.
Lemma 2.9. For x € R™*, let 27 e R*, j = 1,...,m, denote the projection of x on
the coordinates {(j — 1)k + 1,...,7k}. Let A € RF*F g positive definite symmetric
matriz and A®™ = Diag(A,....,A) € R™*>mk  For b e R¥ let pj, denote the density

of a N(h,A) distribution with respect to the Lebesque measure on R¥, let pi(z) =
H}"leh(xj) and let Py denote the probability measure corresponding to the Lebesgue
density p;'. Define for M > 0,

9
§q(z)dPg" ()

iC!L‘T m
qu(m)dPS”(x)=0, and ) Ta@) qdjjfo (z) =Z}.

Furthermore, let H a N(0,Y)-distributed random vector in R¥ for some nonnegative
definite matriz YRE*F . Then,

w SEATI | B (27) q(z)p§(z)dz SEHHT B (2 (27) dN(0, ) (z)
qeg ST ER B (27) g(2)pg (v)de SHF EH 2L (23) dN(0,%)(x)

Po

Q(M,Y) := {q el (R™ PM™): ¢=0, <M P"—ae.,
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Proof. We start by introducing some short-hand notations for convenience. Write,
for x € RV, v e {1,m},

bo(x) = EF P (3) _ EH M (T A~ 0)) = 312,
o
with ¢, (2)ph(z) = EHpT (), x = (2, ..., 2™), and H;”:1¢1(xj) = HTzlEHpH(xj).

Let A = A\, denote the Lebesgue measure on R™* define for r € Li(R™* \) non-
negative,

§ b () r(z)da
Sjl;[1¢1(xj) r(z)dz

and set G(q) := F(qpy"). Let Q = Q(1,%). Since G(cq) = G(q) for any constant
c € R, it suffices to show that
— N(0,%
42 § I 1 (27) AN (0, %) ()
j=

F(r):=

€ [0, o], (2.34)

We will proceed through the following steps.

1. First, we show that the supremum G is finite and attained in Q, i.e. by the
Banach—Alaoglu theorem there exists ¢ € Q such that G(q) = G.

2. We will then consider Qy, the class of all Q € Li(R?*™ )) such that z;
Q(z1,22) is in Q for Pj"-almost every x2 € {1 — Q(z1,22) # 0} and z5 —
Q(z1,x2) is in Q for PJ*-almost every 1 € {xo — Q(x1,x2) # 0}. It holds that

_ Jm(@1)dm(w2) pF (21)pF (22)Q (21, T2)d(21, 72)
Sjglﬁbl(x{)ﬁi)l(x%) o (21)pg (22)Q (21, w2)d (21, 72)

G2(Q) :

. —2
satisfies sup Go2(Q) = G .
QeQ>
3. Next, we show that (z1,z2) — q(%)q(%) is a maximizer of G2 whenever
q € Q is a maximizer of G. This is a consequence of the “conjugacy” between

the distribution Py and the distribution of H.

4. Then it will be shown that for any maximizer Q of G, x1 — Q(z1,x2) maxi-
mizes G for P§*-almost every zs.

5. Combining the above steps, we obtain that for any maximizer g, an appropri-
ately rescaled convolution of ¢ with itself is also a maximizer, i.e.

F(v2(qpg") * (gpy")(V2+)) = G,

where * denotes convolution.
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6. By repeated application of Step 5 and the central limit theorem, the result
follows.

Step 1. For q € Q, define the normalizing constant as Cy := ({gdPj")~!. As linear
combinations and products of nonnegative convex functions are convex, the mapping

RN H RHH A e — 5| A2 H3
j=1

is convex. The latter fact and Jensen’s inequality imply that

S]EH HT(Zm A~ ajﬂ)f%‘|A*1/2H\|§q(x)dpom,(m) _

§ AT N g 2)dPy (v)

C, (EH M Sia) =AY 2 HIE ) g p ()

m .
IT EH ¢Ca § HTA=10dq(a)dPg (o)~ § [A-Y/2H 3
Jj=1

Since X = (X1,...,Xm) ~ ¢dP§"* has mean 0, the denominator on the left-hand side
is equal to (IEHe*%”A_mHH%)m > 0. This means that the denominator in the above
display is bounded away from 0 over ¢. Since ¢C; < M a.e., the numerator is bounded
above by M S]EH ph(z)dxr = M. We can conclude that the supremum of over
qpyt, q € Q is finite. It is easy to construct a ¢* € Q such that G(¢*) > 0, so we can
conclude that 0 < G < o0.

Let ¢; be a maximizing sequence for G, rescale ¢; such that § ¢, Pj" = 1 and note that
¢ € Q and ¢; is contained in the L, (R™F) ball of radius M. By the Banach-Alaoglu
theorem the L., (R™F) ball of radius M is weak-*-compact (associating the dual of
Li(R™k \) with L, (R™)). Therefore, there exists a subsequence, again denoted

by q¢, along which ¢, who* q for some ¢ in the L., (R™F) ball of radius M. Since

= (z,...,2™) — ¢ (z) is in L1 (R™F P, the weak-#-convergence implies that

[ ém @) a@)aPy @)~ [ ém (@) a(@)iPp @)

Similarly,

JH;“ZI(M (:5]) qt(z)dPy (z) — JH;-”Zlqbl (zj) q(z)dPi*(z) € (0, 0),

where the boundedness away from 0 has been concluded earlier on in the proof. We
have now obtained that

G = lim S¢m (z)dP§" () _ S(bm (x)dP(x)
5 T (aﬂ) qe(x)dPy () ST ¢y (a:f) ()P (z)

Since ¢; € Q, we have

(2.35)

qut(x)dPan(m) =0 and Jme qt(z)dPy*(z) = X for all ¢.
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Asz— 1, 2 z and x — xx' are all P}" integrable, the weak-#-convergence yields

that §q(z)dP{"(z ( =1, qu z)dP)"(z ( ) =0and ¥ = {227 g(x)dPJ*(z). Since we
have that {((x) )dPO — {((@)qi(x)dP}"(x) for every continuous and bounded
function ( : Rmk — Rk the Portmanteau lemma yields that SB qdPy* = 0 for all

open sets B so ¢ =0 almost everywhere. We conclude that G(q) = G and q € Q.
Step 2. Let Q € Qs be given. By definition, the marginals 21 — Q(x1,z2), 22 —

Q(z1,79) are in Q Pi-ae. and Efpy(z)dz = ¢ (2)ph(z)dz is equivalent to the
Lebesgue measure, hence

Go(@) = [[0m@p21) [ 0 (2) 8 (22) @1, 22)dradr
<G | o (1) [ I, 61 (22) @1, 22 dadn
<@ [, 61 (@ (o) | 720600 (1) QL1 a)ds i

Let ¢ € Q be a maximizer of G. Then, the above steps hold with equality for
Q(x1,22) := q(x1)q(z2). For almost every 1 € {q # 0} = {x2 — Q(z1,x2) # 0},

Q(x1,72) q(z2)

§Q(z1,22)dPy (x2)  §q(x2)dPi(22) <M

By similar calculations, the rescaled marginal has the correct mean and covariance.
By symmetry, we conclude that the marginals of (z1,2z2) — ¢q(z1)g(x2) belong to Q,
and it is a maximizer of G5 over Qs.

Step 3. Consider a maximizer g € Q of G. By a change of variables w; = (21 —22)/v/2
and wy = (21 + 72)//2,

[ omtenomtena (22 ) (222 o (o) dor. ) =

o (5 o (5 Yatwnatwnry (152 ) iy (152 ) o)

w1 —wa

Since p{* is a Gaussian density, p{)”( s )po (“’1\%“’2) = pi"(w1)pg(we). This
follows from direct computation, but it characterizes Gaussian functions in general,
see e.g. Theorem 1 in [55]. Likewise, for H' an independent copy of the centered

. — / ! .
Gaussian random vector H, & \/; and H\J;EH are independent and furthermore equal
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in distribution to H. Therefore,

(B0 (257)

_ o) +wd 7]—71 _
_ U HTAT S ey T e, M g A

INT m ’ _g/\T, _ m ’
:E(H’Hl)e(%) A 12511 wi— m A= 1/2 H+H 12+ (H\/;I) A 12?:1'“ m A= 1/2H H 12
= O (w1) P (w2).

Since (z1,x2) — q(x1)q(z2) was established to be a maximizer of Go in the second
step, the above establishes that (x1,x2) — q(%)q(%) is a maximizer of Gy
also.

Step 4. Next, we will show that for a maximizer @ € Qs of G, x +— Q(z,w) is in Q
and is a maximizer of G for almost every w. We prove this by contradiction. Take
an arbitrary measurable set A = R™* s.t. A(A) > 0. Note that Gaussian measures
are equivalent to the Lebesgue measure, so both E Py'(A) and 172, E” Py (A) are
bounded away from zero. Suppose that for Q € Q5 a maximizer of G2 it holds that

| #w) [ (@) Qavw)arg @y (o)
<G [ onlw f 61 (+7) Qla,w)dPY (@)dP (w).  (2:36)
Since the marginal w — Q(z,w) is in Q for almost every z € {w — Q(z, w) % 0},
& [0 () I, 61 (o) Qo) (A" x B (avw)
> G 201 () [ 6(0) Qe w)dPy ()P (o)
Likewise, 2 — Q(z,w) is in Q for almost every u € A A {z — Q(z, w) % 0}, so
G [0 (@) () Q. )Py ()P (x)
> | 60w) [ 6nl@) Qe w)aPy @R ().
Together with and the second to last display, we obtain that
& 15,60 () 21001 (27) Qo w)@Y" x PYY) (o)
> [ [ 6 @) 0(w) QUevw)ary (w)ary @),

which contradicts () maximizing Gs.
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Step 5. Let ¢ € @ be a maximizer of G over Q, where ¢ is normalized such that
§qdP{" = 1. Define ¢, as

w0 = [a(250) o (S50 ) arpcw)

The map = — g <%) q (“’;21”) = Q(z,w) is in Q for almost all w s.t. Q(z,w) £ 0

and as a consequence of the previous step, it is a maximizer of G for such w. Hence,
g2(z) is a maximizer of G:

| n@aateiary @) = [ [ o ( )q(x%w)dPa?%(w)dPa’l(w)

G |01 () aa(o)dFP @),

Let h € Li(R™ p). Using again that pj* (wlf“”) i (wl\%’”?) = pi*(w1)pdt(w2)
and applying a change of variable w = v2w — z, we get

[t @an = [ [ (220 )a (Z50) i (S50) o (255 o
JJ 0 (Var—w) q(w) o (V2r —w) it (w) dov/2dw
— [ hla)VRlar)  (ar) (Vo)

where f # g denotes convolution. Therefore, gpj* being a probability density with
mean 0 and covariance ¥ implies that gopf* is too. So, g2 € Q and maximizes G.

Step 6. Consider now ¢4 € Q defined by qa(z) := (¢ (T\fw) a2 (x\“;”) APy (w).

Since ¢ € Q is a maximizer, the above steps 1mply that G(q4) = G and by a similar
computation as above,

ga(@)pl () = VA (qp) (Viz),

4
where 7 denotes r * r = r = r. Repeating the above steps, we obtain a maximizer
gon € Q of G for N € N which satisfies

o o) = o @) = [ (25 ) g (550 ) i ()
—\2 j arvr (V22— w) g (V2 —w) g (1) P (w)
= V2 (gan-1pg") * (qav—1pg") (V21).
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We conclude that
2N
ron (z) = 2N/ % (qpf) (2N/2)

and S . .
G (@) ron (z)dx B
SHT=1¢1($]2)T2N (x)dz Glgav) =G

for all N € N. Let r = gpJ*. The characteristic function of 7on equals, for s € R

2N

T —isl o —isl o
Uron(s) := je Y PN (z)dx = je 2N o () da = (fe 2N72 r(m)dm)

([ (s o (52 o)

Since r has mean 0, covariance ¥ and bounded third moment (by the boundedness
1.T
38 Es.

2N

of ¢ and pJ'd\ possessing a third moment), Uron(s) — e~ Consequently,
rond\ converges weakly to a Gaussian distribution with mean 0 and covariance X. In
particular, § ¢rond\ — {¢dN (0, %) for all ¢ € C©(R™F), so

= fim AOn@r@de _ §én(@)dNO.2)(@)
Nooo (T dy (27) ron (x)da ST 61 (29) AN (0, %) (x)

which finishes the proof. O

2.3 A complete lower bound for testing under band-
width constraints

The main results of this section come in the form of a single theorem describing the

lower bounds for the detection threshold distributed testing protocols that satisfy a

bandwidth constraint, both with and without shared randomness. The optimality of

the theorem is established in Section [3.1] by providing both a shared randomness and

local randomness distributed testing protocol, which attain the respective rates posed
by the lower bounds. Together, these results yield Theorem

Theorem 2.3. For each o € (0,1) there exists a constant ¢, > 0 (depending only on

a) such that if
vd [ | d
p* < Ca=r™ ( T d /\Vm) , (2.37)

then in the shared randomness protocol case

inf R(H,,T)>a« forall n,m,d,beN.
Te g
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Similarly, for

p2<ca\/7a (bfd/\m>, (2.38)

we have under the local randomness protocol that

inf R(H,,T)>a forall n,m,d,beN.
Teﬂ,ffc)

Remark 4. The proof of the theorem reveal that the theorem holds for other classes
of alternatives as well. In particular, the lower bounds hold for any H, such that

N(0,ca'?d=1p?1,)(H,) < a for ¢, > 0 small enough.

The above theorem implies that if holds, no consistent shared randomness
distributed testing protocol with communication budget b bits per machine exists
for the hypotheses Hy : f = 0 versus the alternative Hy : |[f|2 = p. In other
words, no shared randomness distributed test manages to consistently distinguish all
signals from 0 if the signals are smaller than the right-hand side of . When
considering distributed testing protocols with only local randomness, the detection
threshold is more stringent than the shared randomness threshold for
certain values of d, m and b. Theorem [3.I]in Section [3.I] affirms that, in these cases,
the best local randomness protocols have a strictly worse performance compared to
the best shared randomness protocols.

Next, we provide a proof of the theorem. As a starting point, we aim to apply
Lemma To that extent, we will verify its conditions and as a “data processing”
step, we bound the quantities A,, and B],. To start of, note that if the Markov kernels
{K7 }72, are bandwidth constraint in the sense of Definition |2} the product kernel
is a measure on the finite space ) := @;":1 YU) and consequently its corresponding
forward-backward kernel equals

K(y|xl7u)

QU('rl)mQ) = Z Y|U=u

K(y|$27 U/),
veyPo (y

which is clearly bounded since K < 1.

™

Next, we turn to bounding the factor B}, which functions the same for the shared-
and local randomness classes of distributed protocols. No “strong” data processing
argument is required here: The proof boils down to using the fact that conditional
expectation contracts the Lo-norm and straightforward calculations.

Lemma 2.10. Consider BT as in (2.27)) with m = N(0, pQC,Zl/Qd*lf) as in Lemma .

It holds that
2 4
B}, <exp <Cmn P > .
Cad
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Proof. Since conditional expectation contracts the La(Pg)-norm,

7j=1

m j . . 2 ) 2
HlEé/(. )|U=U}E0 [gﬂ (X(J)) 'Y(]),U _ u] < H EX(J) [f,r (X(J)) } )
j=

We now proceed to bound the first factor in the product on the right-hand side of the
display above, which for a positive semi-definite choice of I' equals

jEé(m exp ((\/E(f T X(J) H\ff” ‘\/fgi) dN ( \/pfdfzd) (f,9)-

By direct computation involving the moment generating function of the normal dis-
tribution, the latter display equals

2
Jexp L dN(0, Iz4)(z, 2").
,—Cad ; )

We aim to apply the moment generating function of the Gaussian chaos e.g. Lemma
6.2.2 in [210] to the above display. Using that p satisfies or and since

IT| = 1 by the fact that T is idempotent, 44~ < ,/cu w1th Co >0 chosen small
enough, the aforementioned result yields that there exists a constant C' > 0
m DU =u A\ 2
ey [.,s,%r (X(J)) } <exp (Cc_lmndp ) (2.39)
j=
where C' > 0 is universal. O

The information lost by compressing a d dimensional observation X ) into a b-bit
transcript YY) is captured in a data processing inequality for the matrix =, and
its trace, which comes in the form of Lemma [2.11} This can be seen as a “matrix
analogue” of the (strong) data processing arguments for the mutual information used
in Section 2.1.7] and Section

Lemma 2.11. Consider the matriz ZJ, given in (2.24)). It holds that =J, < nl; and
Tr(Z7) < 2log(2)n(logy |Y9|).

In particular, for logy, | YY) < b
—; b
1Et) < (2055 A1) na

Both statements of the lemma are known results, see e.g. Lemma 3 in [227] and
Theorem 2 of [30], respectively. The “strong” data processing part of the lemma
concerns the trace of the covariance, where the loss of information due to Y) being
constrained to take values in a b-bit sample space is captured. When b « d, the latter
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data processing inequality is stronger than the data processing inequality implied
by the statement ZJ < nl;. We provide a proof that is adapted to our setting in
Section of the chapter appendix, for the sake of completeness. The proof can be
seen to it crucially rely on sub-Gaussianity, this time of the data, which is reminiscent
of the relationship between sub-Gaussianity of the mixture likelihood and the strong
data-processing inequalities for the mutual information of Section

Combining Lemmal2.8|with the above assertions, we obtain the following lower bound.

Lemma 2.12. Let 7% denote the class of b-bit bandwidth constmined shared- or
local randomness distributed testing protocols and let p satisfy either | or
respectively. For any « € (0,1), there exists cq > 0 such that for all T € 9 ®) g holds
that

’Jlgfg R(Hpa T) > o= W(HS)a

where ™ = lV(O,c;1/2d_lp2f) for a symmetric, idempotent matriz T € R4 with
d/2 < rank(I") < d.

Remark 5. The lemma, combined with the earlier drawn conclusion that for any
a € (0,1) there exists ¢, > 0 Small enough such that m(HS) < a (recall (2.28))
finishes the proof of Theorem [2.3] The lemma also allows us to derive lower bounds
for other alternative hypotheses H p» as long as w(H7) can be shown to be small. For
example, for the class of alternatives {f € R? : ||f[1 = p}.

Proof. By Lemma what left to show is that, for p satisfying in the case
of shared randomness and in the case of local randomness, with ¢, > 0 small
enough, the conditions required to obtain and hold (respectively) and
the respective expressions for A,, and B] are sufficiently close to 1. The latter follows
from Lemma [2 By the first assertion of Lemma [2.11

m .
IZull < DJIEL < mn
j=1

For shared randomness protocols, p? is assumed to satisfy ([2.37)), which yields

mnp?

Jad NG (2.40)

0*|E.] <

By the third assertion of Lemma [2.11
= Z’I‘r(:i) < min{2log2 - > 1}mnd. (2.41)
i=1

For local randomness protocols, (2.38]) and Lemma implies
2 min{2log2 - &, 1}mnp?

Vead

20

Veal

Tr(2,) < < 2log24/cq. (2.42)
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This verifies the conditions of Lemma[2.8] We also can use (2.41) to bound A, in
from which we obtain that

inf R(H,,T)>1 \/2( C("”:Zf+'"2"293§’Md>) 1) (HS)
TE%ub(b) - g ¢ ) T

> 1—4/2(e2CC — 1) —n(Hy) > a — 7(Hp),

whenever p? satisfies (2.37)) for ¢, > 0 small enough. This finishes the proof for the
shared randomness case. In the case of local randomness, we similarly obtain that

\/ C(mn2p4+m2n2p4(bAd)2)
inf R(H,T)=1-1/2 cad o d3 1) — 1(HS
TeTpin(b) (H, T) (c )~ (H)
> 1—4/2(e2% — 1) —n(Hy) > o — 7(Hp),
for p? satisfying (2.38)) and ¢, > 0 small enough. O

2.4 A complete lower bound for testing under dif-
ferential privacy constraints

The primary outcome of this section is presented as a theorem outlining the lower
bound rate for the detection threshold for distributed testing protocols that adhere
to differential privacy constraints, with and without the use of shared randomness.
The optimality of the lower bounds is confirmed in Chapter |3| by introducing dis-
tributed differentially private testing protocols for both the shared randomness and
local randomness classes that achieve the rates specified by the theorem (up to poly-
logarithmic terms).

The methods constructed in Section that attain the rates of the theorem are (e, 0)-
differentially private protocols matching the rate (up to poly-logarithmic terms) for
the range (nm)~' < € < n~1/2. Whenever € = 1/4/n, within the class of distributed
(¢, 0)-differential privacy protocols, we derive matching upper bounds for Thcorcm
for ¢ satistying log(1/6) = nmd. Together with the upper bound of Theorem the
theorem below yields Theorem The lower bound applies to all (e, §)-differentially
private protocols where ¢ is small enough in comparison to m,d,n and e. The range
e considered in the upper bound guarantees that we can set log(1/§) = nmd.

Theorem 2.4. For each o € (0,1) there exists a constant c,, > 0 (depending only on
a), such that for any n,m,d € N and

1+p
0<e<land0<d< (cam*?’/2 And te? A n1/2d71/262) for some p > 0,
(2.43)
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the condition

2 d \/a ]
P < ca <mnme2 A1Vner ad A (mnm \V4 mn262>> . (244)

mmplies

inf  R(H,T)>a.
TeTH?

Similarly, for any n,m,d € N and €,§ satisfying (2.43)), the condition
P2 < Ca avd YA\ vd \V ! (2.45)
mn(ne? A d) vmnvne a1l mn2e2 ’

inf  R(H,T)> .
Teg,&?

implies that

Remark 6. As in the bandwidth constraint case, the proof of the theorem reveals
that the theorem holds for other classes of alternatives as well. In particular, the

lower bounds hold for any H, such that N (0, cgl/Qdflpzfd)(Hp) < a for ¢y > 0 small

enough, whilst p satisfies (2.44)) or (2.45)).

Next, we provide a proof for the theorem. The first part of the proof follows a
similar structure as that of the bandwidth constrained problem of the previous sec-
tion, whose notation we shall also use here. We aim to use the Brascamp-Lieb
type inequality of Section [2.2] by employing Lemma [2.8] To that extent, consider
m = N(0, ci/2d*1/2p2f) for a symmetric idempotent matrix T' € R%*¢ and the corre-
sponding Bayes risk

P'KT + fp;" (1 —T)dr(f), (2.46)

where K is the product kernel, suppressing (integrating out) the shared randomness
in the notation, corresponding to a distributed protocol T' with (e, §)-DP Markov
kernels {f( J 7.q. A first obstacle to deploying Lemma to the Bayes risk above
is that the forward-backward channel corresponding to K, (z1,22) — ¢u(z1,22) as
defined in is not necessarily bounded. This issue is specific to § > 0, as for
(¢,0)-DP protocols the induced Radon-Nikodym derivatives are always bounded, see
Lemma Lemma [2.32] combined with Lemma [2.30] in the chapter appendix yield
that for all v € (0,1) there exists (e, 36)-DP Markov kernels {K7 }7., such that the

Bayes risk is bounded from below by
PKT + JP;” K(1—T)dr(f) — a, (2.47)

and with a bounded forward-backward channel.
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Another issue suffered by (e, §)-DP Markov kernels with § > 0, is that one has very
poor control over the higher moments of the local likelihoods

) dP, K7 (| Xy

L (y) = SR

APy K (-] X @) )

(v),

which are required to sufficiently bound the corresponding quantity B,, as defined
in . In order to overcome this, we will use a coupling argument that allows a
comparison of PyK7 with P_K7. This lemma forms an essential building block for our
data processing argument for B,, but also allows us to overcome the aforementioned
hurdles preventing the direct application of Lemma [2.8

Lemma 2.13. Let K7 satisfy a (e,0)-differential privacy constraint for 0 < ¢ < 1.

Consider m = N(O,cé/zd_1/2p2f), with p? satisfying (2.44) or ([2.45), with € < 1/y/n
and § < co(m™t Ae).

For all measurable sets A it holds that

. . _ . . Co,
P.K’ (AlX(J)7u> < (1 + Yim 1/2) PyK? (A|X(J)7u) +20+ —% (2.48)
and
P K (A|X<J'>,u) > (1 - c;/‘*m*l/?) P K <A|X(j),u) —20- 2 (249)
m

for all cq > 0 small enough.

We defer the proof of the lemma to Section [2.4.2] The lemma that follows can be
seen as a consequence of the previous lemma.

Lemma 2.14. Let 7 = N(O,cgl/zd_1/2p2f) for an arbitrary positive semidefinite
T and let {K7}7", correspond to a (e,8)-DP distributed protocol T  for the testing
problem of (2.1) (i.e. K’ satisfies (1.5)). Furthermore, assume that ¢ < 1/\/n and

define for j = 1,...,m the events

. 4m1/?
A= v 1L t) - 1< 2|
o
and define

PyK7(B n Aj,| X9 )

KJ(Blz,u) := KJ(B n Aj |z, u) + K7 (A, |z, ) PoK (A, 2| XD 10
YR )

Suppose in addition that 6 < cq/m. Then,
(a) The collection {f(J}}"zl are (€,20)-DP Markov kernels.

(b) It holds PyKJ(-| X9, u)-a.s. that

K
di _(ylxﬂ{) 4P (z)
dPyKi(y| X9 u)

L ,(y) = f
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satisfies
1/2

L3, (y) — 1] < (2.50)

(¢) It holds that
PI'KT + JP}"K(l —T)dn(f) = P"KT + fP}”f((l —T)dr(f) — a,

where K is the product kernel corresponding to {R’j 17l

Applying the lemma above to the Bayes risk in (2.47), (with the roles of K7 and K7
swapped) we obtain that the aforementioned expression is lower bounded by

PPKT + JP}”K(l ~ TYdn(f) - 2, (2.51)

where K denotes the product kernel of an (€, 66)-DP distributed protocol {T', { K7} iy
Note that the shared randomness component is still suppressed (integrated out) in
the notation above. Since K has a bounded forward-backward channel, so does K,
also when conditioned on the shared randomness component. That is, K (-|x,u) has

a ]P’Y‘U -a.s. uniformly bounded Radon-Nikodym derivative

dK (-|z,u)
T aR R (X, w) )

Consequently, the Brascamp-Lieb machinery apphes (in particular Lemman, from
which we obtain that for all (e, §)-DP kernels {K7}7 L1, there exist (¢,65)-DP kernels
{K7}7", such that

PIKT + sup P}”K(l -T)=1- \/(1/2) f (AB7 — 1)dPY(u) + m(Hy) — v, (2.52)
feH,

where {KJ " | satisfies , with © = N(0, cgl/2d*1/2p2f) with T any symmetric,
idempotent matrlx with rank proportional to d. We highlight here that the quantities
A, and B] correspond to the quantities as defined in and , respectively,
with the underlying kernels {K” };”:1 corresponding to the kernels “approximating”

{f( J 7=1. Next, we aim to apply Lemma for which we need to sufficiently bound
B7 and A, for shared- and local randomness protocols.

We start with the bound on A,,, for which we proceed by a data processing argument
for the matrix =, under the (¢, 60)-differential privacy constraint. This comes in the
guise of Lemma below. Its proof is deferred to the end of the section.

PU}.
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Lemma 2.15. Let 0 < € < 1 and let YY) be a transcript generated by a (e€,0)-
differential privacy constraint distributed protocol, with 0 < € < 1 and 0 < § <
((nd’l A nl/Qdfl/z) 62)1+p for some p > 0. The matriz =/, as defined in
satisfies

Tr(2]) < (Cn*e®) A (nd)

u

for a fixed constant C' > 0.

The lemma, combined with the first assertion of Lemma [2.11] implies in particular
that |27 < (Cn%€%) A n, as ZJ, is symmetric and positive definite. Combining this
with (2.44]) and the triangle inequality, we obtain

m ((Cn2€?) A n) p?

Vead

< Cr/Ca. (2.53)

m .
PlE < Y IE <
j=1

Similarly, (2.45)) yields
2 2.2 2
2p ; <m((Cne)/\(nd))p
NG

The last two displays together finish the verification of the conditions of Lemma [2.8
The above data processing inequalities for =/, and bounds on p? also yield a bound on
A, as defined in Lemma In case of shared randomness protocols, using (2.31)), (2.53)),

Lemma and (2.44), we obtain

A, <exp (Czca) .

In case of local randomness protocols, combining (2.32)) with (2.54) and (2.45) yields

the above bound on A,,.

< Cy/eo/Vd. (2.54)

Next, we turn to B]. Lemma [2.10] proven in the previous section implies B] <

exp(C m";p !
the exponent, but whenever € < n™"/* a much more involved data processing argument
is needed than the one used in the bandwidth constraint case, in conjunction with
Lemma We provide a bound in the form of Lemma [2.16] below. Both proofs are
based on coupling arguments, where the two different couplings constructed result in

the different rates observed in the condition of the theorem.

). Whenever € > n~ "2, this bound is actually tight in terms of rate in
1/2

Lemma 2.16. Let m = N(0,d"!p?T), with T € R™9 q symmetric idempotent matriz,

0% < cad?/(Vmn3e) v co/(mne?)

and {K7}7" correspond to a (e,8)-DP distributed protocol with transcripts Y ) such
that 0 <e <1, <ca(m™t A€) and

5ml/2

PoK7 (| XY u)-a.s.
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Then, there exists a universal constant C > 0 such that

BT < FVea, (2.55)

mn?pt

Combining the lemma above with the bound B < exp(C ) (which follows from
Lemma-, we obtain that (| - ) holds whenever p satisfies (2.37)) or - Com-
bining this with the bounds on A, derived earlier, and followmg a sumlar calculation
as in the proof of Lemma [2.12] we obtain the lemma below. The proof of Theorem [2.]
is finished by noticing that for the alternative hypothesis in question, 7(H;) < « for
co small enough (see also (2.28)). After stating Lemma [2.17] below, we ﬁnlsh the
section by providing the proofs for the Lemmas [2.14] .15 and [2.16]

Lemma 2.17. Let . denote the class of shared- or local randomness distributed
testing protocols satisfying a (e,0)-differential privacy constraint for 0 < e < 1,
0 <9< (comf1 A Ccoem 2 A ne? A nPd e A n3/2d’1/262) and let p satisfy ei-
ther or , respectively. For any a € (0,1), there exists ¢, > 0 such that
for all T € T(°) it holds that

R(H,,T) > a — W(H;),

where T = N(0, o ?d 1 p°T) for a symmetric, idempotent matriz T € R with
rank(l’) = d.

Remark 7. The lemma also allows us to derive lower bounds for other alternative
hypotheses H,,, as long as m(H) can be shown to be small, e.g. the class of alternatives

{FeR? | flh = p}-

Proof. Putting the results of the section together, the Lemmas [2.15] and [2.16] with
the condition on p?, we obtain that in the shared randomness case, there exists a
symmetric, idempotent matrix I' € R%*? with rank(T') = d such that log A,BT is
bounded by C/c, for a universal constant C' > 0, whenever ¢, > 0 is small enough.
We conclude that,

inf R(H,T)=> 2(A,By —1) —7(Hp)
Te 9(6 :9)

>1—14/2(eVee — 1) —m(HS) > o — w(Hy),
whenever p? satisfies (2.37)) for ¢, > 0 small enough. This finishes the proof for the

shared randomness case. In the case of local randomness, log A, BT is bounded by
C./co when p? satisfies ([2.38)) for ¢, > 0 small enough, yielding

inf R(H,,T)>1—14/2(eVee —1) —n(H) > o — w(Hp).
Teﬂ(‘ %)
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2.4.1 Proof of the differential privacy data processing Lem-
mas |2.14| and |2.16|

For some of the results in this section, we suppress the dependence of the Markov
kernels on the draw of the shared randomness wu, as it bares no relevance to the results
here.

At the heart of the proofs of Lemmas and 2.16] is the Lemma 2.13] A proof of
this lemma is provided in Section 2:4.2]

2.4.1.1 Proof of Lemma [2.14
Proof. The first statement follows by Lemma in the chapter appendix. For the
second statement, we first note that by Lemma [2.13

1/4
ca ¢ , , ,
s Tt s > (P - PR ({|L3w 1| = 4m1/2/a}\X(J)7u>

= B (L, = UL, — 1] > 4m*/a} | X))

ml/2

=4

PoK? (|L3’r L1 = 4m1/2/a|X(j),u) ,
o ;
where the second inequality follows from the fact that m'/2/a > 1 and L{ryu = 0.
Using that § < ¢o/m, we obtain that

1/4

-1

= T)g. 2.56
. 7 (2.56)

Since K7(Blz,u) < K7 (B|z,u) for all measurable B < A;,, and PyK7(-| X u) has
no support outside of A; ,, it holds that

dK |z, u) - dK (+|z,u)

APy K (X0, u) S APy K (|XG), ) ).

for all y € A, (and hence PyK7(-|X W) u)-a.s.). Similarly, we have for Pr-a.s. all s
that

KI(AS o u)  dRKI (0 Ay XD w) o KA few) 1
P4y X0 ) dRKI([X0 ) RO (A X0 )~ T,

using that K7 < 1 and Pon(Aj1u|X(j), u) = 1 —1,. By standard arguments and the
above two statements, it follows that

dK7 1
dP()KJ(y|X(]),U) 1*7704
1
11— N '

dKI(y|z,u
WY pra) < 14, ()
dPOK](y|X(J)au)

=14,, (W)L, (y) +
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Applying the definition of the event A;, and using that o < 1, we obtain that for
Co. > 0 small enough

o 1/2 1/2
[ T LA S e Ly
’ o I «

Using that i{ru — 1= —1, we obtain (2.50)), proving statement (b).

For the third statement, we will aim to apply Lemma [2.30} By the construction of
K7 and the triangle inequality,

IPoK7 (|1 XD, 0) — PRI (| XD, )| oy < 2 HPOKJ'(. A Aiu|X(j),u)HTV .

The latter is bounded by «/(2m) (see (2.56])). Similarly,
HPTFKJ(|X(j)a u) - PWRJ(|X(j))”TV < QPWK](A}:,u|X(])7 ’LL)
By Lemma [2.13]

PTFK](A;TAX(J),U) < (1 + C(1¥/4m71/2) PQKJ(AﬂX(J),U) + 6+ CTO‘/Q,
, m

Again using (2.56) and the fact that 6 < ¢,/m yield that the latter is also bounded
by a/4m for ¢, > 0 small enough. The condition and small enough choice of ¢, > 0
yields that the conditions of Lemma and the conclusion of (c) follows. O

2.4.1.2 Proof of Lemma
Proof. Write L7 ,(Y)) = L and let V, = V{ := LI —1. Using that Eg.%, (X)) = 1
and that by the law of total probability

Eg(j)lU:u]EO [gﬁ(X(j))'Y(j),U = u] =1,

U=
it follows that Ey ="V, = 0 and
U= . U= . . j _
By V(L) =1+ By VL (L) — 1) = 1+ BY VU=

Define VF := 0 v V; and let V. = —(0 A V), which are both nonnegative random
variables, with V; = V. — V. We have

) o0 )
EYVIU=uy+ = J PY U= (V> ) dt
0

T . o0 X
_ f BYOIU=u (Vi > 1) dt + f PYOW= (v sy dr (2.57)
0

™
T



62 2. IMPOSSIBILITY THEOREMS FOR DISTRIBUTED TESTING

Taking T' =

second term is equal to zero as

5m1/2

V+ < |Lj,u(y) - 1| < POKj('|X(j)au)'a's'

D= =
and P; ~ Py (which in turn implies Py PlU=u IP%/ ’ |U_u). The integrand of the

first term equals PP K7 ({Vy = t}|X ), u). By Lemma [2.13] it holds that
P K7 ({Vy = t}] XD u) < (1 + c;/4m—1/2) PoK?({Ve = t}| X9 u) 4+ 6 + 3/2

It follows that (2.57) is bounded from above by

T )
14, —1/2 YOU=u (1,4
(14 ct/*m )LPO (Vi =) dt+ 76+ T <

(1 + ci/‘*m‘l/Q) oM VA oF S 3/2

Similarly, we have
' 0 .
E}:(J)‘U=uv‘; _ f ]P}:(J)|U=u (V;: > t) dt
0

T ©
=J PYU=u (V= > 1) dt +f PYU=u (Vo > ) dt. (2.58)
0 T

Choosing T = 1 here results in the second term being zero, as L7 > 0. Applying
Lemma the right-hand side of the above display is further bounded from below
by

T .
(1 _Ci¥/47,n—1/2)J0 ]P%/(])lU=u (V_ )dt—T(g 7_Ca_ 3/2 >

_1/a,—1/2 Y">|U uy,
(1= et m=2) By — T - TS/Q,

where the inequality uses V. <1

Combining the above bounds with the fact that V.* +V~ = |V,| and EY(])lU “Ve=0
yields that

D=
61/4EY 7 |U7U|V |

EY VWU=uy _ gYVWU=uyt _pYOlU=uy— o T2 o + 276 + 2T

Jm 3/2

—3/2

Plugging in the choice of T' = 5m1/2/a and using that § < com , we obtain

D7
0,11/4E0Y ’ ‘U7"|V7T| N 20c¢,,
Jm mao

D=
E}: |U uVﬂ' <
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Dy— D=

It E?; ’ W__u|V7r| < m™2, we obtain EY V="V, < mfl(cy4 + cq/). Assume next

that E(};(J)lU:u\Vﬂ > m~2. Then,

G 7=
BV

Jm

)=
E 107 s

@ |y= @ |y= @ |y=
Since EY 1V="y, = Eéf ’ ‘U_UVT? and using that by Cauchy-Schwarz Eg ’ |U_u|V7r|

is bounded above by \/Eg(j)lU:qu, we obtain that
\ /Eé/(j)w:u‘/,? < C/C}l/4m—1/2

for a universal constant C’ > 0 depending only on «. In both cases, we obtain that

m D — m DU =u
By = I (14 By W=y ) = T (14 By 1072 < OV
J= 7=

for universal constant C' > 0, finishing the proof of the lemma. O

2.4.2 Proof of Lemma

We start by proving the following general lemma, which is essentially Lemma 6.1
in [129], but for which we provide a proof that is perhaps easier to verify.
Lemma 2.18. Consider random variables X1,..., X, b Py and X1,..., X,
P, defined on the same space. Write X = (X1,...,Xn), X = (X1,...,X,) and let K
be a Markov kernel between the sample space of X (equivalently X’) and an arbitrary
target space, satisfying a (e, 8)-differential privacy constraint (i.e. (LE)) with e < 1.

i.%.d.
~

Suppose that there exists a coupling P of (X,X) such that PX = PP, PX = P} and
D;:=1 {)N(Z # Xi} ~ Ber(p), i.i.d. fori=1,...,n, pe[0,1]

under P.

Then, it holds that

PrE (A|)2) < P PRK (A|X) + 20npest2mee, (2.59)

Proof. Let E denote expectation with respect to P and write D = (D;)ig[n], S :=
>, D;. We start by noting that

E [K(A|f()|s - o] — E[K(A]X)|S = 0]. (2.60)
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Next, we show that for all k € [n],

e~E [K(A|X)\S — k- 1] ~§<E [K(A|f()|s - k] <eE [K<A|f<)|s — k- 1] + 6.
(2.61)

Write v(_;) = (vi)[n]\(iy for a vector v € R”. Let k € [n] be given and let V;, denote
the set of v € {0,1}"’s such that > ; v; = k. Using the definition of differential
privacy, the integrand in the conditional expectation satisfies

e K(AXy,..., Xi,..., Xn)—0 S K(A|IX) < e K(A| Xy, ..., Xiy. .., Xn)+6, (2.62)

for any random variable X; taking values in the sample space of X;. In particular, if
v; = 1 it holds that

E I:K(A“Tla o Xiy o 20)|Di = v, Xy = 2y, D(iy = 11(71‘)] <

e’ [K(A‘xl, ey Xy e ,l‘n)|Dz = O,X(,i) =y, D) = U(,i)] + 6,
for all 2 in the sample space of X. It follows by the law of total probability that
E [K(A\X)|D - v] <eE [K(A|X’)\DZ- —0, Dy = vy for ke [n]\{i}] +4,

for all ¢ € [n]. For v € Vy, the event {D = v} is equal to the event {D =wv, S =k}
and similarly it holds that

{Dy, = v, for k € [n)\{i}, D; = 0} = {Dy, = vy for k € [n]\{i}, D, =0, 5 =k —1}.
Consider now the sets

Vi—1(v) := {v" € Vi—1 : v = v} except for one I € [n]} for v €V,

Vie(v') := {v € Vi : vy = 1] except for one | € [n]} for v’ € Vj_1.
By what we have derived so far, it holds that any v € V}, and v' € Vi_1(v),
E|K(AZ)|D = v, 5 = k| < B [K(AIX)|D =/, § =k~ 1] +34.

Consider {I;(v) : v € V}} independent random variables (on a possibly enlarged
probability space) taking values in [n] such that P(I;(v) = i) = 1/k whenever v; = 1.
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Combining the above with the total law of probability we find that
E [K(A|X)|s - k:] -
(%)U;k]E [K(AIX)D = v, 8 = k| <
T [ (AIZ)|D1uy = 0, D_rny = 010y, S =k = 1| +5 =
k 1

E

A oy E KAX)D=v,S=k—1|+6=
k VEVEV' €V _1 (V) B
11 . 1
7% Z Z Ei (A|X)|D:v’,S:k—1i+6:

v evk 1€V (v')

w\»—‘

€

( j M E[K@AX)D=v,S=k-1]+6=
k—1 v'eVir_1 - -

E [K(A|X)|S — k- 1] +4,

where it is used that [V = (}),
P(Dl :U17~--7Dn:vn|S:k) :P(Dl :f]l,,Dn:’f}n|S:k)

for all v = (vi)ie[n], ¥ = (s)ie[n] € Vi and for any v’ € Vj,_; there are n — k + 1 ways
to obtain v € Vj, such that vy = v}, except for one i € [n].

By applying the privacy lower bound of (2.62)) and repeating the same steps, we also
find that . .
e E [K(A|X)|s — k- 1] ~§<E [K(A\X)|S - k] .

This proves (2.61]), which, applying iteratively, results in the bound
e~ *E [K(A|X)|S - o] — Sk <E [K(A\X)|S - k] < e*E [K(A|X)|S - o] + Skeek,
(2.63)

for k = 0,1,...,n. By symmetry of the argument, the same inequalities hold for X
in place of X. Using the above inequalities, we can bound

K(A|X) = EK(A|X) = ESE [K(A|X)|s] :

by
ESeSE [K(A|X)|s - o] + JESESe.
Similarly, applying (2.61)) with X in place of X, we find
K(A|X) = E°E[K(A4]X)|S]
> E%e %“E[K(A|X)|S = 0] — ESS. (2.64)
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Combining the two inequalities with (2.60]), we obtain that

E5656

P K(AIX) < FS. 5

(PK(A|X) +E93S) + SESe®“. (2.65)
In view of the moment generating function of the binomial distribution,

]ESSGS; _ 1+ P(ee — 1) " < e4np€7
ESe—S¢ 1+plec—1)

where the inequality follows from 0 < €, p < 1, the inequality e* — e™* < 3z for 0 <
x < 1 and Taylor expanding log(1 + z) = 2 — 22/2 + .. .. By Chebyshev’s association
inequality (e.g. Theorem 2.14 in [36]), ESSESe%¢ < E¥Se“. Consequently, using the
nonnegativity of S,

ES eSe s s s
Lemma m (a straightforward calculation) now finishes the proof. O

We are now ready to prove the desired result.

Proof of Lemma[2.13 Consider X ~ P, and X) ~ P. We shall construct two
couplings for (X, X)), one for two different regimes of e:

1/4/n=e>1/Vmnd and €<1/vVmnd.

That is, for each of the regimes, we derive a joint distribution of ()~( () X)) called
P, o such that X() ~ wa,g) = P, and XU ~ }P’f,g) = Py. The specific couplings
that we construct aim at assuring that dgz (X, X)) is small with high probability.
After the construction of both of the couplings, the result follows by an application

of Lemma 2.18

Case 1: Consider 1/y/n > € > 1/+/mnd. In this case, follow a construction similar
to that of Theorem D.6 in [I57].

If n = 1, Pinsker’s inequality (see e.g. Lemma 2.5 in [204]) followed Lemma and
Lemma applied with m = 1 yield that

1 \/Couo2
Py — P, <Al=D,2(Py; Pr) < C
1Po Irv 5 2 (Po; Pr) 7

for a universal constant C' > 0 (which we let vary from line to line). By Lemma[2.41]
there exists a coupling P, o such that X() ~ IP’WXE) = P, and XU) ~ Pﬁg) = Py and

2
pi=P (X(j) - X(j)) < <C\/§;> Al (2.66)
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Applying Lemma it follows that
PrEI(AIXY) = Er ok (41X V)
< PPy KI(A|X D)) + 26npect 2,

By applying condition (2.44) or (2.45)) and the bound on p of (2.66)), we obtain that

denp CF?*ZPZ
e <e a7 <1+ Cieg/vVm
Similarly, using that § < ¢/4/m,
5P < 5+ ey /mP2

Hence, the first identity (2.48)) follows for n = 1 and a sufficiently small enough choice
of ¢, > 0.

In what follows, consider n > 1. Consider V' a uniform draw from the unit sphere
in R and Z ~ N(0, I;), both independent of the other random variables considered.
We have

—m I vo) d 122
X0 .= =N x4 1212y,
n; ¢ D

for XU) ~ ]P’é((j) (see e.g. [210] Exercise 3.3.7). Similarly,

nel/2p2 =
)

X0) 2
D

Next, we note that for y,...,1, ~ N (0, I;) independent of XU) = (ij), e 7Xflj)),
we have

. — 1<

XD LX) 49— =N . .
+ i nZTh (2.67)
=1 1<i<n

To see this, note that both the left- and right-hand side are mean zero Gaussians and

(o) (e 15

1 2 1
—Ig+ Liply — —Ig+ —1q = 11y,
n n n

which means that the covariances of the left-hand side and right-hand side of (2.67))
are equal too. Noting that X() £ (F + Xi(j))ie[n] and X0 £ F + X@, where
F ~ N(0,/cad™'p?T) is independent of X (), it follows that

d
X0 < (XU) + i = —E m)
1<ign

1=1
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by similar reasoning. Since the matrix (I — V'V ") is idempotent, we have that
=VVig+(I-VVhn

where VV Tn; is independent of (I — VV )y, and V', is standard normally dis-
tributed, both conditionally and unconditionally on V. We can write

1« 1<
i =2 m=VVin == VVin + G
7 n;n n n; i+

where

Gi:=(I-VVT)n ZI VVTn

and G; is independent of V'V Tn; — %Z VV Tn;. Let i; be identically distributed to
i=1

n; for i =1,...,n. Combining the above assertions, we have that
() 4 1Z]l2 T — (.
X0 L£ly +V ZV n | + G = (C)ie[n]» (2.68)
i€[n]
” (I + 22’ T) 1/2ZH
x0 2]y V- L3, (€,
\/ﬁ + ;V +G; (C)ietn)

i€[n]

(2.69)
As further notations, we introduce
1 n
= 2/V 1N N — — Nis
|Z]l2/v/n+ VT e
s

o ~ 1 n ~
G 1= (T + nei* pdD) 2 Z /v /r+ V iy = — 5 V.
=1

We have that ¢;|Z ~ N (

Zl (1~ 1)) and

nel/2p2 =
. H(Id 4 e b r)1/2ZH2 1
Ci‘ ~ \/ﬁ 3 < - 'ﬂ)
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By e.g. Lemma we find that their respective push forward measures PS4 and
P12 satisfy

1/2 o
(I + Lad P T2y

B2 — Py < 1212 -

|
o/ - Ljnv/n
\/ﬁc}fpz Z'TZ

d TT1aZ +\) 27 (Lo + "2 22T 7

2

N
< T 215,
where the second inequality follows from n > 1 in addition to the identity (Va —
Vb)(v/a ++/b) = a — b and the final inequality follows from the fact that T is positive

semidefinite and T < |T||Z4. By Lemma there exists a coupling of ¢;|Z and ;|Z

such that 1/2 o0
. vied “p? T Z] 2
) . <
P(G#Gl2) 2

By the independence structure, it holds for any joint distribution P of V, Z, C,C,
C=(C1s--,Cn), ¢ =G5+, Gn, and G = (Gy)ie[n) that

Al (2.70)

dPC = § = 1RQdP1Z.
Take PS¢i1Z satisfying 2.70) and set (X&), X)) = (C,C) under P, o. We have that
CNZz=CP\Z — ¢z =3z

whilst the random variables 1{C; # C’Z} are independent Bernoulli distributed for
t=1,...,n.

To summarize, we have now obtained that there exists a joint distribution P, o of
(Z, XD, X)) such that (z,xm,w) satisty

1/2 o=
) 5 : Tz
pi= P (XU 2 X9) = P2B (G, £ §17) < B2 ’;J 112l

Al

and

S = Zﬂ{Xi(j) # Xi(j)} ~ Bin(n, p).
i=1
Let E ¢ denote the corresponding expectation. Consequently, by applying Lemma
we have for any measurable A that

PPEI(AIX D) = Er K9 (A XD) = BX )X K7 (A]X )
< P Py KI(A|X D)) + 26npect 2y,
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By (2.70), |T| = 1 and the fact that ||Z| is v/d-sub-exponential (using e.g. Proposi-
tion 2.7.1 in [210]), we obtain that

Cﬂknk/z(cé/ﬁlp)zkkk

Z k
E7p" < k2

for a universal constant C' > 0. It follows that

A 1/4
EZedenrz < 1 4 i 4kck€kn3k/2(ca/ p)%kk
k=1

, EN
dR72E) si+c VCadl?’

for a universal constant C’ > 0, where the second inequality follows from Stirling’s ap-
proximation, the fact that under the assumptions on p? (i.e. condition (2.44)) or (2.45))

that
en3/? ci/z p2

T < Vea/Vm

and a sufficiently small enough choice of ¢, > 0, such that the series is dominated by
its first term. Similarly, using that 6 < co/m,

O o2k k, kT Z, k
SEZ eenpz = 6+62722 <n Bpy
k!
k=1
<64 Cleq/m32.
The first identity we wish to show, i.e. (2.48)), now follows. Using the same coupling,
the lower bound of (2.49) readily follows by a similar analysis, which closes the first

case.

Case 2: Consider € < 1/v/mnd. We will make use of the total variation coupling
between X;J) ~ N(f,Iz) and Xim ~ N(0,I), as given by Lemma Since

(0. 12) = N7 Tl < (3112 ) 2

(see e.g. Lemmal(6.5)), we can couple the two data sets observation wise independently
(simply taking the product space) such that

El{ij) # Xi(j)} ~ Bin(n,py)
i=1

. d
where py = (|fl2/4) A 1. Given k€ N, |fla £ d=V2c/*p|N(0, 1) |» and |N(0, )3
is v/d-sub-exponential we obtain (using e.g. Proposition 2.7.1 in [210])

Jp’}dw(f) < f<nf|\2/4>kdw<f> < GRRF (/)
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for a universal constant C' > 0. The assumed condition on p (i.e. (2.44) or (2.45))

yields
ency*p < et //m,

which by similar arguments as before implies

Ef i <1+ C'cl///m,
SES etenPi < § + C'cl/?/m?/2,

for a universal constant C’ > 0. By applying Lemma and using the assumptions
on p, we obtain that

PPEI(AIRD)) = E, oK (AR = f Ey 0K (A|X9)dn(f)
< (14 Cc/*)/m)PyK7 (A X D) + 26 + Ccl/? /m?/?

as desired. Again, ([2.49)) follows by similar steps. O

2.4.3 Proof of Lemma

Proof. The bound Tr(Z) < nd follows by the fact that conditional expectation con-
tracts the Lo-norm, i.e. the same arguments as in the proof of Lemma For the

second statement, we start introducing the notations XU) =n=t 3" X/ and
Gi = <E0 [nX(j)\Y(j), U= u] ,X}j)>.

For the remainder of the proof, consider versions of X ) and Y'9) defined on the same
probability given U = u, and we shall write as a shorthand

. @Dy U=u . @Dy U=u
PI =PI ana B = BT
For random variables V, W defined on the same probability space, it holds that
EWE[W|V] = EE[W|V]E[W|V],

since W — E[W|V] is orthogonal to E[W|V]. Combining this fact with the linearity
of the inner product and conditional expectation, we see that

Tr(E]) By U

—u

I ) 2 L
Eo[n XD YD, U = u] H2 - YEG. (2.71)
i=1

Define also ‘
éi = <E0[nX(j)‘Y(j)7U = u],Xi(j)>,
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where )U(Z(J ) is an independent copy of XZ-(j ) (defined on the same, possibly enlarged
probability space) and note that E/G; = 0. Write G := 0v G; and G = —(0 A Gy).
We have

00 T 0
Ef‘(;jzf Pj(Gj>t)dt=J Pj(Gj>t)+J P (GF > 1)
0 0 T

T . o
<e€f IPJ(Gj>t)dt+T6+J P (G} > t)
0 T
T 9 T . o
<J ]P’J(Gj>t>dt+26J IP’J(G:“>t)dt+T6+J P (G >t)
0 0 T
0 0

0
sj P (G >t)dt+26f (G >t)dt+T6+J PI (G >t),
0 0 T
where in the second to last inequality follows by Taylor expansion and the fact that
€ < 1. Similarly, we obtain

T
]EjGi_>f P/ (G; = t)
O T . i~
>e—6f PGy = t)dt - Té
0
Q0

>LT]P>J' (é;?t)dt72€L P (G‘i—)t)dthé

v

>LOOIPJ' (¢ =) dt—QeJOOOIP’j (¢ =t) dt—T&—f:Pj (G =t)ar

Putting these together with G; = G — G}, we get

0 0

EjGiéL P (é‘j%)dt—fl@j (é;>t)dt+2eL P/ <|éi|>t)dt

o . © - o
+2T6+J PJ(Gj>t)dt+J P (G = t) e
T T

0 o0
=BG + 267 |G| +2T6+J P (Gf = t) dt+f PJ (é* >t) dt.
T

T

The first term in the last display equals 0. For the second term, observe that

G‘ [Y(j),X(j), U= u] ~ N(0, [Eo[nX DY D) U = u]|3),

SO

B |Gy = EXVYVEXY |G| = BIEMX DY D U = ]|, < A/ Tr(E4)

where the last inequality is Cauchy-Schwarz. To bound the terms

o .
J IPJ(Gj>t)dt+J

T T

oe]

P (é* > t) dt

%
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we shall employ tail bounds, which follow after showing that G; is v/ dn-sub-exponential.
To see this, note that by applying Cauchy-Schwarz and Jensen’s inequality followed
by the law of total probability, we have that

EitlGil — EjetK]Eo[nW\Y(f)7U:u]7X1_<J'>>|

< ]EJB%(‘ XEJ)HE)

g\/EOetEO[nww,U:u]; iy

@, x@
gEOetK"X X >|7

Eo [nW\Y(j),U=u]"z+‘

T
2

where the last equality follows from the fact that conditional expectation contracts
the Li-norm and the fact that U is independent of X ).

Next, we bound Eg D tln XX )] By the triangle inequality and Cauchy-Schwarz,

EX ) tln XD XD \/Eémew@z# XU)»Xi(j)N\/]Eé(;,j)GEtKij),Xg”)L
The random variable (X i(j )X i(j )> is x2-distributed, so by Lemma we obtain that

@) i i d
X! (7)) () 2 2
Eo i €2t|<Xi X7 (]EthN(O,l) ) < p2td+8t d’

whenever ¢ < 1/8. By Lemma[2.38]

X opeyr,, X6 x 9 4t (n—1)d+t*(n—1)2d/4
B 2t Ol < ez (C(n=D)dtt (n=1)%d/4)

where the inequality follows by Lemma if t2(n —1)? < 1/8. By the fact that
G <|G;| and Markov’s inequality,

PG > T) <PI(|Gy| > T) < e TR/l for all T,t > 0.

Combining this with the bound for the moment generating function derived above
means that for § = 0, the result follows from letting T" — oo. If § > 0, take T =
32(d v v/nd) log(1/5) to obtain that

0
f P/ (G = t)dt < e s/,
T

It is easy to see that the same bound applies to S;? ]P% (éi > t) dt. We obtain that

i

Y EG; < 2ne\ Tr(Eh) + 646(d v vnd) log(1/5) + 2nd.

i=1
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If A/Tr(Z%) < ne, the lemma holds (there is nothing to prove). So assume instead

that 4/ Tr(2%) > ne. Combining the above display with (2.71)), we get

; d v v/nd
Tr(2h) < 2ne + 646 "% log(1/8) + =
ne
Since 2P log(1/x) tends to 0 as x — 0 for any p > 0, the result follows for ¢ <

1+p
((% A "\;/;) 62) for some p > 0 as this implies that the last two terms are O(ne).
O

Chapter acknowledgements: We would like to thank Elliot H. Lieb for a helpful
comment regarding the proof of Lemma

2.5 Appendix

2.5.1 Mutual information, entropy and data processing

For a discrete random variable X and arbitrary random variable Y, define the entropy
of X as

ZP z)logP(X = x)

and the conditional entropy of X given Y as
H(X|Y) fZP — 2lY = y)log (X = 2]Y’ = y)dP" (y).

The function z — —zxlogz is concave, so by Jensen’s inequality we have H(X) > 0
and H(X|Y) > 0. Similarly, we have H(X) > H(X|Y), i.e. conditioning reduces
entropy. Following from this conditioning, for an arbitrary random vector Z, we
similarly can conclude that conditioning also reduces conditional entropy:

H(X|Y) = J-H X|Y = y)dP¥ (y) JH X|Y =y, 2)dPY (y) = H(X|Y, Z).

If X and Y are independent, it is easy to see that H(X|Y) = H(X). Furthermore,
if X Y — Z form a Markov chain, H(X|Y,Z) = H(X|Y). For random variables
X,Y, Z we define the mutual information between X and Y and conditional mutual
information between X and Y given Z as

I(X;Y) = D (POV)|PX x PY),
I(X;Y|Z = z) = Dgp (POVIZ=2 | pX12== o pYIZ=2),

I(X;Y|Z) = JI(X;Y\Z = 2)dP?(2).
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Next we recall some properties of the mutual information. First we note that I(X,Y) =
0 if and only if X is independent from Y. The chain rule for the mutual information
between the random vector Y = (Y, ... Y (™) and V is

I(V;Y) = > 1(v; YOy ® Ly, (2.72)
j=1

which follows from straightforward algebra. For a discrete random variable X and an
arbitrary random variable Y, we obtain the following relationship with entropy:

dP(X:Y)
. — R(X.Y) -
I(X;Y)=E logdPXdPY
1 1
_ p(X\Y) _ wm(X,Y)
FE log IpX E log TPV =p)
= H(X)—- HX|Y). (2.73)

By similar arguments, for an arbitrary random variable Z, we have

I(X;Y|Z) = H(X|Z) — H(X|Y, Z). (2.74)

Next, we prove three lemmas that that reveal themselves as valuable for proving the
data processing bounds of Sections and The first is a well known result
that states says that mutual information is necessarily decreasing as we move further
along a Markov chain, making it a type of data processing inequality.

Lemma 2.19 (Mutual information data processing inequality). Let and X,Z be
discrete random variables and let Y an arbitrary random variable such that X —
Y — Z forms a Markov chain. It holds that

I(X;2)<I(X;Y) andI(X;2)<I(Y;2).

Proof. This is a straightforward consequence of (2.74]) combined with the fact that
conditioning reduces entropy, which yields

I(X:2) = H(X) - H(X|2) < H(X) — H(X|Y, Z) = H(X) - H(X|Y) = [(X;Y),

where the second equality follows from the fact that H(X|Y,Z) = H(X|Y) by fact
that X - Y — Z forms a Markov chain. Similarly,

I(X;2)=H(Z)— H(Z|X) < H(Z) - H(Z|Y,X) = HX) - HX|Y) = I(Y; Z).

O

The next lemma is well known: it shows that mutual information cannot exceed the
logarithm of the cardinality of the sample space.
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Lemma 2.20. Let X be a discrete random variable taking values in X and let Z be
an arbitrary random variable. It holds that

I(X;7) < H(X) < log|X|.

Proof. The first inequality follows by (2.74) and the fact that H(X|Y) > 0. For the
second inequality, by concavity of the log we have

(X =
ZP z)log P(X < log (ZP = ) = log |X]|.
O

The next lemma is especially useful in the distributed setup. It allows us to exploit
the independent nature of the machines in order to obtain an additive bound over
the “local” mutual information for each machine. In our setup, we take into account
the possible presence of a shared source of randomness and therefore it merits its own
proof. A variation of the lemma excluding shared randomness is given for instance
n [169].

Lemma 2.21 (Tensorization of the mutual information). Let us assume that the
discrete random variable V' and the discrete random wvector W are such that the
pair (V, W) is independent from the random variable U and the discrete random vec-
tor Y = (Y1,...,Y.nm) satisfies that Y; is conditionally independent from Yi.,_1 :=
(Y1,...,Y;_1) given U and (V,W), then

i I(V;Y;|U)+ i[(w;ij,x/).
“ =

Proof. First note that in view of and since conditioning reduces entropy
I(Y,U);V)=H(V)-H\V|Y,U)=H(V)-HVI|Y)=1(Y;V).
Furthermore, by the chain rule and the independence of U and V,
I(Y,U); V) =I(Y;V|U) + I(U; V) = I(Y; V|U).
Similarly, by the chain rule and nonnegativity of mutual information,
I(V;Y|U) =I((V.W);Y|U) = I(W;Y|U,V) < I((V,W);Y|U).
By the identity and the chain rule ,
I((V.W);Y|U) = H(Y|U) = H(Y|V,W,U)

= Y H(Y;|Y1,j-1,U) = HY; |V, W, Y151, U).
j=1
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Since conditioning reduces entropy we have H(Y;|Y1.,,-1,U) < H(Y;|U). Further-
more, by the conditional independence of Yi.;_1 and Y; given (U, V,W) results in
H(Y;|V,W,Y1.;_1,U) = H(Y;|V,W,U). Using these two facts, we obtain that

I(V,W);Y|U) < Y H(Y;|,U) = H(Y;|V,W,U)

L

<
Il
_

I
NoER

I((V.W);Y;|U).

<.
Il
—

Combining the above displays and again applying the chain rule we now obtain that

< Y I((ViW);Y5|U) = Z (V;Y;0) + I(W;Y;|U, V)]
j=1

Jj=1

O

The following lemma is Proposition 1 in the technical note [76]. It can be seen as a
“distance-based” version of the original Fano’s inequality. We provide a proof based
on [76] for completeness.

Lemma 2.22. LetV, V., W be random variables forming a Markov chain V.— W —
V, where V and V' take values in a metric space (V,d) with |V| < o and V is
uniformly distributed on V. Let

* o / . "N < —
N*(t) : rqr)1€a‘3<|{v €V :d(v,v) <t}], Nu(t) m1n|{v eV:d(v,v) <t}
If V] — Ni(t) > N*(t), it holds that

) . I(V; W) + log2 (2.75)

> 7 e
Pr(A7 V)2 0) 21 - L)
Remark 8. For the Hamming distance, the above reduces to the classical Fano’s
inequality of e.g. [97]. The advantage of employing this particular expression of Fano’s
inequality resides in its applicability without the necessity of delineating the packing
set. Rather, one may choose to designate a prior distribution over a subset of finite
cardinality and subsequently selecting a distribution for V' that minimizes the mutual
information.

Proof. Define the random variable S = 1{d(V, V) < t}. By the chain rule for entropy,
H(S,V|V) = H(V|V) + H(S|V,V).

The last term equals 0 as S is o(V,V)-measurable. Conversely, since conditioning
reduces entropy

H(S,V|V) = H(S|V)+ H(V|S,V) < H(S) + H(V|S, V).
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The second term equals
P(S=1)HV|S=1,V)+P(S=0)H(V|S=0,V).

Since conditionally on S = 1, V' is with probability 1 in a set of cardinality at most
N*(t), it follows from the fact that conditioning reduces entropy and Lemma
that H(V|S = 1,V) < H(V|S = 1) < log N*(t). Similarly, H(V|S = 0,V) <
log(|V| — Ni(t)). We now have that

H(V|V) < H(S) + (1 —P(S = 0)) log N*(t) + P(S = 0) log(|V] — N« (t)).
For a Markov chain V. — W — V., H(V|W) = H(V|W,V) < H(V|V) since condi-
tioning reduces the entropy. Furthermore, since S equals either 0 or 1, H(S) < log 2
by Lemma We obtain that

HWVIW)<log2+ (1 -P(S =0))log N*(t) + P(S = 0)log(|V| — Nk(t)),
which after rearranging yields
H(V|W) —log N*(t) — log 2

V|— Ny (t )
log (@)

Since V is assumed to be uniform on V, H(V) = logV. By (2.73), I(V;W) =
log V — H(V|W), which yields

Pr (d(v, V) > t) —P(S=0) >

Pr (d(f/,v) > t) - log (N‘*L(lt)) _I(V; W) +log?2

- [V| =N (1) V=N (1))
1Og< N*(zk) ) log( N*(f) )

Since it is assumed that |V| — N, (¢) > N*(¢), the result now follows by monotonicity
of the logarithm. O

The following lemma is included for completeness, it can be seen as continuous version
of Theorem 3.7 in [I70] which concerns discrete sample spaces.

Lemma 2.23. Consider random variables V,VKV forming a Markov chain V. —
W — V taking values in a Radon space. Suppose that PWIV=" « PV and that the

random variables
d]PW\V=vJ

dPW
are /7/2-sub-Gaussian for 0 < v < 1, PV -almost surely. Then, the Markov chain
V — W — V satisfies the y-strong data-processing inequality,

I(V;V) < yI(W; V).



2.5. APPENDIX 79

Proof. By Lemma [2.40] below,

A ; ooy [(dPVIV ’
1(V;V) = Dy, (PVVPY) < EVEVIY) Cor (V) -1 (2.76)

By subsequently using the Markov chain structure V. — W — V and Bayes rule
(using that V, W,V possess regular conditional probability distributions),

PVIV - [dPVIV
d 0 —EWV=”[ (U,W)]

W(U’ 0)

dpPv
3 EW\V:ﬁ dPWlV:v
B dPW
dPW\V:v d]IDW|V=17
_ oW
o [ |
Define for s € R,
dEJ;W|V=v dPW|V=f;
Gsw(W) =5 <dIPW(W) - 1) , Hy(W) = W(W)-

By Lemma we have that
EGH < EH log H + log Ee“

for any random variables G, H with EH = 1 and Ee® < oo. Therefore, using the
sub-Gaussianity of G, , (W),

aevo w w s>y
s (dPV(v,v) - 1) =EY [Gs,(W)H;(W)] < EY Hy(W)log Hy (W) + R

Ly [dPv
§=7 1<dPV(U’U)_1>’

1 (dpVIv ’
(v,0) — 1| <AEW Hy(W)log Hy(W).

for all s € R. Choosing

we obtain
2\ dPV
Putting things together, we obtain that

N 2
. - delV R N
) EY (| e —

= 2yDxr (PYV[PY) = 291 (W; V).
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2.5.2 Sub-Gaussianity of likelihoods

The following lemma is the key technical lemma enabling the data processing argu-
ment in the mutual information lower bound for testing in Section [2.1.2] First we
recall some notations from Section Let us denote by 7 the distribution of the
random vector oR, where R = (Ry, ..., Ry) has independent Rademacher marginals
and o > 0 is small (it is taken to be o = p/v/d). We take V ~ Ber(1/2) and set
X|(V =0) ~ N(0,0%I;) and X|(V = 1) ~ Py, where P, = {Psdn(f) and Py is a
multivariate Gaussian distribution with mean f and o2 times the identity variance.
Let PX and PX!V denote the corresponding distributions of X and X V.

JpX1V=0 apX1v=1

The lemma below shows that the likelihood ratios % 5x—(X) and % —(X) are
sub-Gaussian.

Lemma 2.24. The likelihood ratios
dPX\VzO d]P)X|V:1
W(X) and ————(X)

are A/CB-sub-Gaussian with

(2.77)

5= do*/o*, if 0%/0* < dJ/2,
| 20%/02,  if0?/0® = d)2

and C > 0 a universal constant.

Proof. Using the notation

dPle:v

Z(X) = IPX (X), wve{0,1},

we show below that for all ¢t € R, for some constant C' > 0,

[y et(Zo (X)~ExZ0(X) ¢ (OB/2,
This is implied by

2

PX (%, —Ex.Z,| = s) < 32exp <_285) for all s > 0, (2.78)
where the equivalence is well known, but a proof can be found in Lemma Since
|-Z,(X) —ExZ,(X)| = |-%(X) — 1] < 1, it is enough to consider 0 < s < 1. Since
the bound in the display above is vacuous for 8 > 1/4, consider § < 1/4.

To prove ([2.78]), let us first introduce the notation L := fl];’; , and note that

2 2
A=y A
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Then for x € {Z — 1 = s} we have

2 2L 1-L
= = 1 d < =1- <1-
1+L(x) Lo(x) = s+ and 0 1+L(I) 1+L(I) s,
where the last inequality follows from %) — 1 = 1 " 1=£. Consequently, L™ (z) > s+,
Similarly, for z € {% — 1 < —s},
0< 2 () <1—sand (x)=21+s
S1+LY T 1+LY7 7
and thus L(z) > ££L. Combining the above bounds results in for z € {|.%, — 1| > s}
that ) )
+ s S
log L > 1 > > s,
o e > log (15 = 27 >

where the last two inequalities follow from loga > 1 — E and 0 < s < 1.
Through the same computation, the above display is also true for z € {|£ — 1] = s}.
Consequently, for v =0, 1,

PX (|4, —EZ,| = s) < PX (|logL| = s)

= 2P (|108(L)| = 5) + 5 P (|1os(L)| = 5).

Using Markov’s inequality the terms on the right-hand side can be further bounded
as

>s) < e VS(EXIV=OLY L EXIV=0L-v) v >0 and
> 5) <

e MSEXIV=1L A 4 e AespXIV=1 =2 for A1, Az > 0.
Noting that EXIV=1L* = EXIV=0L 1 we obtain that

(|$ E$| ) 7VS(IEX‘V OLV+EX\V OL )

1
2
+ 1 7)\18]EX‘V=0L>\1+1 + EeiAZSEXl‘/:OLi()\Zil).

2

We proceed by bounding the expectations in the above display after which minimizing
in v gives us the result of the lemma. Recall that X|(V = 0) ~ N(0,0%1;) and

X;|(V =1) "&* iN(0,0%) + AN (—p,0?%),i=1,...,d. Consequently,

1511 exp (= 522 (Xi — 0)?) + exp (— 522 (Xi + 0)?)
i=1 2 exp(— 52z X?)

L(X) =

3

_ exp(—%gQ/az)cosh(Xig/UQ). (2.79)
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Then by independence of X;, ¢ =1,...,d
, d
Ex|v—ol? = (e*EQQ/UQEcoshV (Qz)) :
o
where Z ~ N(0,1).

In view of Lemma [2.26] whenever |v|¢?/0? < 1/2,
4

d
€_SV(E0LV + EoL_l/) < exp (V22Q4 _ 81/) (1 + 6(3/2)Dd94/04> )
g

By the same lemma, if |\; + 1|¢%/0? < 1/2,
do* do*
Exjy—olM ™! < 225 pon =
X|V=0 exp (3/8 + 1554 T 2M5 T )
where it is used that 8 < 1/4. Similarly,

do* | 7, do*
EoL™ "' <exp (3/8 + Agﬁ 2)\2294) :
o o

Next we distinguish two cases. Suppose first that 2/d < 0?/0?. Let us take v = \; =
A2 = s0*/(dg*). Then vo?/0? < 1/2, as 0 < s < 1, which in turn gives that

52 ot
e~ (EoL¥ + EoL™") < exp (—”94) (14 e@22) .
Similarly,
2 4
—sA A1+1 s~ g 7
e 1]E0L 1 < exp <3/8—2d94+28>7
and

. 82 0'4
e—.s)\QE()L_XQ-Fl < exp (3/8 — Edigzl + 28) .

The remaining case is when 2/d > ¢%/a%. Choosing v = s02/(20?) results in vo?/0? <
1/2, which in turn implies

d 4
e Y (EoL” + EgL™") < exp (l/2294 — su) (1 + 6(3/2)”d94/"4)
o
5° o? 3/2)s

The bounds on e_SAl]EXW=0L)‘1+1 and e_S)‘QEXW:OL_)‘?“ follow similarly. Hence,
by combining the above bounds and noting that for 0 < s < 1 we have

% (1 4 B2 L B/9+T/2)s e<3/8>+2s) <32,

we arrive at (2.78), for 8 given in (2.77)), concluding the proof of the lemma. O
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The following has been established in previous literature (see e.g. [39] or [46]) and
proves useful for obtaining estimation rates in distributed setting through mutual
information based data processing.

Lemma 2.25. Let R denote a Rademacher random variable, let for o > 0, X|R ~
N(oR,0?) distributed. Then,
dIP)X\R:r
dPX

is \/Co/o-sub-Gaussian for r € {—1,1} and a universal constant C > 0.

Proof. This follows by Lemma (taking d = 1), applying it to X’ = X + p which
follows X'|R ~ N(20R, c?). O

Lemma 2.26. Let Z ~ N(0,1) and let v € R such that |v|g*/o? < 1/2. It holds that
2 4 4
v (@ 0 30 3 0
E cosh (;Z) < exp (VW + 1/2@ — ]1{”<0}21/04> . (2.80)
Proof. First assume that v > 0. Using cosh(z) < e®’/2 we find

92
E cosh” (QZ) < Ee'5z 2’

ag
In view of Lemma [2.306]
EerZ° =D < e forall 0 < A < 1/4.

Applying this to the second last display yields (2.80).

Consider now the case that v < 0. We have

a4 cosh” (§m> = 2 cosh” (gx) tanh (gx) ,

dx o P p p
dL; cosh” (§x> = yg—z cosh” (gm) [(1/ —1) tanh2 (§x> n 1] )

Since cosh(0) = 1 and tanh(0) = 0, a second order Taylor expansion of z — cosh” (£z)
about 0 yields

2
E cosh” (QZ) =E [1 + g'T(T2Z):| , for some rz € [0,1].
o !

Since tanh?(z) < 22 and cosh(z) > 1 for all z € R,

z? 'S 0 o 0* 30
]E?T(TZZ) < VT‘_Q [(V — I)E]ETZZ + 1:| < V@ |:(I/ — 1)? + 1:|
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Then by combining the above two displays

2 4 4
v (@ 0 230" 3 0
ECOSh (;Z) <eXp (VW+V 20_4_2V0_4),

which concludes the proof of the lemma. O

2.5.3 Auxiliary lemmas for Section

For the following lemmas, assume the setting of Section

Lemma 2.27. Consider a sample space X and a distributed protocol with Markov
kernels K9 : D) x X xU — [0,1] forj =1,...,m and shared randomness distribution
PY. Writing % = ®T:1 ' 9) for the product sigma-algebra, consider K = ®;n:1 Ki:
W x XM x U™ — [0,1]. It holds that

}’\U=“(.)7 IP’ECX’U) — almost surely,

K(|z,u) « P
for all f e RY.

Proof. Let A e #9). We have that

B:={(z,u) : KI(Alz,u) >0} = U{<x7“) L K9 (A, u) > ;}’

leN

SO if]P’ng’U)(B) > 0 for some L € N it holds that ]P’;X’U) (z,u) : KI(Alz,u) > 1) > 0.
Since K7 is nonnegative, by Markov’s inequality,

P}/(j”U:"(A) = ij(A|x,u)d]P’f(j) x PY (x,u)
> f K9 (Alz, w)dPE" x P (z, u)
B
> 1pX0) (gw) - KI(AJwu) > ~) >0
L T ’ L ‘

Since given U, YV, ..., V(™) the statement for K follows as K(:|z',... 2™, u) :=
m i i Y|U= m pYDU=
®;j—; K7 (|27, u) and }P’f‘ "=®j:1]P’f U=, O

Lemma 2.28. [Distributed Le Cam / chi-square divergence bound] Let T be a set
consisting of distributed testing protocols. It holds that

inf (IP%/T + sup P}/(l - T)> > inf (sup(l — |[PY —PY|rv) — F(HS)) . (2.81)
TeT feH, ™

where the supremum on the right-hand side is over all probability distributions ™ on
R? with PY .= SP}/dW(f) and the infimum on the right-hand side is over all Markov
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kernels corresponding to a distributed testing protocol in T. Furthermore, (2.81) is
further lower bounded by

1 — sup inf <\/(1/2) ng“'U:“ (LX'U:“(Y) - 1)2 dPU (u) + w(H,f)) ,

TeT ™

the infimum on the right-hand side is over all probability distributions © on R?® and

dpY V=

LYV="(Y) = o=
apy V=

(V).

Proof. Tt trivially holds that for any distributed protocol T = {1, { K7 U, PY)} e
T that

PyT'(Y)+ supEY (1 =T'(Y)) | = inf (PyT(Y) + sup Py (1 —T(Y)) |.
feH, TeT feH,

Furthermore, for any prior distribution = on R? it holds that

su Y _ > Y _ T
sup BY(L-7(4) > f{ o BT ()

> fIP}/(l —T(Y))dr(f) — m(Hj). (2.82)

Hence the right-hand side of the second last display is further bounded from below
by
inf (PET(Y) +PY(1—T(Y)) —7(HS))

for all prior distributions = on R¢. For any T, write Ay = T~1({0}) and note that
PET(Y)+PL(1-T())=1—(By (Y eAr) —P) (Y € Ay)).

By combining the above two displays we get that

inf | PyT(Y)+ sup Py (1—-T(Y)) | =1 —sup|Py (A) — PY (A)| — w(Hj).
TeT feH, A

Since the above is true for any distribution 7 on R¢, the statement is true after taking
the supremum over 7 also. This proves the first statement of the lemma.

Using that the measure dP}/ disintegrates as dIP’}flU:udIP’JI{(u)7 and the fact that U is

independent of the prior m, we find by Jensen’s inequality that

IPY — B |y < j [PY1T=4  pYIU=u | 1 U (u).
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Combining the first statement of the lemma with Pinsker’s second inequality and the
above inequality gives

inf R(H,,T) = 1 — sup inf <f \/(I/Q)DKL (]}»OY\U=u;P7§T’\U=u)dPU<u) I W(H;)) '
TeT TeT T

By applying Jensen’s inequality once more and using Lemma we can further
bound the above display from below by

1 — sup inf (f ¢ /2) (107 (22107 ) 1) g aet ) + N(H;)> |

TeT ™

where

Y|U=u Y|U=u Y|U=u apyv=" ’
D (PO,K ;]P)W,K ) = ]EO,K W(Y) - L
0

2.5.4 Auxiliary lemmas for Section

Let =J denote the matrix

n T

Eé/(j)\U:u [ZXz‘(j)

i=1

Y(j),U:u Y(j),U:u

)

n
. H Y@= »

i=1

as in Section (2.24). The following lemma is a (strong) data processing inequality;
the covariance matrix of X|Y is dominated by the covariance of the original process
X, strongly so for the trace of the matrix if b/d = o(1).

Lemma 2.29. It holds that 2/ < nl; and

u
TH(=]) < 2log(2)n(log, |V9))).

In particular, for log, |YU)| < b,
—j b
Tr(Z)) < (2 log(Z)g /\ 1) nd.

Proof. Let v e R%, then

YO U =u

n
Toiy — YO RYIU=u |, TN )
v Ey =B R, v X,

i=1

n T
YO U= u} gy 1= (ZXZ@) ;
i=1
n 2
_ E(})/(J)EOY\U=u lUT (ZXz(j)) Y(j), U=u
i=1
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Since the conditional expectation contracts the Lo-norm, we obtain that the latter is
bounded by

n n T
Eov" (ZX?)) (ZXZ‘”) v = nlv[3,
=1 i=1

which completes the proof of the statement “ZJ, < nl,”.

The second and third statement of the lemma, we start by noting that under Py,
I XZ-(j) follows a N (0,nl,) distribution. For any unit vector v € R? and s € R this
means that

s2n

n (€]
E068<Zi:1 X7 v) <ez .

Furthermore, for arbitrary y € ),
ZPY“”U:"@)EO [es@;;l Xf”,v>’y<j> — U= u] >
y

PY(j)|U:u(y)EO [es<2?:1 ij),v>|y(j) =y, U = u] >

Py 01U ) B [T XO 0|y @ =y, U=u]
)

where the last line follows by Jensen’s inequality. By combining the above displays
we obtain that

2 .
< % —log ]I”Y<J)|U:“(y)

sEo l(Z Xi(j),v>‘Y(j) =y, U=u
i=1

for all s € R. Choosing s = nEq [<Z:L=1 Xi(j),v>|Y(j) =y, U= u], we have for any

unit vector v € R,

5

i=1

2
Eo XD ly® =y U = “1 < —2nlog PY IV (y).

Next, define for y € Y1),

Wi,y

1 S () 1y G
= _ Eo | Y XYW =y U=u|. (283)
[Eo(Simy X YD) = y,U = )] lzl
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Choose now ws y, . . ., wq,y such that together with w; , the vectors form an orthonor-
mal basis for RY. We then have

2

d n
—i DU =u j ;
Tr(Z) = > PV (y) Y K, [<wi,y,zxff>>|y<” =y U=u
yey @ i=1 i=1
n 2
D U= ; :
Z pY U= (y)Eo l<w17y, Z Xi(j)>|Y(J) =y, U=u
yey (@ i=1
<—2n Y PV log Y1V (y) < 2nlog [V,
ye)Y (@)

where the last inequality follows from the fact that the uniform distribution on ()
maximizes the entropy on the left-hand side (see Lemma [2.20)). In view of =/, < nly,
Tr(Z7) < dn. Combining the above upper bound with the one for log |Y)| leads to
the final statement of the lemma. O

2.5.5 Auxiliary lemmas for Section

This section contains some results applying to the setting of Section[2:4] but some also
apply to general Markov kernels K7 satisfying (e, §)-differential privacy constraints.
For simplicity of the presentation, we simply assume the setting of the aforementioned
section, except for suppressing the dependence on the shared randomness conditioning
U = u in certain places, whenever it bares no relevance to the results in this section.

The first lemma shows that, if we can approximate the Markov kernels of a distributed
protocol sufficiently in terms of total variation by other Markov kernels, the testing
risk corresponding to the distributed protocol can be considered in terms of the former.

Lemma 2.30. Let o€ (0,1) be given. Let (T,{K7}7",,PV) be a distributed protocol

for the testing problem ([2.1) and suppose that there exist kernels {KJ 7Ly such that
forji=1,...,m,

. . ~ . . a
PO (R (XD, 0) = (XD, ) fry < 5 PVeas

and

|1 P (B (| X9, ) — K7 (| X9 w)) | ry < PU-a.s

2m’
for a collection of distributions m on R%. Then,
PUPIK(T(Y)|X,U) +PY JP}”K(l —-T(Y)|X,U)dr(f) =
PYPK(T(Y)|X,U) +PY fP}”f((l —T(YV)|X,U)dn(f) — a,

for the same collection of distributions.
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Proof. We omit the dependence of u in the proof, as it is of no consequence to the
arguments below. Using standard arguments,

m%wquum+JRr(ﬂw=ommﬂﬁ>
P E(T(Y) = 1]X) + JP}"R(T(Y) = 01X)dr (f)—| Pg" (K (|X) = K (X)) rv
— IPP(E (X)) = K(1X) v

By Lemma [6.8]
m

[P (K ([ X) = K([X))|rv < Z (K (X D) = K9 ([XD)) | rv -

By applying the same lemma to |P7*(K(-|X) — K(-|X))|lv, combined with what is
assumed in this lemma, we obtain the result. O

The next lemma gives a construction that allows for a (¢, 0)-DP Markov kernel to be
restricted to a set and “rebalanced” in order to result in (e, 26)-DP Markov kernel.

Lemma 2.31. Let K be a Markov kernel from (X, Z)" to (V,%) satisfying an
(e,0)-DP constraint (i.e. (1.5)) and define for a A € % and a probability measure p
on ¥

K(B|z) := K(B n Alz) + K(A%|z)u(B), forze X, Be ¥.

Then, K is a Markov kernel (X, 2°) to (¥, %) satisfying an (e,25)-DP constraint.

Proof. First of, K can be seen to be a Markov kernel, as the necessary measurability
assumptions hold by construction and

K(|z) = KV n Az) + K(A%|z) = 1,

where it is used that p is a probability measure. Furthermore, for arbitrary B and
x, 2’ € X™ such that dy(z,2") < 1, it holds that

K(Blz) < e‘K(B n Alz') + 6 + e K (A%|2")u(B) + u(B)o
< e K(Blz') + 26.
O

The following lemma allows approximation of a (e, d)-DP collection of kernels, which
may have unbounded densities, with a (€,39)-DP collection of kernels that have
bounded densities. The construction of the approximating kernel is similar to that of
Lemma The approximation is in terms of total variation distance, which allows
the comparison of the testing risks corresponding to both collections of kernels by
using Lemma |2.30
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Lemma 2.32. For any (¢,0)-DP collection of kernels {K7}T,, there exists a collec-

~ . J=1
tion of (€,36)-DP kernels { K?}].; such that for a fized constant C > 0,
4RI ()

sup (y) < C, Pof(j(’|X(j))—alm05t surely,

zeRnXxd dPO}?J—(p((J))

whilst

PAKI(1XON - Ki(.. x@ < —.
Py (XO) — B X0y < o

Proof. For any = € R"*% and set A € ), we have that

dKI ()

— " (y)dPy K7 (y| X)) < 1.

K7 (Alz) = L

So, by Markov’s inequality, there exists a set AM e & () such that

dK7 (-|x)

dPOKJ(.|X(]))(y) on Ae

whilst
K7 ((AMe|z) < 1/M. (2.84)

Define for all = € R**?,

Ki(B n AM|z)

K’(B|z) := K’ (B n AM|z) + K7 ((AM)°|z) Ki(AM|z)

(2.85)

Then, K7 is (e, 36)-DP whenever M > 45~ for any z,2’ € (R%)" that are Hamming
distance 1-apart and B e &),

J N AM |y
K7 (Blz) < K7 (Blz) + K7 ((A})°]) W

= K7 (B o Afla) + K7 (B o (A)'la) + K (2 1e) =5 o

<eK7 (B AM|2') + e K7 (B (AM)°|2') + 20 + %

< e K (Bla') + (1 + e )M + 24,

where the second to last inequality follows by (2.84) and the last inequality follows by
simply adding the nonnegative second term in (2.85)). Its Radon-Nikodym derivative
satisfies

AR (:|z)
dPyKi(-| X))

dK7(-|x)

: dPOKJ(.|X(]))(y)
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PyK7 (| X9))-almost surely. Furthermore, it holds for any f € R? that

[P} (B (| X)) = K7 (-, X))oy < JIIKj(-IfC) — K7(|2)|rvdPy (x)

< 2J|Kj ((AM)e|z) |dP} (z) < %

Since a choice M > §~1 v 2m/a yields the bound uniformly in z € R™*?, the result
follows. N

Lemma [2.33] below is very well known, but included for completeness.

Lemma 2.33. Let K7 be a (¢,6)-DP Markov kernel, ke N, 0 < k < n, x;,%; € X,
i =1,...,n such that x; = Z; for all but k i € [n] and let © = (x1,...,2,), T =
(Z1,...,Zp). It holds that

KI(Alz) < e* K7 (A|%) + dke”

for all measurable A.

Proof. If k = 1, the inequality follows by the definition of differential privacy. By
applying the definition iteratively,

k
K7 (Alz) < e® K7 (Al7) + ) de*0.
=1

The statement now follows by a trivial inequality for the second term. O

The following lemma translates (e, 0)-differential privacy in the sense of ((1.5]) to the
corresponding densities. In particular, densities corresponding to such kernels are
bounded. It is well known and only included for completeness.

Lemma 2.34. Lete >, keN,0<k<n, ;,,2;, € X,i=1,...,n such that x; = T;
for all but k i € [n] and let x = (z1,...,2,), T = (Z1,...,%n). Suppose that KI
satisfies an (e, 0)-differential privacy constraint in the sense of and that it is
dominated by some probability measure p for all x € X. It holds p-a.s. that

dK]EZ')f’ Y (y) < e* dK]g/'f’ L (). (2.86)

Furthermore, if p(y) = §K?(y|z,u)dP(z) for some probability measure P, it holds

A7 () () o gne

-a.s. that sup o

reXn
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Proof. Let z,Z be at most distance 1-apart in Hamming distance. By the definition
of (¢, 0)-differential privacy that, for any A € %, we have that

J dK |z, u)
A

S )duty) = [ K le.)

. P [ dKI(]E,u)
<e LdK (y|Z,u) = e LT(y)du(y)'

Applying this step k-times leads to the first statement of the lemma. For the second
statement, k = n yields

dK (-|z,u) dK (-|z,u)
AL ) - [

P(3) < e, u — as.
0 0 (y)dP(Z) < e, p—as

2.5.6 Distributed estimation under privacy constraints

The data processing results for differential privacy derived earlier in the chapter,
yield (up to logarithmic factors) optimal rates for estimation in the distributed set-
ting under differential privacy constraints as well. In particular, the data processing
bound for the trace of the Fisher information of the distributed protocol derived in
Lemma We describe the resulting rates and provide a proof here.

The estimation results come in the form of Theorems 2.5 and 2.6, Together, they
imply the minimax distributed estimation rate under (e, 5) differential privacy con-
straints (see Section [I.2] and Definition [3)) is (up to logarithmic factors)

o, Ad (2.87)
mn  mn?e? ’ '
whenever log(1/6) = log(mn).

Theorem 2.5. Let M > 1 be given. Let Y = (Y ... Y(™) be generated by a
(€, 0)-differential privacy constrained distributed estimation protocol. It holds that

s d d?
su E Y) - 22(+) d for all d,n,m e N
fe]Rd:Hfﬁ)@sM f”f( ) f“2 mn mn2e2 /\ f
forall0 <e<1 and § < min (2, n /) €2 for any constant p > 1.
d’ Vd

Proof. Consider a differentiable prior for the parameter f with associated prior density
7 with respect to the Lebesgue measure that is of the form = (f) = HZ=1 7k (fx) and
let J(m) denote the “Fisher information” associated with 7,

7T1c fk
,621.[ T ( fk
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Furthermore, let Iya)  yom(f) be the Fisher information of the model at f. A
multivariate version of the van Trees inequality due to [I05] (Theorem 1), bounds the
Bayes-risk corresponding to 7 as follows;

d2
Spa Tr(Iy @y yom ()7 (F)df + (7))

Taking 7 (t) = cos?(nt/2)1{|t| < 1} for k = 1,...,d, J(r) equals dn? (see e.g. [204])
and 7 has support contained in the sup-norm ball of radius 1 < M around zero. The
Fisher information of the model is equal to the matrix =, where we recall the notation
of Section [2.2

[ mi - e > (2.89
[flloosM

=== = Y EE lZXi(” Y@ | &, lZXi(” y @ (2.89)
j=1 j=1 i=1 i=1
Hence, we have that the Lo-risk is lower bounded as follows
N ) d2
sup B f(Y)— fI3 > e
FERL: | f]loo <M f‘ H2 TI‘(.:) + dm?

By employing the bound of Lemma and the standard data processing bound
Tr(Z) < dmn, we obtain that

A d?
sup Ef | f(Y) — f||? = ,
;;lﬂgi f“f( ) f“Q mnd/\mn252 + dn2
which gives the rate of the theorem. O

The upper bound on the estimation risk E | f(Y) — f|3 < d follows from the fact that
[floo < M implies that | f|3 < dM? and the estimator f = 0 does not require any
sharing of information on the data.

Next, we provide a (e, §)-differentially private procedure which attains the rate of the
previous theorem up to additional logarithmic factors whenever € = \/&/ vmn2. The
resulting estimator can be seen as the average of private means of the m-data sets.
Define for = € R its clipping between a and b as

b if x > b,
[z]8 =<z ifa<a<b,

a otherwise.

As transcripts, we let machine j release

V) — li

j=1

_ | , 1\ 1
[XD7  + WD, where WY ~ N (0,4r2dlog ( = ) ——14 ).
' 0 ) n2e?

3

(2.90)



94 2. IMPOSSIBILITY THEOREMS FOR DISTRIBUTED TESTING

By Lemma [3.27] this results in a (¢, 0)-differentially private distributed protocol, with
the central machine being able to compute the estimator

1 & .
= vy 291
m; (2.91)

Theorem 2.6. Let M > 0 be given and let f € R? satisfy | f|eo < M. Then, the
(e, 9)-differentially private distributed protocol generated by (2.90) with estimator as

gwen in (2.91) with T = \/2logmn satisfies

2

B~ 1135 -+ 0 tog(mm) log (f;) (2.02)

mn2e?
for allm,n,deN, 0 < e <1 such that 7 = M and ¢ = \/d/x/mn

Proof. Using Cauchy-Schwarz and the inequality 2ab < a? + b?, we have that
1 &H1 ( )

=D NP ¢ — W(J)
TOENCLEEVRS

2

+2E|—
2

2
:Ef
2

m

Z (J)_

2

PRIEDC S Rk wo|

< 2K

2

Next, observe that as W)’s are centered independent random variables with variance

given by (2.90)), we have
2
1 & ; 1 <« N 1
= @ == @ = z
E m;lW 2 ijZ]lIE'W H2 (mn)log((S)‘

Furthermore, it holds that

2 2
1m1n(y) ISR ()1r
=¥ =Y [x! =) E; | — ) — D S e
= x5 i3 1 -Su (R Eiseer) -5)
d 1 m 1 n () _ 2
-Ze( LBt
= j=1 =1

where we use that 7 > M > ||f| for mn large enough. Using that EV? = Var(V) +
(EV)? for any random variable V, the above display is further bounded by

d L AL A0 = SRR @)\ 17— fx i
3 Var (mZnZ[<Zi )k]T+fk>+2 <mZnZE[(Z" )k]T+fk> .
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By Lemma [3.22]
1 &1 & I 1 &1 & ; d
;1 Var <m g o ; ( m) Tfﬂ) < dVar <mj§ ﬁ; (Zz.(J)>k> =

Furthermore, by a standard tail bound for the normal distribution,

T+ M
Jrrmn'

Putting everything together, the result of the theorem follows. O

BI(29) 170 | <

2+ M)Pr (129] 27— M) < V2

2.5.7 Folklore

The next lemma gives a well-known sufficient (and necessary) condition for the sub-
Gaussian distribution. In the literature we did not find the present, required form of
the lemma, hence for completeness we also provide its proof.

Lemma 2.35. Let X a mean-zero random variable satisfying

2
P(|X|=s) < C’exp( 23)

for some C =2, 8> 0 and for all s € [0,0). Then,

EesX < ewcﬁ/z.

Proof. For k € N, we have

0 0 12/k
E\X|k:L ]P’(|X|k>t)dt<CL eXp( w)dt

Changing coordinates to u = t2/*/(2f3) yields that the right-hand side display equals
o0
%(25)’”%[ e P2 dy = %(25)k/2kr(k/2).
0
By the dominated convergence theorem, EX = 0, and C > 2

i sFEXF <14 %i (2852)F2T (k/2)

k=2 Kl k=2 (k - 1)'

3 [(CBs?) CBs?)E+120(k 4+ 1/2
<re S[Cotnn  cotten )

EesX =1+

2k — 1) (2k)!
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Since T'(k + 1/2) < T'(k + 1) = kI'(k) = k! and (2k)! > 2k(k!)2, the latter is further
bounded by

+ (1 + \/W) Z C’ﬁs /2 — eCBs*/2 4 C’ﬂsQ(eﬁcsz/2 —1).

Since (e* — 1)(e* — y/z) = 0, we obtain that

20852
Ee*X <e™ 2

O

The following lemma is a well known result and follows from standard calculus, but
we included it as we did not find a stand-alone proof.

Lemma 2.36. Let Z be N(0,1), 0 < A < 1/4. Then,

]EGA(Z2_1) < 62,\2'
Proof. Using the change of variables u = z4/1 — 2\,

1 2 1.2

]Ee,\(22—1) _ R P L
V2T

Y

—7z

4Qw1—2AJ~ (1—2)\)

The MacLaurin series of —3 log(1 — 2)) reads

1 (2)\)F
gﬁ)

which yields that the second last display equals

N |

If A < 1/4,

from which the result follows. O

The following lemmas are straightforward calculations used multiple times in Sec-

tion [2.4.2)
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Lemma 2.37. Let S ~ Bin(p,n) for pe [0,1] and let 0 < e < 1. It holds that

Proof. Write S = 37| By, with By,..., B, "< Ber(p).
n
ESeS = ) EB;e
i—1

n
= ZpeE]Eef Zkzi Br
i=1

= npe* (Iiﬂ.edgl)rk1
= npe® (1 + p(e® — 1))”71

< npee+26np7

where the inequality follows from the fact that e* — 1 < 2x for 0 <z < 1. O

Lemma 2.38. Leta€ R and let Z,7’ b N(0,14) for deN.
Then, a{Z,Z") is Cav/d-sub-exponential for a universal constant C > 0 and

Eet|a<z,z’>\ < 2et2a2d’
whenever |t| < (2a%)71.
Proof. Since (Z,Z"|Z' ~ N(0,|Z'|2),
Ret2.2"y _ g2 g2\2 pa(2,2') _ g7 ;81215

By Lemma the latter is further bounded by

2,2 4,4
tZa®d 4 t7a”d 2,2
5+ 5 <tad

)

whenever t2a? < 1/2. The conclusion then follows by e.g. Proposition 2.7.1 in [210],
since (Z, Z'") is mean zero. For the last statement,

(2,77 & (2,27

Consequently,

RZ|Z gtla(z,2"| _ 2|2’ ta(2,2"y | gZ|2’ ta(Z,Z")

1z z>01€ 1z, zy<0€”

’ ’
< 2EZ|Z eta<Z,Z >’

and the proof follows by what was shown above. O
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The following lemma is a well known result, essentially one side of the Donsker-
Varadhan duality (see e.g. Theorem 4.13 in [36]).

Lemma 2.39. Consider a nonnegative random variable H with EH = 1 and a ran-
dom variable Z satisfying log Ee? < co. It holds that

EHZ —EHlog H < logEeZ.

Proof. We have
z

EHZ —EHlog H = EH log(%).

The result now follows by Jensen’s inequality, using that A — E1 4 H defines a prob-
ability measure. O

The next lemma is a standard bound for the KL-divergence, see for instance Lemma
2.7 of [204].

Lemma 2.40. Let P, Q probability measures on some measure space such that QQ < P.

Then, ,
Dk (P|Q) < f (flg _ 1) 40.

Definition 5. Consider probability measures P and @ on a measurable space (X, Z").
A coupling of P and @ is any probability measure P on (X x X, 2" ® Z) such that
P has marginals P and Q:

P=Por!, Q=Por;*

where 7; : X x X — X is the projection onto the i-th coordinate (i.e. m;(z1,x2) = x;
for i = 1,2).

Lemmabelow is a well known result showing that, for random variables X and X
defined on a Polish space, a small total variation distance between their correspond-
ing laws guarantees the existence of a coupling such that they are equal with high
probability.

Lemma 2.41. For any two probability measures P and Q@ on a measurable space
(X, Z') with X a Polish space and X" its Borel sigma-algebra. There exists a coupling

PXX such that . ~
[P = Qllrv = 22X (X # X).

For a proof, see e.g. Section 8.3 in [201].



Chapter 3

Optimal distributed testing
protocols under bandwidth
and privacy constraints

“An algorithm must be seen to be believed.” - Donald E. Knuth

In this chapter, we exhibit algorithms / methods attaining the lower bounds as de-
scribed by the impossibility results of the previous chapter. Specifically the exhibited
methods are optimal in the sense that they attain the lower bound rates of Theo-
rem and Theorem Section is concerned with constructing methods for the
b-bit bandwidth constrained signal detection problem. In Section methods are
constructed that are optimal under differential privacy constraints.

There are similarities between the flavor of the testing strategies. The most important
commonality is the contention between combining the locally optimal tests versus
sharing information that allows to “reconstruct” the underlying full data. This second
approach is more similar to the optimal approach typically followed in estimation
problems. What is also similar, is that the “phase transitions” exhibited in the lower
bound theorems typically correspond to different testing strategies (but not in all
cases). Another parallel is the importance of shared randomness in cases where the
“reconstruction” strategy is followed. The chapter closes with an in-depth discussion
of this phenomenon in Section

3.1 Testing protocols under bandwidth-constraints

“There is a whole book of readymade, long and convincing, lavishly com-
posed telegrams for all occasions. Sending such a telegram costs only

99
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twenty-five cents. You see, what gets transmitted over the telegraph is
not the text of the telegram, but simply the number under which it is listed
in the book, and the signature of the sender. This is quite a funny thing,
reminiscent of Drugstore Breakfast #2. Everything is served up in a ready
form, and the customer is totally freed from the unpleasant necessity to
think, and to spend money on top of it.” — Ilya IIf & Yevgeny Petrov

In this section, we exhibit three distributed testing procedures that attain the rates
posed by the lower bounds of Theorem Together, they yield Theorem which
shows that the lower bounds in Theorem are attainable and therefore tight. The
first distributed testing procedure 71 communicates only a single bit per machine
and can detect signals with a squared Euclidean norm of larger or equal order than
v/d/(y/mn) and does not need a shared randomness. As a second procedure, we con-

sider a test using the shared randomness protocol 7171 that achieves the rate P TR

The third procedure is a local randomness protocol and achieves the corresponding
slower rate d/(nm(b A d)). The existence of such distributed testing protocols proves
the theorem below.

Theorem 3.1. For each o € (0,1) there exists a constant Co > 0 (depending only

on a) such that if
o (Vstah )

there exists T € 35(1? such that

R(H,,T) <« for all n,m,d,beN.
Similarly, for
Vd [ d
2 o VO [ a
r= Camn (b/\d/\\/m>
there exists T € yL(g) such that

R(H,,T) <a for all n,m,d,beN.

Sections [3.1.1], 3.1.2] and [3.1.3] describe distributed testing protocols that attain the
rates in the above theorem. Combining Lemmas and the proof of the
theorem follows as an immediate consequence of these lemmas.

A common denominator in the construction of the three protocols is that the tran-
scripts Y () are generated as vector of p?c—Bernoulli random variables taking values
in {0,1}® where pic € [0,1]° depends on the underlying signal f, in a manner that
ensures that p} = (1/2,...,1/2) under the null hypothesis (i.e. when f = 0). The

concentration inequality for groups of Bernoulli random variables given in Lemma
provides a recipe for the construction of a central test for each of the three regimes.
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The Type I error can be controlled since the distribution under the null hypothesis
is known. The Type II error is small whenever the vectors of probabilities p}, Y
are sufficiently separated from (1/2,...,1/2) in Euclidean norm.

Below we design a testing procedure for [ observations on the binary hypercube {0, 1}*.
That is, given independent observations B; for i = 1,...,1 taking values in {0, 1}*
with probability distribution p = (py,...,px) € [0,1]* and Z _1pi = 1. The test aims
to distinguish the hypothesis

1 1
Hy:p= §Lk versus Hy : p # §Lk
where we use ¢, = (1,1,...,1) € R¥. Multiple algorithms exist that achieve this, we

propose the following test.

Lemma 3.1. For k,l € N, consider fori = 1,...,k j = 1,...,1 independent draws
B! taking values in {0,1} with mean p;. The test

i (Sep) v

has at most level @ for the null hypothesis p; = 1/2 for i = 1... k. Furthermore, if
forp = (p1,...,px) € [0,1]* it holds that

-1
= — 1/2¢ Ko 3.1
Mo = 5o =1/l 2 (31)

then it also holds that
1/2 + 16k~ 2, ;. 3

77pkz

E(1-T) < (3.2)

The lemma gives us a test that distinguishes between “strings” of bits generated
by the machines depending on their stochastic behavior under the null hypothesis
versus the anticipated behavior under the alternative. Bits under the null hypothesis
are “fair coin flips”. When they sufficiently deviate from fair flips in the sense that
[p—1/2¢]|2 is large under the alternative hypothesis, the underlying signal that causes
such a deviation can be detected with large power.

The proof of the lemma can be found in Section of the chapter appendix where
it is restated as Lemma [3.16

3.1.1 Low communication budget: construction of 7T}

We first compute the local test statistic SY) = n|X)|3 at every machine j —
1,...,m. Under the null hypothesis, SI(]) follows a chi-square distribution with d de-
grees of freedom, i.e. SI(J') ~ x3. Letting Fx§ denote x3-cdf, the quantity Fx§ (Sfﬂ)
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can be seen as the p-value for the local test statistic Sl(j ). Based on these “local p-

values”, we then generate the randomized transcript YI(j ) for every j using Bernoulli
random variables:

Y9189 L Ber (in (SI(”)) .

For a given « € (0, 1), we can construct the test

Ty = 11{ (Z(Yl(j) - 1/2))2 - 1/4‘ > na} (3.3)

)1
m\i—

at the central machine. In applications‘, one could set for instance k, such that
PoTi ~ « by considering that > 7", YI(J ) is (m, 1/2)-binomially distributed under
the null. Lemma below yields that for each « € (0,1), there exist constants
Ka, Ca, Mo, Do > 0 such that for m > M, and d > Dy it holds that R(H,,T1) < a,
Vd

J/mn'®

The case m < M, corresponds essentially to the non-distributed setting and is treated
separately for technical reasons. In practice, one would simply use the test given
in (3.3)) also for m < M. Furthermore, if one allows for a slightly larger amount of
bits (e.g. logy(mn) bits), one could opt to transmit an (approximation of) the test

whenever p? > C,

statistics Sl(j) themselves, see e.g. Lemma 2.3 in [I8§], for which it is easy to prove

that the rate of \/‘gn is achieved without requiring any assumptions on m. For the

sake completeness: by considering p? > Ca«/Ma%, we see that the optimal rate of
Vd

mn

can be achieved in the m < M, case by simply taking

1
7=y =1 {\/E (SI(” - d) > na} (3.4)

for an appropriately large choice of the constant k.. Similarly, the requirement that
d is larger than some constant Dy (which is independent of «) appears for technical
reasons. The case where d < Dy is covered by the local randomness protocol Tiy1 in

Section B.1.3

Lemma 3.2. For each a € (0,1), there exist constants kq,Co, My, Do > 0 such that
form = M, and d = Dy it holds that

R(HpaTI) < @

Vd

d
mn’

whenever p? = Cj,

Proof. Under the null hypothesis the random variables Yl(j ) Lidd. Bern(1/2). Next
we shall apply Lemma with k¥ = 1, and | = m. By the first statement of the
lemma, we obtain that there exists k, > 0 such that PoTt < a/2.
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We give an upper bound for the Type II error by using the second statement of the
lemma, but before that we show that condition (3.1]) holds. Note that the law of total
expectation yields

E;Y = EfE; [Yz(j)|5fj)] =EsFe (Sfj)) = Pr(S”) = Wa),

where Sl(j ) is noncentral chi-square distributed under Py with d-degrees of freedom
and noncentrality parameter n|f[% and W, is an independent chi-square distributed
random variable with d-degrees of freedom. Then Lemma[3.19)in the chapter appendix
yields that

2 2

m—1 Gy 1 m—1 (n|f|3 1
=gy o) 22 2. .
lp,m.1 2 < Fhr 2) 3200 < Vd /\2 (3.5)

whenever d > Dy for some universal constant Dy > 0. Consequently, as | f||3 > p? >
Ca%, we obtain that condition (3.1)) is satisfied whenever m > M, for some large
enough C, > 0 and M, > 0. Hence, the Type II error is bounded by the right-hand
side of (3.2]), which is monotone decreasing in 7, ., 1 hence also in C,. Therefore, by
large enough choice of C,, the Type II error is bounded from above by «/2. O

3.1.2 Public coin, high communication budget: construction
of TII

We now switch our attention to exhibiting a testing procedure that is optimal when
bm =z d and b < d, in the shared randomness case. The rate to attain in this
case is p? = d/(nm~/b). That a shared source of randomness in distributed settings
can be strictly better than private ones in terms of “communication complexity”, is
an idea that goes back to [222]. Essentially, the use of shared randomness allows
for the machines coordinate their efforts in “covering” each of the d dimensions of
the data even though all communication happens in just one round. We explore
this phenomenon in Section [3.3] giving various explanations on top of the proof of
Lemma below. We adopt ideas proposed by [12], who consider the setting where
n = 1 with asymptotics in m. This testing protocol is exhibited below and we provide
a full proof covering also the case where m # n. To that extent, let U be a random
rotation, i.e. U is drawn from the Haar measure (see e.g. Theorem F.13 in [24]) on
the set of orthonormal matrices in R%*?. At each machine, for b < d, we can compute
the b-bit transcript YI(IJ ) e {0,1}" conditionally on the shared randomness draw U,
where each of the 1 < i < b components is defined through

V), |u, x0) = 1 {(ﬁUW) > o} :

where (v), denotes the projection onto the i-th coordinate of the vector v € R
The random rotation fulfills a similar purpose as the random reweighting algorithm
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proposed in [I92], but leads to an easier proof in the d-dimensional case because of
rotational invariance of the Gaussian distribution.

Centrally, after transmitting (1/1(11), cee YI(Im))7 we compute the aggregated test statis-
tics Spp = Z;"Zl YI(IJ ) and define the corresponding test as

T — 1{]\/%7”;1);((511)1» - %)2 Vo] > o} (3.6)

Lemma [3.3] below shows that this test achieves the shared randomness lower bound
when mb = d and m > M,,.

Lemma 3.3. For each a € (0,1), there exist constants ke, Co, My > 0 such that for
m = M,
R(Hl)a TH) < a,

whenever p? > C’am.

Proof of Lemma|3.5 First note that it is sufficient to consider the case b < d as one
can simply take b = b A d. Then note that under Py, /nUX ) |U ~ Ny(y/nU f, 1) by
the rotational invariance of the Gaussian distribution. By linearity of the coordinate
projection, conditionally on U,

1 {(\/RU%) > 0} L1{/nUf)i+ Z >0},

where Z ~ N(0,1). As a consequence, the vector Sy is conditionally on U coordinate
wise independent binomially distributed with parameters m and ps ¢ € [0,1]° under

P}/lU, where

(prv)i = @(Vn(Uf)),
with ® the standard normal CDF. Under the null hypothesis, (St); is Bin(m, 1/2)
distributed since po y = (1/2,...,1/2) € [0,1]°. Next we apply Lemmawith k=0
and [ = m. By the first statement of the lemma, it follows that for x, large enough,
P11 < 01/2.

In order apply the second statement of the lemma, which yields that the Type II error
is bounded by «a/2, it suffices to show that the event

b 2
i (o o)
16

where Ny, 1= Ko v o, occurs with PY-probability greater than 1 — a/4. Note that for
this choice of N,, (3.1)) is satisfied on the event A and the right-hand side of (3.2) is
smaller than o/4. The Type II error is then bound by Py Ti1 < PTiila+Pslse < /2.
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We proceed to show that Pylae < a/4. By a standard bound on the Gaussian error
function x — 2®(z) — 1 (see Lemma ,

1

2
) imln{nUfl, },

(ovawno - ;

which in turn implies that

PU< 5 fllEI ((pf,m - ;) ) ( Z min {n(Uf),1} < Na> :

Note that Uf 2 | f2(Z1, ..., Z4)/|Za, where Z = (Z1,...,Z4) ~ N(0,14) (see e.g.
Section 3.4 of [210]). Using that |f]|2 = p and p? > CaLb, the previous display is

further bounded by
dZ? }
min , 10 <N, .
( 24\/> Z { f\\ZH )

Considering the intersection with the event {|Z|3 < kd} for some k > 0, the above
display can be bounded by

b
24bmk
Pr (Y min{Z2,C; 'mvVbk} < 77”1\7& +Pr(|1Z)2 = kd) .
~ Co(m—1)
For k large enough (independent of d), the second term is less than /8. By Lemma

2b
25 -1
Pr (1n<1?i(bZ C, m\/l;k> < e

For large enough M, > Cy, the condition m > M, implies that the right-hand side
is less than a/8. The first term in the second to last display is consequently bounded
by

(222 24bmk1) Na> +Pr <max 72> calm\/ék)

1<i<b

(Z 7% < 24bmk1) Na> + /8.

For m > M, > 25 and by choosing C,, large enough such that the Chernoff-Hoeffding
bound on the left tail of the chi-square distribution (see Lemma |3.28)) can be applied
to the first term of the preceding display we get that

25k N, 25k N,
25k N, .~ 1-log
(E 72 < 5 ) <exp | —b—2 ( ) <o/8, (37

2

finishing the proof of the lemma. O
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3.1.3 Private coin, high total communication budget: con-
structing Tiyp

Finally, we consider the case of not having access to shared randomness, but having a
relatively large communication budget (b>m = d?). Note that we can assume without
loss of generality that m > M,d?/b? for a constant M, > 0, as otherwise the optimal
rate is v/d/(y/mn), obtained by the 1-bit local randomness test described by (see
Section . This case is the most involved one, and we construct a test consisting
two sub-tests optimal in different sub-regimes.

The most obvious approach in this case is to divide the communication budget of each
machine over the d coordinates as uniformly as possible. That is to say, to partition
the coordinates {1,...,d} into approximately d/b sets of size b (we assume without
loss of generality that b < d, as we can always throw away excess budget and b = d
bits suffices for achieving the minimax rate). The machines are then equally divided
over each of these partitions and communicate the coefficients corresponding to their

partition. More formally, such a strategy entails taking sets Z; < {1,...,m} such that
|Z;| = || and each j € {1,...,m} is in Z; for b different indexes i € {1,...,d}. For
i=1,...,d and j € Z;, generate the transcripts according to

v Ix9 = 14x¥ > o). (3.8)

Centrally, a natural test based on these transcripts is

T, - HIL [Z(Z —1/2) ~ /4| > ko). (3.9)

It turns out that such a test does not cover all regimes where m = d?/b?, because, there
is a certain amount of information loss due to the nonlinearity of the quantization
step , i.e. the test induces soft thresholding for the signal components which is
suboptimal for (relatively) large signal components. For the exact statement on the
testing error of this test, see Lemma, below.

For detecting signals including large coordinates we propose an adaptation of test
Tj5;. We start by assuming that b > 2log(d + 1) otherwise we do not construct the
test. Then for i =1,...,dand j =1,...,m, let us generate

B < Ber (R (Vax)?)), 1 {li.. Coa = [2'/(d+ 1))

Note that Cp ¢ > 1 by assumption. Then machine j communicate the transcripts

Cy,q

d
YU = ZZBl(f)e{O,l,...,Cb7dd}, (3.10)
=1 11=1
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which can be done using log, (Cp ¢d + 1) < b bits in total. Based on these transcripts,
we compute the test

2
1
TIQH =1 ‘dmcb d (Z Y;(giznt Ld/2)> - 4‘ Z Ko (311)

j=1

centrally. The testing risk bound for the above test is given in Lemma in the
appendix.

Finally, we construct our test by combining the above ones. We construct both partial
tests Tji; and T3y if b > 2log(d + 1) by transmitting &' = |b/2| bits per machine for
each, otherwise we just construct 7ji;. Then we merge them by taking

T = TIIII Vv TIQII]l{b>2 log(d+1)}» (3-12)

where the indicator should be understood to rule out cases in which the transcripts
for T2, cannot necessarily be communicated. This case, as shown below, is covered
by the first test T; 1111 Lemma below shows that T71; has sufficiently small testing
risk in all cases where m > M,d?/b?.

Lemma 3.4. For « € (0, 1), there exist constants M, Cy > 0 such that when m >
M, d?/b?, the b-bit distributed private testing protocol Tryr given in (3.12) satisfies

R(H,,Trr) < «

whenever p? > Ca#\g;d)'

Proof. Fix an arbitrary f € H, and define

J={i:1<i<d —f2>1}. (3.13)
m

By Lemma in the appendix, the test T{; given in (3.9) with ra,Ca, My > 0
large enough satisfies

EoTi; < /6, and Eg(1—Tf) < /6,

whenever

b
SN2z %2 or dﬂ\/a > M,. (3.14)

(N

Next we consider the case where (3.14) does not hold. Then M, > y \/E Ma‘bf,
where the second inequality follows from the assumption of the lemma. This implies

that b > +/d. Since % < M, and m can be taken to be larger than arbitrary

constant (otherwise we are in the non-distributed regime in which the minimax rate
can be achieved locally), we can without loss of generality assume d is larger than
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an arbitrary constant (depending only on «), hence b > +/d > 2log(d + 1) and
the test T3; and the corresponding transcripts can be constructed. Furthermore,
Diee f2 < p?/2 implies J # & in view of 3., f? > p?. Consequently, the conditions
of Lemmaare satisfied, yielding that there exists a test T/; such that E¢Ti; < /6
and Ef(1 — T3;) < «/6. We note that in case ﬁ% > M,, the test T{; cannot
necessarily be computed (not enough communication budget), but this is not required
as this case is covered by T

We now have that for any f € H,, whenever % < M, the test 1111 can be computed
and using that for nonnegative z,y > 0, x vy < £ +y and x v y > x, we obtain that

R(H,,Tin) < BoTiyy + EoTtirLp>2 10g(d+1))

+ fsulg) min {Ef(1 — Tip), Ep (1 — Tii L p>210g(a+1))) §
€y

<20/6 + /6 = a/2.

3.2 Testing protocols under privacy constraints

“An interesting thing about differential privacy is that it needs theorems
even in practice. You can implement heuristic algorithms that are fast
on your data, but ‘heuristic privacy’ does not exist. A mechanism isn’t
private without a theorem.” — Jelani Nelson

In this section, we exhibit distributed differentially private testing procedures achiev-
ing (up to log factors) the rates posed by the lower bounds of Theorem in Chap-
ter @} Together, they yield Theorem We consider the test of hypotheses

Hy : f = 0 versus the alternative hypothesis f € H, = {f eRY:M > |f|2 = p}.

(3.15)

The restriction to signals of bounded norm is standard in privacy and does not change

the conclusion of the lower bound, Theorem see Remark [6] The rates attained
by the procedures in this section are summarized by the theorem below.

Theorem 3.2. Consider for some constant M > 0 the test of hypotheses in .
For all « € (0,1), there exists a constant Cy,, > 0 such that for all n,m,d € N and
(mn)™' < € < 1,8 = Lyenp-172y(mnd) =2, there exists a (e,d)-differentially private
distributed testing protocol T' using shared randomness such that R(H,,T) < o when-
ever

d Vd 1
2> C,log®(1 + mnd ,
p o’( mnd) mnvne2 A 1vne2 A d /\ Jmnvne? Al \/ mn?2e?
(3.16)
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Similarly, for all a € (0, 1), there exists a constant Co, > 0 such that for allm,m,d € N,
(mn)"'<e<landéz ]l{@nfl/z}(mnd)*z, there exists a (e, 9)-differentially private
local randomness distributed testing protocol T' such that R(H,,T) < o whenever

) dvd Vd 1
p° > Cylog®(1 + mnd) (mn(n62 D /\ <\/ﬁn\/m\/ mn262>> . (317

Just as it was the case in the bandwidth constraint setting, the different rates, de-
pending on € comparatively to n,d and m, correspond to different testing “regimes”.
We shall coin these regimes using similar terminology. We start in Section by
designing a differentially private testing protocol that uses only local randomness and
that is optimal in the “small ¢ regime”; ¢ < v/d/y/nm or ¢ < d/y/nm for shared-
and local randomness, respectively. Then, in Section [3.2.2] we design two local ran-
domness protocols attaining the rates for the “in-between” and “large” e regimes,
where € = v/d/\/nm or € % d/y/nm for shared- and local randomness, respectively.
As remarked in Section there are certain values of d, m,n, where some of these
regimes do not occur.

The first distributed differentially private testing procedure 17 is (e, 0)-differentially
private for any € > 0 and can detect signals with a squared Euclidean norm of a (poly-
logarithmic) factor larger than v/d/(y/mnv/ne? A 1), whenever (mn)~' < e < 1. This
first procedure does not need a shared randomness.

As a second procedure, we consider a distributed differentially private testing pro-
. . d .
tocol using shared randomness, that achieves the rate Ty (again up to

log-factors). Whenever ¢ < 1/4/n, this procedure can be implemented with a (e, 0)-
differential privacy guarantee, in which case we shall denote it as 77;. For the range
of values 1/4/n < e < 1, we shall consider a version of this protocol that employs
(€, 0)-differential privacy, which we denote Tff‘s.

The third procedure, is a distributed differentially private testing protocol that uses
only local randomness and achieves the rate dv/d/(mn?e?) (up to log-factors). When-
ever € < 1/4/n, the procedure satisfies (e, 0)-differential privacy constraints, and shall
be denoted by Tjf;. For the range of values 1/4/n < € < 1, we shall construct a

(¢, 0)-differentially private version, TIEI’I(S .

The approximate differentially private tests 7; 161’6 and Tfﬂé employed when € > 1//n
attain the respective lower bound rates (up to logarithmic factors) for values of ¢ as
small as (mn)~¢ for an arbitrary constant C' > 0. The existence of such distributed
testing protocols proves Theorem

Before delving into the construction of these specific protocols for the different regime,
we cover the general strategy for the design of these protocols. Similarly to how
the bandwidth constraint protocols essentially boil down to testing uniformity of a
sequence of bits, which are generated from the local data, the distributed privacy
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protocols can be seen as combining noisy versions of statistics of the data. The
“type” and “amount” of noise added depends on the sensitivity of the statistics.

Formally, consider a metric d on R¥. Given n elements x = (z1,...,2,) in a sample
space X, the d-sensitivity at « of a map S : X" — RF is

Ag(x) := sup d(S(x),S(x)),

FeX":dy (z,2)<1

where dg is the Hamming distance on A",
dp(w, &) = Y 1{z; # &} (3.18)
i=1

The d-sensitivity of S is defined as Ag := sup, Ag(z).

In our case, the sample space under consideration is R%. In this section, the noise
mechanisms under consideration are Laplace mechanism and the Gaussian mecha-
nism. These can be used to generate differentially private transcripts by adding
either Laplacian or Gaussian noise to statistics under consideration. The Laplace
mechanism yields e-differentially private transcripts for statistics x — S(z) that have
bounded L-sensitivity, where the variance of the Laplace noise scales with the L;-
sensitivity. The Gaussian mechanism yields (¢, d)-differentially private transcripts for
statistics that have bounded Ls-sensitivity, with the noise variance scaling with the
Lo-sensitivity.

The following lemma shows the way in which adding appropriately scaled Laplace
noise can be used to guarantee e-differential privacy. The result is well known (see
e.g. [86]), but since the proof is short and instructive it is included below.

Lemma 3.5. Suppose that the map S : (R)™ — RF has |- |1-sensitivity Ag € (0, 0).
Let W = (Wh,...,Wy) be a vector of i.i.d. centered Laplace random variables with
scale parameter € *Ag. Then, the transcript

1s e-differentially private.

Proof. By the triangle inequality, the ratio of densities of the random variables S(x) +
W and S(z') + W satisfies

||S(z)+w|1+z=||S(z") +w <= ||S(x)—S (2’
e As” (z)+w(1 As” (z') H1<6A5” (x)=S( )ngee‘

Consequently, Definition [3] can be seen to be satisfied:

Pr(S(z)+ W e A) <ePr(S)+WeA).
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The next lemma shows how appropriately scaled Gaussian noise provides (e, §)-differential
privacy for mappings with bounded Ls-sensitivity. This result is also well known, and
a proof can be found in e.g. Appendix A of [86].

Lemma 3.6. Suppose that the map S : (R?)"™ — R¥ has |- |o-sensitivity Ag € (0, 0).
Let W = (Wy,...,Wyg) be a vector of i.i.d. standard Gaussian random variables.
Then, the transcript

T(z) = S(z) ++/3log (1/8)e ' AsW
is (e, 0)-differentially private.

In order to obtain statistics with (uniformly) bounded sensitivity with respect to
the L; and Lo-norms, it shall prove particularly useful to bound quantities between
thresholds, which we shall refer to as clipping. Formally, for a,b,z € R with a < b, let
[2]% denote x clipped at a and b, that is

b if z > b,
[z]° =<z ifa<a<b,

a otherwise.

For x € R%, let (z); denote the projection onto the i-th coordinate and let [z]% =
{[(x)i)o :i=1,...,d}.

In estimation, clipping and averaging (functionals of) the observations is a common

strategy that enjoys good sensitivity. For x1,...,z, € R?, x; = (z41,...,2q), the

combination of clipping at 7 and —7 and averaging over ¢ = 1,...,n yields sensitivity

of the order 27d/n for the L;-norm and 27+/d/n for the Ly-norm, uniformly over

the sample space. That is, the map S : R**? — R? defined by S(z1,...,2,) :=
-1 n 7 .

n=t Y [xi]T . satisfies

b y % I<a,. 27
|S(x17~"7x’n)k_S(x17"~7xn)k?‘ = Z[xzk]zr_ﬁz[xzk]zfr < Zu
i=1 i=1

S|

for &1, ...,4, € R? such that ; = x; for all but one i € [n]. The larger L;-sensitivity
when d > 1 implies that the variance of the Laplace noise added will be larger than
that of the Gaussian mechanism, which typically leads to a less powerful test.

Functions of the data that are superlinear on the entire sample space will typically
have worse sensitivity than sublinear functions, such as the average. One technique
that we will employ, that allows the use of e.g. a quadratic function is Lipschitz
extension. The idea being that for S : X — R, if  — S(x) is D-Lipschitz on C ¢ X
and we expect that most of our observations will be in C, we can define S on C only
and consider a Lipschitz extension S of S to the whole space. This way, S enjoys
“sublinear sensitivity” on the whole space. In particular, if S is D-Lipschitz with
respect to the Hamming distance, we have |S(z) — S(%)| < D for all z,% € X™ such
that dg(z,%) < 1, so S has sensitivity D.
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The existence of such a Lipschitz extension is guaranteed by a version of the McShane—
Whitney Extension Theorem. In particular, we use the construction of McShane. We
provide our own proof which accounts for potential measurability issues stemming
from the discrete topology of the Hamming distance in the construction.

Lemma 3.7. Let C = R"™? and S : C — R be a (Borel) measurable D-Lipschitz
map with respect to the Hamming distance on (R*)" as defined in (3.18). Then, there
exists a map S : R"*4 — R measurable with respect to the Borel sigma algebra such

that it is D-Lipschitz with respect to the Hamming distance on its entire domain and
S=8onC.

We provide a proof of the lemma in Section of the chapter appendix. In
the next section, we leverage the Lipschitz-extension above to create a differentially
private version of the chi-square test that would be locally optimal, but which has
poor sensitivity on the entire sample space.

3.2.1 Testing using aggregated locally optimal private test statis-
tics

In this section, we construct a test statistic that is locally optimal, in the sense that

it reaches the local minimax rate under e-differential privacy as established (up to
poly-log factors) in [I57]. That is, if m = 1, the e-differentially private test statistic
reaches the minimax rate of the local problem. When m > 1, in the central machine,
combining m of these locally optimal tests results in a test which is optimal in the
regime where € < 4/d/(mn) in case of shared randomness or € < d/y/mn in case of
local randomness.

Given 7 > 0 and V) ~ X3 independent of XU let

SO (X0)) = [\7/”‘3 ()X(j)HQ - V:)>];. (3.19)

For any 7, this test statistic can be seen to be mean zero under the null hypothesis,
since [¢/nX@|? ~ x2 under Py. Under the alternative hypothesis, the test statistic
picks up a positive “bias” since [«/nX |2 ~ x2(|f|3) under Py.

We will use that for “typical” data, i.e. data that occurs with relatively high probabil-
ity,  — S’gj )(:E) has relatively good sensitivity. However, because of the nonlinearity
of the squared Euclidean norm, the sensitivity of the statistic z — Sg ) (x) is large for
certain data z € R4*™. To mitigate this, we follow a similar strategy to that proposed
in [54] and improved upon by [I57]. That is, we define x — ng)(x) (as in (3.19))
only on a set on which the sensitivity is good. Lemma [3.10 below shows that on a set
C. < R¥*™ depending on n,d, «, M and 7, the map z — S&j)(x) is D,-Lipschitz with
respect to the Hamming distance. Specifically, for z, % € C,,

18- (21, ..., 2n) — Sr(Z1,. .., &n)| < Drdy(a, 1)
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with D, p.am, = Dy = vr/nA/d and

Yr = Yrmdm = Ralog(l +m) (\/logz(l + n)n\/ar v \/nd), (3.20)

for a constant %, > 0. Then, in order to obtain a D, -Lipschitz statistic which is well-
defined on the full sample space, we compute a Lipschitz extension of x — SSJ ) (x) to
R¥*"_ Such a Lipschitz extension exists by the McShane-Whitney Extension theo-
rem, but the construction as applied in [54] [I57] is not necessarily Borel measurable.
A Borel-measurable Lipschitz extension of the map that is guaranteed to exist by
Lemma for which we provide a proof in the chapter appendix, Section [3.4.2.1
In addition, our construction differs from that of [54] I57], in order to allow easier
combination of the test statistics and improving performance by several log-factors
(which is due to a slightly sharper analysis). We denote the Lipschitz extension of
sy by SY) which then satisfies Sﬁj)(x) = S’Q)(x) on C; and is D, -Lipschitz on the
entirety of R4*™. The set C, is constructed such that X ) takes values in it with high
probability. This results in SQ ) (X (G )) exhibiting similar probabilistic behavior as the

original test SY )(X (1)), whilst assuring it has a much smaller sensitivity is greatly
improved over the whole parameter space. The explicit construction of C, is given at
the end of this section, as well as the proofs of the aforementioned lemmas. Consider
for 7> 0 J = Jp, pn :=log([1 + 2log,(mnM)]) the (partial) transcript

Yy = )+ W (3.21)

() x(
Do (X
with W) ~ Lap(1) independent for j = 1,...,m and 7 > 0. Since z — J%S(J)(x)
can be seen to have sensitivity ¢/J by the fact that ng is D,-Lipschitz and conse-
quently the partial transcript is ¢/J-differentially private by Lemma The lemma
below shows that the test

{ ZY(J <DJ >\/jlia} (3.22)

has Type I error less than or equal to a/.J for k, > 0 large enough and detects signals
that are “close” to the clipping 7.

Lemma 3.8. The test oS defined in (3.22) satisfies PopS < «f/J. Furthermore,
whenever )
nlf13

Vd

and f satisfies (3.25) for Co > 0 large enough, it holds that Py(1 — ¢,) < a for
J =log([1 + 2logy(mnM)]).

T/4 < < 71/2,

A proof of the lemma is given later on in the section. Essentially, the above test is
calibrated for the detection of signals with signal size between 7/4 and 7/2. In order
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to detect signals of any size larger than the right-hand side of (3.25)), we follow what
is essentially a multiple testing procedure. For large signals, we need a larger clipping
to detect them, as well as a larger set C, to assure that the data is in C; with high
probability, as larger signals increase the probability of “outliers” from the perspective
of sensitivity of the Euclidean norm. The additional J = [1 4+ 2log,(mniM)] “blow
up” can be seen as a Bonferroni correction.

Since 1/mn? < | f|l2 < M, it suffices to compute tests for partial transcripts for

2
reT = {2—’“+2%:k_1,...,.]}. (3.23)

For each 7 € T, the machine transfers (3.21]), yielding as a full transcript yU) = {YT(j )
7 € T}. Since each partial transcript YT(J )is ¢/ J-differentially private with independent
Laplacian noise, the full transcript Y is e-differentially private by Lemma The
test

TY := max @, (3.24)

T7€T
then satisfies Po7Tf < « via a union bound. Furthermore, for f € R? such that
M = | f|l2 = p, we have a 7* € T such that 7*/4 < +/dn|f|3 < 7*/2 and
Pr(1—17) < Pp(l — prx) < /2.

Given what we have thus far, we obtain the following statement.

Lemma 3.9. For all M > 0, a € (0,1) there exists ko > 0 and Cy,, > 0 such that the

test T§ defined by (3.24) and (3.22)) satisfies
PoTS +Py(1—T5) < a

for all f € R? such that

M? = | f[3 = Culog®(1 + mn) (\/m(\\/f%GMJ \V (711711262) : (3.25)

Next, we discuss the construction of C; and finish by proving the aforementioned
lemmas. Define for 7 > 0 the sets

A, = {(xl) e (Rd)” . ‘ HZzeJxZHz - kd' < kv VT < [n],|T| =k < K}, (3.26)
BT = {($z) € (Rd>n : ‘<xl72k€[n]\{z} (L‘k;>‘ < Vr, Vi = 1,... ,n} s

with K = [2rD7 '] and let C, = A, nB,. Lemma below tells us that « — SU)(z)

is Lipschitz on C, with Lipschitz constant D, = n.
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Lemma 3.10. The map © — ng)(x) defined in (3.19) is D, -Lipschitz with respect
to (RY)"-Hamming distance on C,.

Proof. Consider & = (;)ie[n], & = (&)ie[n] € Cr with k := dpg(z,2). If k > [27D'],
)

we have |S(])( ) — SY (@) < 27 < DTk. If k < [27D-1], let J < [n] denote the
indexes of columns in which x and & differ. Define the sum of the elements that =
and % have in common as

n n
Z x;, such that le = v+ w and Eii:v—f—w.
ie[n\J i=1 i=1

We have

; ; n 2 (©) n 1 o )
59@) - 590 = = (I r ol - £2) = 2o (o v - £2)
= —= (2w 26,0 + Jul} - ).

The last two terms are bounded by 2k~,/(nv/d) since z,% € A,. The first two terms

equal

(¢w, 0 +wy = G,v+ ) + ol = wl3)

nxf

where the last two terms are bounded by 4k, /( n\/> It holds that

<w,v+w>—<u“),v+71;>:2 Z $z> <$z’ Z T )+ s =23 |,
Ze

€T ze[n \J

which is bounded by 2k~, for x € A, n B.. Putting it all together and by symmetry
of the argument, we obtain that

8k~

sV (@) - 89 @)] < ~2

=D,k.
O

Under the null hypothesis, the observations the X )’s are in C, for every 7 with high
probability. For each element f from the alternative hypothesis, there exists a 7* such
that the X)’s are in C,+ with high probability. This is the content of the following
lemma.

Lemma 3.11. Whenever n|f|3d="? < 7/2, 7 < nM?/\/d and . in (3.20) is taken

large enough, it holds that
P ( x ) T) < &.
! ¢C 5
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We now finish the proof of Lemma3.9|by providing a proof for Lemma[3.8] Lemma[3.17]
is proven in Section [3.4.2.3|in the chapter appendix.

Proof of Lemma[3.8 On the event that X9) € C, for all j € [m], we have that

S (X)) +WT<”) = ( S (X0 +W£j>). (3.27)

270 =3 (53 5.7

j=1 =1 Jj=1

Consequently, Py, is bounded above by

1 & € ) . )
= (9) (9) - .oy ()
Po<m§1<DTJST(X )+ WL >><Djv1>fna>+1%(3].x ¢CT>.

By Lemma and a union bound, the second term is bounded above by «a/2.
Under Pg, the terms in (3.27) are independent mean zero. By Lemma and a
straightforward computation, the variance of each term in (3.27)) is bounded above by

1)4%2]2 + 2. By Chebyshev’s inequality, the first term in the display above is therefore

bounded by (ﬁna (e/(D;J) v 1))72 <D2 = + 2) so choosing k, large enough yields
the first statement of the lemma. For the second statement, note that the same union
bound as above yields that Py(1 — ¢, ) is bounded above by

<f2< S0 W) < (55

also using Lemma [3 Under the alternative hypothesis,

n (HX(”‘Q B V“’) a I3, ,vr 12|53 -V
Vd 2 n Vd Vd Vd

By assumption, L\g% < 7/2, Var(%(Z, ) =n|fl3/d < /2 and (|Z|3 — VD) /\/d
tends to a Gaussian with variance 4 for large d. The second and third term in
are symmetric in distribution about 0, have uniformly bounded densities (since the
chi-square and normal densities are bounded, and the third term tends weakly to a
Gaussian in d) and d~"/?n||f|3 < 7/2, which means that the conditions of Lemma/3.21]
are satisfied. Applying said lemma (with u = d—'/?n| f|3), we get that there exists a
uniform constant ¢ > 0 such that
)) WQ)) \Fanng

Ef\ﬁZ(DJ VdD,J

Under Pf, by independence of the data and the Laplacian noise,

1) x/jna> +a/2,  (3.28)

Z, )+ (3.29)

1 € ; ; 1
Vary ( = Z DTJST(X(J)) + WT(J)> =1+ Vary (D JS (X ))) .



3.2. TESTING PROTOCOLS UNDER PRIVACY CONSTRAINTS 117

Since

E;—— ()Xm” _ )> - ”\'gg <7/2,

Lemma yields
2 2 (4)
€ ) « € n ‘ (j)‘ v
Vary (DTJST(X )) < DzﬁVarf 7 ‘X ’2 -

e [4n|f]3
< )
D22 ( d 4>

Assume now that for all C, > 0 large enough,

€ Vvmn| f|3e
(DTJ >\/7na\ EN T (3.30)

which is a claim we shall prove later on. Then, the first term in (3.28) is bounded
above by

(f 2 <D 75X D) + WD) — By (S-(X) +W£j))> Qgge)
(3.31)

which, by Chebyshev’s inequality is bounded by

-2
) (o241

(i) sy (£2005)

For f satisfying , the last two terms are easily seen to be smaller than «/6 for
a large enough to choice for Cy,. To see that this is also true for the first term, recall
that D, = (8v;)/(nv/d) with v, as defined in (3.20), which yields that the square
root of the first term equals

Vmn?|f]3e
8Fq log(l +m) (\/logQ(l +n)nVdr v \/@) log(nm)

9

which is larger than C,log(mn) when the maximum is taken in vnd. When the

maximum is taken in \/10g2(1 + n)nv/dr, using that 4n||f||2/v/d = T yields that the
above display is bounded by

vmn|flze

1674 log(1 + m)log(1 + n)log(nm) ~
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In either case, it follows that the Type II error (i.e. (3.31)) can be made arbitrarily
small per large enough choice of C,, > 0.

We return to the claim of (3.30). First, we note that
vmn| f|3e Vmn?| f|3e

= 21
VdD-J Ra\/logz(l + n)nvdr v v/ndlog(1 + nim)
is what we have shown above. The inequality
Jinlflge e
VdD,J D-J
follows immediately for f satisfying (3.25]). O

3.2.2 Tests using coordinate wise strategies under differential
privacy

This section presents four different protocols, all aiming at the “high” and “medium”
privacy budget regimes, which occur whenever € = v/d/(y/mn) in the case of shared
randomness strategies, or

1 d 1
<e€

R —= or < —
‘ v mn vn’

d
€= if
n

Jm

in case of only local randomness.

j

A common element in these four strategies is that they try to reconstruct or approxi-
mate the aggregated data by combining a noisy and clipped version of the local data.
This is in contrast to the aggregated statistics corresponding to the locally optimal
private tests as considered in Section These “coordinate wise reconstruction”
strategies are similar to those typically employed in estimation [86], i.e. “clipping”
statistics and adding appropriately scaled noise.

Where the strategies differ from estimation, is firstly in the dimensionality of the
transcripts. There is interplay between the optimal number of coordinates that a
transcript contains information on and the severity of the privacy constraint. When
€ < 1/4/n, the cost of transmitting information on each of the observations is very
costly. To mitigate this, the rate optimal strategies in this € regime transmit no
more than a single coordinate of (a linear transformation of) the data. Laplacian
noise is added to the clipped coordinate in order to obtain (e, 0)-differentially privacy
guarantee, resulting in the (e, 0)-differentially private protocols. Such a regime or
optimal strategy is not observed in the equivalent estimation problem, where it seems
always optimal to transmit information on all coordinates, as described by the results
Section [2.5.6] The shared randomness test corresponding to this strategy shall be
denoted by T} and its construction is given in Section whereas the local
randomness counterpart, 77y, shall be described in Section
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When € 2 1/4/n, strategies that communicate information on more than one coordi-
nate (of a linear transformation) of the data become viable, in the sense that they
perform equally well or better than the ones that communicate just one coordinate.
For these strategies, we shall employ Gaussian noise, which scales better in dimension
than the Laplacian noise. The Gaussian mechanism results in (¢, §)-differentially pri-
vate protocols. The corresponding shared randomness test shall be denoted by Te"s,
its local randomness counterpart by Tfffs , which are constructed in Sections
and respectively. The optimal number of coordinates transmitted / dimen-
sionality of the transcript depends on the privacy budget €, n and d. The choice of
0 could be as small as (nm)~P, where p > 1 is a constant; we opt for the rather

arbitrary choice of § = (nm)~2.

3.2.2.1 Pure differential privacy using shared randomness in the “in-
between regime”

We now bring our attention to constructing a shared randomness distributed e-DP

testing protocol 17 that is rate-optimal up to a logarithmic factor whenever Tmn <

e < 1/y/n.

Let U denote a draw from the Haar measure on R?*?. For machine j = 1,...,m,
generate
€

T or

n
SHUXIN, + W,

1=1

v =y0) (X(j), U)

where W) is independent centered Laplace noise with scale parameter 1. We also
recall the notation (v)g, which denotes the projection of a vector v € R? onto the

k-coordinate. The map 2 — - Z?Zl[(uscgj))l]iT has sensitivity 1 for any u € R4*4,

which makes YU e-differentially private by Lemma

In contrast to the multiple clippings used in the test of Section [3.2.1] we consider a

single level of clipping:
T := Rov/log(1l + dmn). (3.32)

Using these transcripts, the central machine computes the test

2
1 & ) 2
TIEI:]I (2 Y(])) _2_&2,{@./”62\/1
T

m«

Applying Lemma with v = €¢/(27) and L = 1, choosing k4 > 0 and &, > 0 large
enough yields that PoT{; < «/2. Furthermore, this choice of v reduces the condition

of (3.67) to

d dR2 Ay pom 2 2 Ko RaAd 1m
() v (%) v (2’%24) v omaary | Sca (333)
mn| fl2 mn?e?| f||3 m?n?| f[5 m2ntet| f5
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where Ag , m :=log(1l + dnm). Since ne? < 1, the condition

d
“log(1 + dmn)mn2e>

I£13 = C. (3.34)

for C, > 0 large enough yields that the maximum of is taken in the last
argument, which is in turn bounded by x2&2/C2. We obtain that the Type II error
condition of Lemma is satisfied and Py(1 — T7) < /2. In conclusion, we obtain
the following result.

Lemma 3.12. Let \/% < e < 1/4/n. There exists a distributed (e,0)-differentially
private testing protocol Tf; such that T5; is of level a and has Type II error probability
Ps(1 — T5;) < o whenever f € H, satisfies (3.67) for a constant C, > 0 depending
only on .

3.2.2.2 Pure differential privacy strategy using only local randomness in
the “in-between regime”

In this section, we shall prove the following lemma by constructing a distributed

testing protocol T7j; that is e-differentially private, uses only private randomness and

attains the lower bound rate of Theorem [2.4] up to log-factors whenever 4/ne < 1 and

d
GZW.

For 7> 0,j€e[m]and ! =1,...,d, consider transcripts of the form
Y@ (xy = S Nx Oy, &) .
l ( ) 2LT;[( i )l],.,- + VVl ) (3 35)

where the VVl(j)’s are i.i.d. Laplace noise on the line with scale parameter 1 and L € N

such that d > L. Since = — 55 Z?:l[(IEj))l]:T has sensitivity ¢/L for [ = 1,..., L,
releasing

Y(j)(X(j)) _ (Yi(lj)(X(j))’ o Y;(LJ)(X(J')))

for one i; € [d] satisfies the e-DP guarantee by Lemma as that YU) has L;-
sensitivity 1.

The clipping 7 := Rq+/log(l 4+ dmn) is taken similarly to that of Tj7 in the previous
section, where K, > 0 is a constant depending on the desired level of the test only.
This assures that “typical” observations under the null hypothesis are within the
clipping, whilst only in rare cases outliers are required to be clipped. This clipping
is the cause of the log-optimality of the testing procedure: with significantly more
technical effort, we believe it can be shown that a large enough constant clipping
attains the optimal rate.

The test statistic z — Y () (z) requires the 1/L rescaling to have sufficiently bounded
Lq-sensitivity and choosing L too large means a possible loss of power. An approach
in this case is to divide each machine over the d coordinates as uniformly as possible.
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That is to say, to partition the coordinates {1,...,d} into approximately d/L sets of
size L. The machines are then equally divided over each of these partitions and com-
municate the sum of clipped X ) coefficients corresponding to their partition. More
formally, such a strategy entails taking sets 7, < {1,...,m} such that |Z;| = || and
each j € {1,...,m} is in Z; for L different indexes [ € {1,...,d}. Forl=1,...,d and
j € I, generate the transcripts according to . Interestingly, the optimal choice
of L turns out to be [d/m], which entails L being of constant order for the regime
where d/y/mn < y/ne < 1 (as this implies that m > d?). In other words, the optimal
rate in this regime is achieved by each machine communicating information about
just one (or an O(1) selection) of the d coordinates. The information gained by com-
municating more than a constant number of coordinates is not worth the increased
noise needed to guarantee differential privacy.

As a test, the central machine computes

2
2
ne
17 —2| = KaT ¢,
=t | (A E) -

which, by applying Lemma with v = 57—, satisfies PoTy3; < /2 for Rg, ko > 0
large enough.
Since € < n~12, we have 42 < (log(dnm)n)~!. Combining this with the fact that L =

1, € £ 1/4/n and the required condition (3.71)) of the second statement of Lemma
reduces to showing that, for some constant ¢, > 0,

d log(1 + dnm)d?®  log?(1 + dnm)d?
\ \
mn| f[3 m?n?e?| 3 m?ntet|f|3

< o (3.36)

Whenever f satisfies (3.37) below, the first term is of the order 1/C, (again using
€ < 1/4/n). Furthermore, using m = d? yields that the second term in the maximum
is of the order 1/(Cy+/m) and for the third term we obtain

log”(1+dnm)d® _ 1
mAntel|flz T C3

which can be made arbitrarily small for per choice of C, > 0. The second statement
of Lemma consequently yields that P;(1 — Tj3;) < /2. We consequently have
proven Lemma below.

Lemma 3.13. Take a € (0,1). Whenever d/+/mn < \/ne < 1, the distributed (¢,0)-
differentially private testing protocol T§;; of level o has Type II error Py(1 —T) < «
whenever

d3/2

log(1 + dmn)mn2e?’

1£13 = Ca (3.37)

for a constant C, > 0 depending only on a.
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3.2.2.3 Shared randomness in the “large” ¢ regime

When € = n~'/2, better rates can be achieved by communicating more than a constant
number of clipped coordinates with added noise. In order to obtain a rate matching
the lower bound in Theorem (up to a log factor), the noise used for this strategy is
Gaussian. The Gaussian noise requires the sensitivity to be small in Lo-norm, which
means that the scaling of the Gaussian noise has a better dimensional dependency.
This also means that the protocol is (e, ¢)-differentially private. For this strategy to
attain the optimal rate, one can take 0 < (nmd)~P for any fixed p > 1 is deemed
fit, so arguably the “impure” differentially private protocol is still “close” to being e-
differentially private, especially in terms a plausible deniability guarantee (see )
The protocol below does not require € > n~'/2. The approach leads to a test attaining
that attains the (log-optimal) rate and Type I and Type II guarantees laid out in the
lemma below.

Lemma 3.14. Let (mn)~! < e < 1. There exists a distributed (e, §)-differentially pri-
vate testing protocol TIEI";, with level a and has corresponding Type II error probability
P €,0

#(1=1T7;°) < a whenever

dlog(1/8)1og?(1 + dnm)

5> Ca 3.38
71> mnvne2 A dvne? a1 ( )
for a constant C, > 0 depending only on a.
Consider for L = [ne2 Ad],l=1,...,L and j = 1,...,m the transcripts
YNXD,U) = vernm Z UXI7, + W, (3.39)

with Ye 7 nm = W Rar/log(1l + dmn), U a random rotation (drawn

umformly) and (W, (j ))]J ii.d. centered standard Gaussian noise. For any rotation
u e R¥x4,

n n
sup Ye,rm,m Z ’U,IE,L Z ’LLQSZ <
=1 1=1

T dyn, 7)< X
Ze(R)n:dy (z,2)<1 Liedi |y

L 2
2&7 1:21 < sup [(@:)]7r — [(fi)z];> <1,

2e(RM):dy (z,2)<1

so by an application of Lemma the transcript Y () := (Yl(j))le[ 1 is (e, 6)-differentially
private. The test

Sl
Ih-

m 2
(%Z}/fﬂ) - nf)/ez,f,n,m, —1| > ka (n"}/ir,n,m \ 1) (340)
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satisfies Po < a/2 by Lemma applied with v = e 7 m, for £, > 0 large enough.
Plugging in 7e r n,m, we see that (3.67) is satisfied whenever the quantity

d dAdnml%Q I<J2 d2 2 4A3nm L
7|V sz ) Vv 53 )V 2. 44| £||4 ;o (3.41)
mnLl| f||5 mn?e?| f|3 m2n?L| f|3 m2nted| fll3

where Ag p.m = log(1 + dnm)log(1/§) can be made arbitrarily small per choice of
Co > 0 in (3:338). When € < 1/4/n, the same steps used to prove Lemma [3.12]
(see (3.33])) show that the condition is satisfied. For 1/y/n <e<d, L=ne2 Ad 2 1
and ([3.41)) reduces further to

&t e aenm 0 < .
m2n3e2HfH% N o

This can also be seen to hold whenever f is such that . Lastly, when ne? =
d, reduces to /{idQ/( n2L|f|I3) < ca, which also holds for C, > 0 large
enough for f satisfying . Consequently, we obtain that Ps(1 — 777 5) < a/2 for
C, large enough, as desired

3.2.2.4 Private randomness protocol in the “large” ¢ regime

Similarly to the case of shared randomness, we can combine the coordinate wise (local
randomness) approach with Gaussian noise to allow for a larger amount of coordinates
to be sent. Similarly to the shared randomness Gaussian mechanism, the protocol
below does not require € > n~'/2, but the rate that is attained is a factor log(1/9)
larger. We shall take 6 = (dnm)~? with p = 2, but p can be taken any constant larger
than one, which only affects the constant C, > 0 in .

Lemma 3.15. Let (mn)™! < e < 1 and § = (dnm)=2. There exists a distributed
(e, 0)-differentially private testing protocol Tfl’? such that Tf}i 1s of level o and has
Type II error probability P (1 T;}I) o whenever

d*?1og(1/6)log(1 + dmn)
mn(nez A d)

I£13 = C

(3.42)

for a constant C,, > 0 depending only on «.

Let L = [ne? Ad] and take sets Z; < [m] such that |Zj| = [2E| and each j € {1,...,m}
is in Z; for L different indexes I € {1,...,d}. Forl € [d], j € Z;, generate the transcripts
according to

Y@ x6) = y @ (x0)y L+ w (3.43)

X(?)
6+/2L log (dmn)T Z
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with 7 = £qr/log(l + dmn) and (I/I/l(j))jJ i.i.d. standard Gaussian noise. The clipped
and 2\%T—rescaled sums have at most Ls-sensitivity less than or equal to one:

i) < (3.44)
we(Rd)ﬂ dH(:E <1 2\/>7' (Z Z )l:je];, 9

=1 =1

L 2
1
P sup [(in]Z, = [(@)]Z, | <1
2\57' l=21<:fze(Rd)”:dH(z,:fz)<1 ! !

Consequently, the transcript Y'0) := (}/l(j))l;jem is (e, (nm)~2)-differentially private
as a result of Lemma [3.6l The test

2 2
() ne ne
Z (mzj ) T 2”"‘<4LT2”> (34)
JEL

satisfies IP’OTIEI’I& < « by Lemma applied with v = €/(64/2Llog(1/0)7) whenever
Fo > 0 and K, > 0 are chosen large enough. In order to fulfill the condition of (3.71]
in the same lemma, it suffices that

d , Wonafy K2 d? vd3A?mdf%iin2 .
mn(ne> A d)|f|3 ° mn2e2|f|3 T m2n2(ne? A d)2|f|3 T mPnted|f|F T °

where Ay, n.a = log(1/8)log(1 + dmn). When ne? < d, the maximum is taken in the
fourth argument, which can be seen to satisfy the inequality for C, > 0 whenever
f satisfies . Whenever ne? = d, the maximum is taken in the third argument,
which means the inequality is also satisfied in this case.

3.3 On the benefit of shared randomness in dis-
tributed decision problems

In this chapter and Chapter [2| we encounter the (in some cases strictly) better per-
formance of shared randomness distributed testing protocols under privacy and band-
width constraints. What drives this intriguing phenomenon? We will delve into this
question in this section.

We approach the phenomenon from two different perspectives. In Section below,
we provide one approach, which is to study it abstractly in the framework of statistical
decision theory as outlined in Section [1.2} Here, we shine a light on how it relates to
the risk formulation of a statistical dec1s1on problem. In addition, we show that shared
randomness offers no benefit in the distributed estimation settings considered in this
thesis and offer some contemplation on what separates these distributed estimation
problems from the distributed testing problem. As a second approach, in Section|3.3.2
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we explore an example of a simple minimax detection game which bears parallels with
distributed hypothesis testing under communication constraints.

Both of these approaches provide insight into the potential benefit of access to shared
randomness. For the reader who is further interested, we refer to Chapter 3 in [I71] for
a broad treatment of this phenomenon, in the context of how many bits two or more
parties need to exchange to compute a specific function whose inputs are distributed
among the parties.

3.3.1 Shared randomness for general decision problems

In this section, we will contemplate why access to shared randomness can have demon-
strable benefit in distributed testing under bandwidth and privacy constraints, whilst
it demonstrably does not in their minimax distributed estimation counterparts. That
is, the distributed estimation problem under bandwidth constraints considered in Sec-
tion and the distributed estimation problem under privacy constraints studied
in Section [2.4] exhibit the same minimax rate for shared randomness distributed pro-
tocols as for local randomness protocols. This is not explicitly established in those
respective sections, so we aim to do so here in a general setting, in the form of Theo-
rem below. Whilst the result is straightforward and probably well known among
experts, we did not find a proof of the following explicit statement in the literature.
Related to the result, we then highlight how the specification of the minimax risk
relates to the possibility of performance benefit from access to shared randomness.

Consider a sequence of models P, = {Py, : f € F} defined on a measurable space
(X, 2), indexed by a measurable space F, a decision space (D, Z) and a sequence
of (measurable) loss functions ¢, : D x F — [0,0). We recall the distributed setting
of Section in which 7 = 1,...,m machines each observe an independent draw
X0) from Pj,. Denote the full data as X := (XM, ..., X(™)). Consider distributed

decision protocols f = f, = {f, {K’ Tzl,IP’U} where K7 : #0) x X — [0,1] is a

Markov kernel for j = 1,...,m and f : ®}"=1y(j) — D is a measurable function,
for measurable spaces (Y), %)), Let ¢ = ¢, denote the class of all such dis-
tributed protocols such that {K7 7', satisfy either a b-bit bandwidth constraint or a
(€, 0)-differential privacy constraint and let & < _¢ denote the class of distributed
protocols where U ~ PV is degenerate (i.e. the subset of local randomness protocols).
Let Ef = Ef, denote expectation with respect to the joint distribution of ¥ with the
data which is given by

PPY @, K7 (1XYW, U) =PUP; @) K7(| X9, U),

where the interchange of Py = P}’ and PY follows from the independence of the
shared randomness and the data. We shall consider the risk for the loss function £
over the model P;

supEy, &, (f(Y), f). (3.46)
feF
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This setup encapsulates the estimation and testing settings considered in the thesis.
The following theorem shows that, if there exists a “sufficiently adversarial prior”,
there is no benefit to having access to shared randomness.

Theorem 3.3. Suppose that, for some sequence of distributions m = 7, on F and
sequences v, 0, > 0, it holds that

inf supEs 4, (f(Y),f) <7, and inf | Ef é,j(f(Y),f)dw(f) > 0,.
fex feF fex
Then,
oy < inf supEy, 6, (f(Y), f) < 7 (3.47)
fe 7 feF

In particular, if v, = p,,

inf supEf £, (f(Y), f) = inf supEs £, (F(Y), f).
fe 7 feF fex feF

Proof. The right-hand side inequality of (3.47) follows from the fact that J# < _#Z,
which means

inf supEys ¢, (f(Y), f) < inf supE; 4, (f(Y), f).
fe 7 feF feot reF

To obtain the other inequality, consider an arbitrary shared randomness distributed
protocol {f,{K7}7,,PV} € _#. By the independence of U with the data X, it holds
for any f e F that

By ,(F).0) = [ BV 60, N (w).

The triplet {f {K7}m 71,04}, where 0, denotes the Dirac measure at u, is a local ran-
domness distributed testing protocol, noting that (A, z) — K7 (A|x,u) for any u in the
sample space of U indeed defines a local randomness Markov kernel satisfying its orig-
inal constraint (i.e. its bandwidth or differential privacy constraint). Consequently,
we have that

supEs 6, (F(V). ) > f EY, 6, (f'(Y), ()
feF

f f EYU=" 0, (F(Y), f)dn(f)dBY ()
= f Alnf Ef’uéu(f/(y)vf>dﬂ-(f> = 0p-

fex

The conclusion of the theorem follows because {f, {K7 ", PV} e 7 was taken ar-
bitrarily. 0
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Essentially, the theorem states that the “lack of benefit” of shared randomness in
e.g. the estimation problems considered in Chapter |2 stems from the fact that the
prior distribution used to prove the (Bayes risk) lower bounds does not depend on
the Markov kernels {K’ }7., constituting the distributed protocol. That is, in the
language of the theorem above, 7 is not contingent on {K7 721- In the distributed
testing problem, sharper lower bounds are obtained by taking 7 adversarial with
respect to the local randomness protocol (i.e. {K7}™ ), see e.g. the distributed Le

j=1
Cam bound of Lemma [2.28

To illustrate this further, suppose that

int sup [By 6,(F(YV). )dn(f) = sup inf [ B/ 6,(FV). an(r), (345)
fext w T fex

where the supremum is taken over all distributions 7 on F. By an argument similar
to that of the above theorem, it follows that

inf supEy 6, (f(Y), f) = inf supEy 6, (f(Y), f).
fe s fer fex feF

That is, if the minimax problem in Bayes risk satisfies an (asymptotic) “minimax
theorem” (i.e. holds), shared randomness offers no improved minimax risk,
up to a constant factor. From this observation, one can also conclude that only in
problems where one considers “nature” to be possibly adversarial specifically to the
choice of kernel one might have benefit in having access to shared randomness.

On a similar note, if one assumes “nature” to be adversarial to the shared randomness
outcome, there is no benefit to having access to it. That is, if one defines the minimax
risk as
Y|U= 2
| sup B (7). ) @Y w), (3.49)
feF

there is no benefit to having shared randomness. Indeed, through similar reasoning
as in the proof of Theorem the infimum over ¢ of the above expression equals
the infimum over 7 .

Which risk formulation is appropriate to one’s decision problem is contingent on what
assumptions one is prepared to make about the “opposing forces” present. Fundamen-
tally, the risk of formulation of takes a viewpoint that assumes that, although
nature may act in opposition to our selected protocol, it does not conspire against the
source of shared randomness. This assumption appears sound; it is usually presumed
that “nature” is not adversarial towards individual random occurrences. So at least
in the scientific study of natural phenomena, this seems a reasonable formulation of
minimax risk to work with. For example, in the context of testing a hypothesis con-
cerning a natural phenomenon, the supremum is typically taken to guarantee power
against an entire class of alternatives, not because nature is adversarial to one’s testing
protocol.



3. OPTIMAL DISTRIBUTED TESTING PROTOCOLS UNDER BANDWIDTH AND PRIVACY
128 CONSTRAINTS

Yet, in a more contentious context, the utilization of shared randomness could be a
genuine issue. For example, if servers coordinate to detect the presence of a hacker,
using shared randomness might form a weakness in the sense that if the source of
randomness is leaked, this could be exploited by the hacker. Similarly, in a military
context, an enemy who gains access to these shared random elements could eavesdrop
or even disrupt the coordinated efforts of the military units. Such contemplations are
further exemplified in the detection game of the next section.

3.3.2 A simple minimax detection game
Consider the following detection game:

e It is the night of December 24th, and Santa Claus is about to visit the house of
Alice and Bob.

e When Santa Claus arrives, he knocks on either the front door, a window on the
side, or a window at the back of the house, leaving presents there.

e Alice and Bob are aware of this and position themselves at different windows
on two floors of the house, trying to spot Santa Claus.

e The house has a first floor with a window next to the front door and a window
to the side of the house, and a top floor with a side window and a window at
the back of the house.

Santa Claus wants to remain undetected and somehow is aware of any strategy that
Alice and Bob concoct beforehand. For example, if Alice and Bob decide to go to
the front- and side window on the first floor, Santa Claus will always appear at the
back of the house, remaining undetected. Since neither floor has windows covering all
three sides of the house, Alice and Bob must split up to have a positive probability
of detecting Santa Claus. Assume that Alice stays at the first floor, while Bob goes
upstairs. When Alice and Bob are on different floors, they are no longer able to
communicate.

The scenario fits into the framework of a minimax distributed detection game. Alice
and Bob choose a strategy, knowing that Santa Claus will pick the best strategy
against their chosen strategy. Let A the event in which Alice goes to the side window
and let B be the even that Bob goes to the side window. The probability of detecting
Santa Claus can be expressed as:

min{l — Pr(A),1 — Pr(B),Pr(A u B)}.

If Alice and Bob do not randomize their strategy (i.e., Pr(A),Pr(B) € {0, 1}), Santa
Claus will certainly not be detected. So, Alice and Bob will need to randomize their
choice of window, since there are sides of the house to cover, with only two people.

Let us consider the case where Alice and Bob can choose A and B from sigma algebras
Y, and X, respectively, to decide which window to guard. The minimax probability



3.3. ON THE BENEFIT OF SHARED RANDOMNESS IN DISTRIBUTED DECISION
PROBLEMS 129

of detection of Santa Claus for Alice and Bob is

sup  min{l — Pr(4),1 — Pr(B),Pr(A v B)}.
AeX,,BeXy,

If Alice and Bob randomize their window choice using independent sources of ran-
domness (with A and B being independent), the probability of the union of their
choices can be expressed as:

Pr(A U B) = Pr(A) + Pr(B) — Pr(A n B) = Pr(A) + Pr(B) — Pr(A)Pr(B).

Thus, if 3, and ¥, consist of independent events, the minimax problem for Alice and
Bob is upper bounded by:

max min{l —z,1 —y,z +y — ay},
z,y€[0,1]

which can be shown to equal 2(v/5 —1) = 0.61....

Can a better outcome be achieved when Alice and Bob have access to a shared source
of randomness? The answer is yes. An optimal strategy ensures that P(A n B) = 0,
whilst also assuring Pr(A v B) = Pr(A4) + Pr(B) = 2/3. This is only possible if A and
B are dependent, i.e. Alice and Bob use a shared source of randomness.

To exemplify such a strategy, suppose Alice and Bob possess two “entangled” coins,
where the outcome (heads or tails) is always the same if the coins are flipped simul-
taneously. After flipping the shared randomness:

e If it lands on heads, Bob stands at the back window, and Alice rolls a die to
determine whether she stands at the side window (if the number of eyes is less
than 5) or the front window (otherwise).

e If it lands on tails, Alice stands at the front window, and Bob rolls a die to
determine whether he stands at the side window (if the number of eyes is less
than 5) or the back window (otherwise).

In this setup, P(A n B) = 0 and P(A) = P(B) = 1/3. Consequently, the probability
of detecting Santa Claus under such a shared randomness strategy is min{l1—P(A), 1—
P(B),P(AuB)} = %, which is strictly greater than the minimax detection probability
with independent events in . So, a shared randomness strategy can achieve
a higher detection probability of up to % compared to a detection probability of

approximately 0.61 when no shared randomness is available.

The intriguing aspect here is that there is no communication between Alice and
Bob; what matters is the source of their randomness. The parallel between the
scenario above and bandwidth constraint hypothesis testing is that in both cases, there
are limited resources that need to “cover” multiple “locations”. Under bandwidth
constraints, we have a limited number of bits/machines that need to “cover” high
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dimensional data adequately. FEach of these dimensions are “locations” in which
signal (Santa Claus in the scenario above) could “appear”. If the number of bits is
smaller than the dimension of the data (the number of “locations”), we can employ
randomization to “divide” bits across the different “locations”. When this randomness
is shared, it is possible to improve coordination between the machines, allowing them
to cover the “locations” more effectively.

In the privacy setting, the resource limitation originates from the fact that the more
dimensions of the data are shared, the more noise must be injected. Typically, if
we can get away with sharing something useful that is of lower dimensionality than
the original data, this means less noise needs to be added. Using a shared source
of randomness improves the coordination between the machines, effectively allow-
ing the machines to cover more “locations” of the original data, whilst keeping the
dimensionality of the object to which noise needs to be added limited.

Chapter acknowledgements: The quote from Section was found in the blog of
Maxim Raginsky. The quote originates from the travelogue [117].

3.4 Appendix

3.4.1 Lemmas for the upper bound theorems in the finite di-
mensional Gaussian mean model under bandwidth con-
straints

3.4.1.1 Proof of Lemma
We state a slightly extended version of Lemma

Lemma 3.16. Consider for k,l € N, | > 2, independent random variables {Bg :
i=1,....k, j=1,...,1} with B} ~ Ber(p;). If p, = 1/2 fori =1,...,k, for each
€ (0,1) there exists ko > 0 such that

‘@i(i ;>Q—x/E/4‘>na <a.

On the other hand, for arbitrary cqn > 0,

-1 2
Mp, Lk = Z = Ca,n, (350)

it holds that

77p,l k

N | ’ 1/2+16n,,lk/f
Pr 'm;<2(3i—2)> f/4’ Can (3.51)

Jj=1
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Proof. The left-hand side in the event having bounded variance: a straightforward
computation (using that for B} ~ Bern(p;), the central fourth moment is E(B] —
pi)* = pi(1 —p;)(1 = 3pi(1 — p;)) <1/16 and Var(X) < EX?) yields

!

k
[ (S 8- ) -] - g ] (- 12) ]
\12213 Bl —1/2)* zl: B —1/2)?)% <18, (3.52)

after which Chebyshev’s inequality yields the first statement.

We turn to the second statement. Adding and subtracting p; and expanding the
square, the left-hand side of the display in the lemma can be written as

'\/%zé (235 lpi>2 L 12 < ; )2 + C’ < cCam (3.53)

where

sz —p) and (:= Z(E ><ZBJ )

The first term in the event of (3.53) has mean 1, and variance (by the same compu-

tations as in (3.52))
kool k 1
Var[\/%l;(jleg — lpi)z] _ ];;VarKjZlBg . lpi)2] <1/8.

The term ¢ has mean 0 and

4 ¢ 1, I 1\?
Var(¢) = Ei:l(pi - 5) pi(1—pi) < Ei; (pz' - 2) .

Applying the reverse triangle inequality and condition (3.50)), the probability in (3.53))
is bounded from above by
!

k
Pr[ \/%liz(zgg —lp)
< Prﬂli (X8 - lpl-)2 - up‘ > np,l,k/2] + Pr[[C] = mpan/2|

1 =1

\/Elz 1 j=
SR MU h) 12 16V
N (np,l,k/2)2 (np,l,k/Q)z h np 1.k

where the last line follows by Chebyshev’s inequality.
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3.4.1.2 Proof of rate attainment of auxiliary local randomness tests 77},

and T?,
Here, we prov1de the risk bounds for the partlal tests Ty as defined in and T{y

as defined in , used in Section

Lemma 3.17. For any o € (0,1) there exist constants ko, My, Co > 0 such that
EoT};; < o/2. Furthermore, for f € H, if p*> > Ca#\gb) and either df > M, or

2
Zlejc p?/2, (3.54)
holds, where J was defined in , then
Ef(1—Tpp) < /2.

Proof. Under the null hypothesis, Yij ~#id- Bern(1/2). For each a € (0, 1) by applying
Lemma (with k = d and | = |Z|) we get that EqT{; < /2 for large enough
constant x.. For f € H,, we have

EsY; = BBy [vV1X9)| = @ (vafi).

To bound the Type II error, we use the second statement of Lemma (with k =d
and [ = |Z1]), but before that we show that condition (3.50) holds. Note that by

Lemma [3:26]

S ) SRS eeA) e

In case (3.54)) holds, the preceding display is bounded from below by

7| -1 2 Tl = 1)p?
24vd Zj: nli > 48+/d

Note, that for large enough C, > 0, %&;pz > n(7b) amnb/(%\f) > Ky v 8,

@

If (3.54) does not hold, then there exists i* € {1,...,d} such that fix > +/1/n,
so (|3.55) is lower bounded by

2Uvd ~ 24dvd 12v/d T 24 12

Then for large enough M, > 0, the condition (3.50) is satisfied. Consequently, the
statement of the proof follows by the second statement of Lemma |3.16 O

Lemma 3.18. For any « € (0,1) there exists a ko > 0 large enough such that
EoT%; < a/2. Furthermore, if p* > Ca#\ﬁb), m = M,, for some large enough
Co, M, > 0, the set J defined in (3.13)) is non-empty and b > 2log(d + 1), then
BT < a/2.
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Proof of Lemma[3.18 We apply Lemma (with ¥ = 1 and | = C} 4dm). Under

N 2
the null hypothesis, <\/ﬁX i(j )) follows a chi-square distribution with one degree of
freedom. Consequently,

EoBY) = EoF, ((ﬁxﬁ”f) —1/2

and

Eym ~ Bin (1/2,mdCy.q) - (3.56)

count

Then Lemma yields that EqT5; < /2.

Next we deal with the upper bound for the Type I error. Let p; := EfF2 ((\/ﬁij))Q)
and note that p; = 1/2. We apply again Lemma (with k = d, | = mC}, 4). Hence,
3.50

it is sufficient to show that the condition (3.50|) of the lemma holds. For this first
note that (v/nX")? is a non-central chi-square distributed random variable with non-
centrality parameter nf? and one degree of freedom. Consequently, for all i € J # &
we have

pi = EFy ((ﬁx§j>)2) —Pr(V>1)>3/5 (3.57)

where it is used that V is noncentral F-distributed with noncentrality parameter
nf? =1 and (1, 1)-degrees of freedom. Then by recalling that p; > 1/2 we get that

mCya—1 (& 1N\2 _ mCyq—1 12
i (Xe-p) 2 (;piz))
mC@d b

2d |‘7|/ 0)° > 400d2/

> M,/400,
yielding (3.50) for large enough choice of M, and hence concluding the proof of our
statement. O

3.4.1.3 Auxiliary bandwidth constraint lemmas
Lemma 3.19. Let Uy and Vd‘sd be independent chi-square distributed random variables
with d degree of freedom and non-centrality parameters zero and 64 > 0, respectively.
Then for a universal D € N, not depending on d4, we have for all d = D that

dd 1

5d 1
Vol U, > (== A D). .
Pr( f d/O) 40(\F/\2) (3.58)

Proof. First note that the function § — Pr (VgiS Uy = O) is monotone increasing.
Then
Pr (de U, > 0) > Pr (V‘””f/2 Uy > o) ,

so without loss of generality we can assume that d; < v/d dj2.
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The density of Vj 4 is
E, 0412 (§,/2 k

§ Pd+2k s
|
= k!

where pi denotes the X%—density. By the independence of Uy and Vd‘s"’7

L e=0a/2 (5,/2)F
) S

pr (Vi Us <0 [ @i, w)
: {v—u=0}

k=0

Let U} ~ x2 and UY, ~ x3, be independent from each other and U,. For any given
k € N, we have

f pasa(0)pau)d(v, u) = Pr(Ug — U} < UZ) .
{v—u=0}

For convenience let us introduce the notation Wy = (Uy — U})/(2v/d). Conditioning
and using independence once more, the latter equals

Jpr(deﬁ)d[@(]é,k(u):;jtfPr(OgW 2\/—>de (w).

Since U}, has a median larger than 2k/3 and the map u — Pr( Wy < 7)

increasing, we have that the second term in the last display satisfies

u k
PriosWy< ——= wdu=Pr{0< Wy < — f u)du
J ( d 2\/3) sz( ) < d 3\/8) [%700)10%( )

1 2
> Pr{o<w,<—_).
2 ( ¢ 3\/&)

By combining the above inequalities we obtain that

1 1& e %a/2(5,/2)" k
Pr(vded<0)>+Ze(d/)Pr<0<Wd<>. (3.59)

2 24 k! 3vd

Assume now that 8 = 1. Let kg be the largest integer such that kg < 3vd. We
divide the sum on the right hand of the preceding display to two parts, i.e. k < kg
and k > k4. By applying Lemma with €4 = k, it holds that for ¢y = 6_9/8/6,

Sh e (0a/2)"

k kq e—%a/2 5 2
k! <0 Wa < > 2 d/

S cody St e 04/ (5d/2)
ST

k=0
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We have Pr (0 < Wy < 1) 4 pr (0 < Z <1) > 1/3, hence there exists a D; € N, such
that for all d > D; we have Pr(0 < Wy < 1) > 1/3. For k > kg we have k > 3v/d,
hence for all d > Dx,

O 54/2 k R —54/2 k

3 (g B sy 00
k! d k!

k)>k2d k>kd

Since d4/vd < 1/2, we have for d > Dy,

D —54/2 k —84/2 kaq
1Z€WPr(0<Wd< i )>C°5d(1—e (0a/2)7 )

24 k! 3vd) ~ 2vd ka!

The proof is finished by showing that for large enough d we have ¢y/2 — 1/40 >
(64/2)F4 /kq! > 0. Recalling that 2v/d < 3v/d — 1 < kg < 3v/d and hence 64 < Vd/2 <
Vd/4 we get in view of Stirling’s inequality, that for some universal constant C' > 0,

k k
(04/2)"" - (ka/4)™ < eka(l-logd)—1/2
kd! h kd! - ! '

This is in turn bounded from above by ¢¢/2 — 1/40 for d > D, for some sufficiently
large D; > 0.

O

Lemma 3.20. Let Uy, U} d X3, and 0 < g4 < CVd. Then there exists a large
enough Do € N, such that for all d = Dy

Uy — Ucll &d ) 6_02/8 &d
Prils —=—<—=|2 —.
( 2vd Vd 6 +d

Proof. The characteristic function of the random variable Wy := (Uy — U})/(2V/d) is

ba(t) = Ee'We = Ee'avaViEe izvala
= (14 it/Vd)~ (1 — it//d)~Y?

= (1+2/d)" 2 F 812,

Using the Fourier inversion formula, the density fuw, of Wy satisfies

o (v) = o= JR ¢tV b ()t 2i JR cos(tv)da(t)dt,

2 T

where the second equality follows from the symmetry of ¢4. Let

1
cos(tv)e_tz/zdt =2

g(v): or

:%R
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where the last equation follows for instance by contour integration. Then by the
dominated convergence theorem

[fwa0) = 9] < 5= | 16772 = gult)}de =% 0,

By the earlier established uniform convergence we have that for every d > Dy, for
some large enough Dy,

£q _Cz 8
JNE fw,(w)dv = 16—63/(811)5711 e /8 &4
0

3 owd 6 Jd

where the constant 1/3 is arbitrary and could be taken anything smaller than 1/4/27.
O

3.4.2 Lemmas concerning the upper bounds in privacy con-
strained setting

3.4.2.1 Proof of Lemma
Proof. The case where C is empty is trivial, so we shall assume C to be nonempty. We
follow the construction of McShane [I53] whilst providing an additional argument to
assure Borel-measurability of the extension. Consider the map S : R"*? — [—o0, o0)
given by
Sz _{S(x) ifxeC, -
inf {S(c) + Ddg(c,z) : ce C} otherwise.

Fix any ¢’ € C. Since S is D-Lipschitz with respect to the Hamming distance, we have
for all ¢ € C that

S(e) + Ddy(c,z) = S(d) — Ddy(c,c) + Ddg(c,z) = S(¢') — Ddg(d,z) > —o0

where the last step follows from the triangle inequality. So, S is real valued. For all
z € (RY)™ and v > 0, there exists ¢, € C such that

S(x) = S(cy) + Ddg(cy, x) — 7.

So for z, 2" € (R4,

Y

S(x') = 8(z) < 8(cy) + Ddg(cy,2') — S(ey) — Ddg(cy, ) +~ < Ddg(z,z') + 7.

By symmetry of the argument and since v > 0 is given arbitrarily, we conclude that
S is D-Lipschitz with respect to the Hamming distance. Note, however, that this
construction does not guarantee that S is measurable.

For any map H : R"*¢ — [~o0,0], let H* denote its minimal Borel-measurable
majorant. That is, a measurable map H* : R"*? — [—o0, 0] such that



3.4. APPENDIX 137

1. H< H* and
2. H* < T Pp-a.s. for every measurable T : R"*?¢ — [—o0, 00] with T > H.
Such a map exists by e.g. Lemma 1.2.1 in [208]. The map S : (R%)" — R defined by
S(x) = §*(2)Lage + S(2)Lsec

is measurable and can be seen to be a Borel-measurable majorant of S; following from
the fact that sums and products of measurable functions are measurable, S < 5 * and
S(z) = S(x) for x € C.

Furthermore, by combining the fact that S is measurable with e.g. Lemma 1.2.2
in [208], we get

|5(x) = S(a')| = |(S(z) — S(a"))*| < [S(x) = S(a)|*, (3.60)
where (z,2') — \5‘(:52 — S(2/)|* is minimal Borel-measurable majorant of (z,z’) —

|S(z)—S8(2')|. Since S is D-Lipschitz with respect to the Hamming distance (z, z') —
dg(z,2"), which is a measurable map,

1S(x) — S(a")|* < Ddg(z, ).
From it follows that for all x,z’ € (R%)™,
|S(z) — S(2)| < Ddg(z,2').
We have obtained a map S that is D-Lipschitz with respect to the Hamming distance,

measurable and S = S on C, concluding the proof. O

3.4.2.2 Lemmas concerning clipping
Lemma 3.21. Let 7,pu > 0 satisfy 7/4 < p < 7/2, let V be a random wvariable

symmetric about zero (V 4 —V') with Lebesgue density bounded by M > 0 and

1
< >
Pr (|V| TIT (T/2)> c
for some constant ¢ > 0. It then holds that

Elp+ V] = (cAl/2)p. (3.61)

Proof. By definition of clipping,
Elp+ V] =E[V]_ " +p

—T—p

The first term equals

E [V]T_?f_u) + Elve[—r—p,—r+ul} ([V]::iﬁ +(r — N)) >
E [V]:ﬁiu) —(T+wWPr(—T—p<V<-—T+p) =
—(r+pPr(—r—p<V<-1+yp),
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where the last equality follows from the symmetry of V. By the condition on the
Lebesgue density of V', the right-hand side of the above display can be further bounded
from below by —2M (7 + p)p. When 3M 7 < 1/2, we obtain with the constant
1/2. Assume 3MT > 1/2. Then, since u > 0 and V is symmetric about zero,

Elp+V], =E@+V){u+V|<r}+7Pr(u+V>7)—Pr(up+V <7))
SE(u+V)1I{|V| <7 -}
>E(u+V)I{|V|<7/2}

= pPr (V] < (1/12M) v (7/2))
where the last inequality follows from p < 7/2 and the last equality follows from the

symmetry of V' about zero. O

Lemma 3.22. For any 7 > 0 and random variable V with |[EV| <7
Var ([V]",) < Var(V).
If both V and [V are mean 0, E ([V]ZT)4 <EV4

Proof. Let p = EV. Since the expectation of a random variable is the constant
minimizing the Lo-distance to that random variable,

Var ([VI7,) <E(VI7, - )"

The latter expectation can be written as
Elyei—rr (V= )" + Blysr (7 — p)° + Ely<, (-7 — p)*.

Assuming > 0, V' < —7 implies that | —7—p| < |V —p|. Since p < 7, V > 7 implies
that |7 — u| < |V — ul|. Consequently, the above display is bounded from above by

Elyer rr (V=) +Elysr (V= p)* + Ely<_, (V — p)* = E(V — p)*.

The case where u < 0 follows by the same reasoning. The last statement follows by
a similar argument. O

3.4.2.3 Proof of Lemma
Proof. Since C, = A; n B, it suffices to show that A¢ and B¢ as defined in ([3.26)
are small in P-probability for a large enough choice of &, > 0 in (3.20). For both

sets, we proceed via a union bound:

—|71d| > [Ty

ZX(J)

Pr (XD ¢ A;) =P; (37 < [n], 17] <
€eJ

2

< i (Z) Pr (’H\/Ef —Z)% - d‘ > ) (3.62)

k=1
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where Z ~ N(0,1;). We have
IVkf =215 = kI fI5 —2VEfTZ + | Z]3.
Recalling that K = [2rD~'], D = v/ny/d and

¥ = Fqlog(l +m) (\/Iogz(l + n)nVdr v \/nd), (3.63)
we obtain that
2nvd
K < nydr < v/log(1 + n). (3.64)

Reo log(l + m)\/logQ(l +n)nvdr v v/nd

By the assumptions of the lemma (n| f|3 < 7v/d/2 and 7 < nM?/+/d), we obtain that
k| f]3 < KM?. Consequently, we have that for &, > 0 large enough K| f[3 < /2, so
it holds that

Pr (H\/Ef —ZP—d> ~y) <Pr (qug —d—WkfTZ > 'y/2> .

Using that Pr(An B) + Pr(An B¢) < Pr(A’) + Pr(An B€) for A’ € An B, it follows
that the latter display is bounded above by

Pr (| Z|% —d > ~/4) + Pr (—2\/EfTZ > 7/4) .

By e.g. Lemma the first probability is bounded by e=%/%. Again using K| f|3 <
v/2, the second term is bounded by e~7/32_ where we note that the second term equals
zero in the case that f = 0. The bound

Pr (WS - 213 —d < ) < /4 4 o

follows by similar reasoning. Combining the above with the elementary bound Zszl (D) <

eK108(n) means that

Py (XU ¢ A;) < 2exp (K log(n) %) < af(4mn).

Turning our attention to B., we find that Py (X(j) ¢ BT) is equal to

Py m[m]( 2 <Xi(j),X,Ej)>>7 <nPr<}<f+Z,(n—l)f+\/n—1Z'>‘ >7>,
kel

where Z and Z' are independent N(0,I;) random vectors. Using another union
bound, the above is further bounded by

Pr(\/n — Kz, 2"y > /2 — (n— 1)f§> + Pr((n — {2+ —1f, Z) > 7/2>.
(3.65)
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Using that n|f|3 < 7v/d/2 and 7 < nM?/+y/d by assumption of the lemma and
recalling (3.63)), we see that

nlf3 < TVd/2 <A/nVd 2\7 < = (3.66)

For &, > 0, the latter can be seen to be larger than /4. Consequently, the first term
in ((3.65)) can be seen to be bounded by

<1/n _ <Z Z > > 7/4) e 4\/7 < e Fa log(1+m) log(1+n)

where the inequality follows from Lemma Since Z and Z’' are independent
standard Gaussian vectors, the second term in (3.65) is bounded above by

2

—
Pr(VE(n = 11,2 = 2/2) < ¢ T,
By using that n|f||3 < 7vd/2,
7* > 287 log® (1 + m)log?(1 + n)n®| |3,
so the exponent in the second last display is bounded from below by
—i&2klog®(1 4+ m)log®(1 + n)/4.

Hence, we have obtained that
. «
P ( x @) Br) < —
f # 4m

for K, > 0 large enough. This concludes the proof of the lemma. O

3.4.2.4 Lemmas concerning clipped averages coordinate wise strategies
Consider for Le N, [ =1,..., L and j =1,...,m the transcripts

n
VXD, 0) =y SI0XIN, + W,

i=1

where 7 = Rqq/log(l + dmn), (Wl(j))jJ is either i.i.d. centered Laplace with scale
parameter 1 or standard Gaussian noise and U is an independent uniformly random
rotation taking values in R%*?,

Lemma 3.23. Let v > 0, L € N be given. The test

— ZL} ( i m) — —]E(I/Vl(j))2 > ko(72n v 1)
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satisfies Pop < (1 + mnd)2—Fa/t 1/k2. In particular, for any o € (0,1), there
exist constants Ko, Re > 0 such that the test is of level Py < «/2. Furthermore,
Ps(1 — ) < a/2 if in addition it holds that | f|2 < M and

(i)« ()~ (etaene)  (seseirr) < 600
\ \ \ X Co .
Lmn| f|3 v*mLn?| f|3 m2Ln?| f|3 vim?Lnt| f[3

for some cq > 0 depending only on a.

Proof. Under Py, (UX ) £ U+ {UZ;),, where Z; ~ N(0,1;) independent of
U and the centered i.i.d. W 2 Furthermore, UZ; 4 Zi, (UZ;) ~ N(0,1), still
independent of (WZ(J ))17]. We obtain that

Z UXD) + WY Lan(U f), + y/nn + W,

with 7 ~ N(0,1) and all three terms independent. Therefore, a straightforward
calculation shows that,

1 m
i (s

has expectation conditionally on U equal to y?*mn?(U f)? + ny? + ]E(Wl(j))Q. Since

n 2
Z UX(J) +Wl(j)]>

EZ} = 3 and E(W( )) = 1, its variance conditionally on U equals

3

2
n274Var(n2|U)+Var ( ) U | + 2v*n3m(U f)7En?

v

+ 272mn2(Uf)12E(Wl(J)) + 2y n]E(Wl(j))2]E772,
which is of the order

(Vimn® (UF)F) v (Pmn® (U f)F) v y'n® v 1.

If
max | fi| < 71/2, (3.68)

1<i<d

an application of the triangle inequality and Lemma [3.27] yield that, for &, > 0 large
enough, we have with probability at least

1—2mnde ™ /4 >1— (1+ mnd)2_’%§/4 >1—a/d4
that

max ‘(X»(j))l’<7'.
i€[n],je[m],le[d]
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Consequently, under the null hypothesis (f = 0), Py is bounded above by

=] Q

(fZ Vi — EgVi] = a(72nv1))+

Chebyshev’s inequality yields that the first term on the left-hand side is of the order
1/k2, so less than «/4 for K, > 0 large enough. Since that ||f|2 < M under the
alternative hypothesis, is also satisfied with probability at least 1 — a/4 for &,
large enough. In the case that holds, we also have that P#(1 — ¢) is bounded
above by

- 2
Z ( n(Uf) +vnZ) + g (J)) —EoVi | < ka(¥?n v 1) —I—%.

(3.69)
Under PV, we have that
UHk 2 fl2
HZII
for 7 = (Z1,...,Z4) ~ N(0,1;). As 2i=1EZ,§/\|Z|\§ =1, EZ}/|Z|3 = 1/d by
symmetry. Consequently,

_ |

7 +ny? + ]E(Wl(j))2.

EsVi = v*mn?EY (U f)} +n9? + E(WD)?

Subtracting d~'y?mn2+/L| f|3 on both sides, the first term in ([3.69) is bounded above
by

Y n*mvVL|f[3
e
whenever
V2mn?v/L LIfIE
— 2 Ko (Y v 1). (3.70)

An application of Chebyshev’s inequality and the variance bound computed in ([3.4.2.4])
now yields that the latter probability is of the order

(yimd~'n?| f]3) v (v*mn2d "t f]3) v yin? v 1
5 .
2mn2
(L) 113)
So, in order to obtain P#(1 — ¢) < a/2 it suffices to have (3.67)), noting that this also

yields (3.70).
O
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r the next lemma, consider for some L € N sets Z; < {1,...,m} such that |Z;| =
[ tL| and each j € {1,...,m} is in Z; for L different indexes [ € {1,...,d}. For v > 0,
l=1,...,dand j €1, generate the transcripts according to

i[Xm ]7 W),

with 7 = £44/log(dmn) and (W( )) 1 either i.i.d. centered Laplace with scale param-
eter 1 or standard Gaussian noise. In essence, its content and proof are similar to the
previous lemma, the key difference being the absence of the shared random rotation.

Lemma 3.24. Let v > 0 be given. The test

2
1 (j)) (4)42 2
p=1 Y, —ny—EW’) | = ka(7"n v 1)
WZ (x/ﬂj;m : :

satisfies Pop < (1 + mnd)2—Fa/t 1/k2. In particular, for any o € (0,1), there
exist constants Ko, Reo > 0 such that the test is of level Py < «/2. Furthermore,
Ps(1 — ) < a/2 if in addition it holds that | f|2 < M and

d d K2d3 K2d3 _
\4 \Y Vv X C
mnL|f3 = y*mn2L|f[3 = m*n2L2|f|3 v m2n4L2||f||4 ¢

(3.71)
for some ¢, > 0 depending only on a.

Proof. Under Py, (Xi(j))l 4 fi + Zy with iid. Z; ~ N(0,1) and is independent of
the centered i.i.d. VVI(J). The quantity

v (GagEerver])

is in distribution equal to

2
(’YV \Tilnfi + yv/nm + \/|1~771| > Wl(j)>

JjeT

under Py, with n ~ N(0,1) independent. Therefore, a straightforward calculation
shows that V; has mean v?n?|J)|f7 + ny? + IEZ(W'Z(J))2 under Py. Since EZ} = 3 and
E(Wl(J ))4 = 1, its variance equals

2
n?~*Var (772) + Var ( Z VVl(j)> + 74|$ \n?’leIEnz

1
V ‘\7l|]e$

+72\\71|n2 lQE(VVl(j))Q + nnyE(VVl(j))QEnQ,
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which is of the order
(VTP 1) v (PITnP ) v yin? v L

If
max | fi| < 7/2, (3.72)

1<i<d
an application of the triangle inequality and Lemma yield that, for &, > 0 large
enough, we have with probability at least 1 — 2mnde=" /4 > 1 — (1 + mnd)>Fa/4 >
1 — a/4 that
(X <.

max i
i€[n],je[m],le[d]

Consequently, under the null hypothesis (f = 0), using that || = |J1], Poyp is
bounded above by

d 2
1 - 5 (0%
Py | —— (X D), + WD ) —EoVi | = ka(v?nv 1) |+ =,

\/g|~71|1:21 (jezjlz ( : ) 4

Chebyshev’s inequality yields that the first term on the left-hand side is bounded a/4
for ko > 0 large enough. Under the alternative hypothesis, note that |f|2 < M, so
also in this case is satisfied for &, large enough (a more extensive but easy
calculation shows that this test also works for signals larger than M). In the case
that holds, we also have that P;(1 — ¢) is bounded above by

d

2
1 ; .
ml; (g;n (V(nfz+\/ﬁZ)+Wl( ))> CEoVi | < fa(rn v 1) + 2

Subtracting d—1/2 Zle v2n?|Ji| f# on both sides, the first term is bounded above by

2
1 G sl FF
+vnZ)+ WY | —Ev | < -2
s | (5 G v w)) | <

whenever

2,2 2
Ve 2 260 (720 v 1)dVd
—= s = 26a(vn v 1) —
Vd ? v2n*mL] f[3
An application of Chebyshev’s inequality and the variance bound computed in (3.4.2.4]),
now yields that the latter probability is of the order

(@'Y AnP1£13) v (d= 2] Tin? ] f]3) v +*n® v 1

2
277,2
(%Hf“%)

Since |J;| = mL/d, for the above expression to be smaller than «/2 and for (3.73]) to
hold, it suffices to have (3.71]).

<1 (3.73)

O
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3.4.3 Auxiliary lemmas and folklore

The following lemma examines a well-known construction which demonstrates that,
that for data that is independently and identically distributed, it is possible to create
tests with different power and significance levels, starting from a test that has non-
trivial power and level. This construction does not affect the minimax separation rate
achieved by these tests: the minimax separations for the two tests are equal up to a
constant, regardless of the power and level of the two tests. Essentially, the lemma
warrants the study of the sum of Type I and Type II error when considering the
performance of inference in terms of minimax rate for i.i.d. data. It applies generally
to the setting discussed in Section which we shall recall briefly.

Consider a statistical model P, , in which we observe n = n, i.i.d. observations from
Pfn, = Py, indexed by f € F, and v € N. Consider the simple null hypothesis
Hy : f = fo, and an arbitrary collection of alternatives H, < F,, p > 0, with
H, c H, for p < p'. Given a level a € (0,1), consider the minimax Type II error
probability for tests of level «;

Bp, (o, Hy, H,) = inf sup Py(1—T),
' T feH,

where the infimum is over all tests of level at most . The minimax separation at
a,B € (0,1) is given by

P gy i=1f{p>0:Pp, (a,Ho, H,) < f}.

Lemma 3.25. Assume that n = n, — o as v — 0. Suppose that for a, € (0,1)
with o + B < 1, it holds that

pz,ﬁ,n,u = pz,ﬁ,[n/kj,u
for any fixed k > 0 as v — 0.
Then, p 5., = Par g, for all a,B,a, 8" € (0,1) such that o + B and o' + 3’ are
strictly less than 1.

Proof. Let p* .n and P, gr.n D€ given with a, B,d’, 3" satisfying the assumption
of the lemma. Assume without loss of generality that p¥* B = pE 8w

By assumption of the lemma,
kP S Pogln/klw S ChPopn
for constants ¢, Cx > 0 depending only on k.
For any v > 0, k > 0, there exists a sequence of tests ¢|, /), of level a such that
sup Py (1 - gofn/kj,l,) < sup Py k(1= @) S B+

% feH

feH
OkPa.Bn.v Pa,B,In/k]v
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for all n large enough. Split the n data points into k sets of |n/k| observations each.
Let the test an/kj be equal to p|,/k|,, applied to the i-th subset of observations.

The test ‘an Tk has level less than or equal to «. Consider the test of level o given
by

k
Yoty =1 {Z@in/kw = FB_ii(k,a)(l - 0‘/)} (3.74)
i=1
with F.! the quantile function of a binomial distribution with parameters (k, «).

Bin(k,)

The quantity
1
Vi

is bounded by k by the central limit theorem (see Lemma in Chapter [4] for details)
and is consequently a bounded sequence in k. Under any alternative hypothesis
feHg,

(FB_ii(k,a)(l —a) — ka)

%
kPa Bm,v’

a—Pfgpfn/kJV<a—1+ sup Pf(l—wfn/kjy)ga—i-ﬁ—i—'y—l.
’ fEH E3 ’

Pa,B,|n/k],v

Since it is assumed that a + 8 < 1, it follows that the right-hand side is strictly less

than zero for v > 0 small enough. Subtracting kagofn/kJ ,, on both sides and dividing

by vk, we obtain that P; (1 = @ar,p ) is bounded above by
1 ¢ 1
Py | — ; — Pyl <—(Fﬁ1 1—o/—ka)+\/Ea—\/EP :
i (\/%;1(50[71/]@],1/ f‘P[n/kJ,u) NG Bm(k,a)( ) FPn/kv

which equals Pr (Op(l) <0() - \/E) by the arguments above. The latter quan-
tity can be seen to be less than or equal to 3 for k large enough depending only
on a,fB,a/,5. Since f € Heg, ok was given arbitrarily, we can conclude that
Ckp:’;ﬁ?nyy > pz’ﬁ’m,b' By symmetry’ of the argument, we also obtain that p§7B7n7V <
p¥, g'.n,p and the conclusion of the lemma follows.

The following three lemmas are standard, technical results, nevertheless we provided
them for completeness.

Lemma 3.26. Let ® denote the CDF of a standard normal random variable. It holds
that

(<I>(3c) - ;)2 > %min{mQ, 1}.

Proof. Since ®(z) = 1 — ®(—x), it holds that (®(z) — %)2 = (®(—z) — %)2 Hence,

one can consider > 0 without loss of generality. We first lower bound ®(x) —  for
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0 <z <+/2. We have

122

0 x\f
\/ﬂf 2’2' (; / 2 )7
(3.75)

dz =

11 JIG_,
2 \/27‘(‘ 0

where the last equation follows by Fubini’s theorem. The series in the right-hand side
is decreasing in x € [0, /2], as for each odd i it holds that

d [ (“1)ie (<)t ] 2ilg (e(2i+1)(2i +2)
de [(22’4— Dil TR 1)!] TRt ( G+1)2i(2 +3) 1) <0

for 0 < e < 1. Hence, for 0 < z/v2<c<1
0.2

< x\f T 3 (—1)te
271'(2 2@+/1 = >/\/ﬂ<§)(<2i1+)1)i!> \fc<(\f0) )

where the last equality follows by . For z > 1/2¢, it holds that
®(x) —1/2 = ®(V2c) — 1/2
as x — ®(z) — 1/2 is increasing. Taking ¢ = 1 we obtain that
®(z) — 1/2 > min {x(@(\/i) —1/2)/V/2,®(V2) — 1} > min{z, 1}/V12,
which finishes the proof. O

Lemma 3.27. Let K € N and M € RE*K be symmetric and positive definite. Con-
sider the random vector G = (Gy,...,Gg) ~ N(0,M). It holds that Elr<n;i>§(|Gi| <

3| M|+/1log(K) v log(2) and

2K
Pr( max G? > |M|*x ) <

1<i<K ex/4’

for all x > 0.
Proof. 1t holds that
GLVMZ, with Z~ N(0,Ig).

Since M is symmetric, positive definite, it has SVD decomposition M = VDiag(\1,..., Ag)V .
Since V is orthonormal,

VMZ = V/Diag(h1, ..., \g) (VT Z) £ V/Diag(hi,. .., g ) Z.
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Writing V' = [v1 ... vk] where v are orthogonal unit vectors, the latter display
equals

K
DV MvkZe ~ N (0,Diag(A, ..., Ak)) -
k=1

Consequently,

max |G| £ max |A\p Zp| < | M| max |Zy|.
ke[K] ke[K] ke[K]

Hence, it suffices to show that

2K
Pr<max Z2>x> <

1<i<K ¢ = x4l

The case where K = 1 follows by standard Gaussian concentration properties. Assume
K >2 For0<t<1/4,

(72 2_ 2
Eetmaxz(zq,) _ etE maxet(zi 1) < K€2t +t7
K3

see Lemmam Taking ¢ = 1/4 and applying Markov’s inequality yields the second
statement of the lemma. Furthermore, in view of Jensen’s inequality

log(K
Ogi ) ot

Emax(Z;)* <

which in turn yields Emax; |Z;| < 34/log(K). O

Lemma 3.28. Let Xy be chi-square random variable with d-degrees of freedom. For
0 <c<1 it holds that

—1-log(c)
_de 2ogc .

Pr(Xg<cd)<e
Similarly, for ¢ > 1 it holds that

c—1—log(c)
2 .

Pr(Xg=cd) <e™

Proof. Let t < 0. We have

EetXa
etcd .

Pr(Xy < cd) = Pr (" > '?) <

Using that Ee!X¢ = (1 — 2t)~%2, the latter display equals
1

exp ( —d(tc+ 3 log(1 — 2t))).

The expression tc + 1 log(1 — 2t) is maximized when ¢ = (1 — 1) < 0 which leads to
the result. The second statement follows by similar steps. O
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Lemma 3.29. Let X ~ Bin(n,p). For any 0 <~ < 1. It holds that

~EX
3 .

Pr(l—-7EX <X <(1+7)EX) <2exp <

Proof. This follows by a Chernoff bound using the moment generating function of the
binomial distribution. O
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Chapter 4

Consequences for
meta-analysis based on
combined test statistics across
independent studies

Combining test statistics from independent trials or experiments is a popular method
of meta-analysis. However, there is very limited theoretical understanding of the
power of the combined test, especially in high-dimensional models considering com-
posite hypotheses tests. In this chapter, derive a mathematical framework to study
standard meta-analysis testing approaches in the context of the many-normal-means
model, which serves as the platform to investigate more complex models.

Given multiple data sets relating to the same hypothesis, one would like to combine
the evidence. Sometimes, the full data sets are not available (e.g. due to privacy or
proprietary reasons) or difficult to combine directly (e.g. due to the different exper-
imental or observational setups). In such cases, the analysis must be carried out on
the basis of the published results for each of the studies. Such “meta-analysis” can
increase the statistical power by combining individually inconclusive or moderately
significant tests, while keeping the false positive rate under control. Therefore, meta-
analysis has received a lot of attention in various fields, for instance in genetics and
system biology, when studying rare variants [19] [06] or in deep learning, for few shot
image recognition and neural architecture search, see the review article [116].

The outcomes of the studies concerning hypothesis tests are, typically, summarized as
real-valued test statistics and/or associated p-values. One expects the combination
of m such p-values to result in an increase in power, but one also expects to pay

151
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a price relative to computing a test on the basis of the full, pooled data of the
m trials. The question of how to optimally combine independent real-valued test
statistics concerning the same hypothesis into a single test has an extensive literature.
A multitude of methods for combining independent tests of significance exist. For
combining p-values, this starts with Fisher, Tippett and Pearson in the nineteen-
thirties, see [202], 100, 164 185 108, [144], 209, [88), [155] 218, 212 [61], 214] and references
therein. In Section [f.2] we collect and describe the most popular and frequently used
p-value combination techniques.

We introduce a natural and mild restriction on the meta-level combination functions
of the local trials. This allows us to mathematically quantify the cost of compressing
m trials into real-valued test statistics and combining these. We then derive minimax
lower and matching upper bounds for the separation rates of standard combination
methods for e.g. p-values and e-values, quantifying the loss relative to using the full,
pooled data. The results bare resemblance with the b = 1-bit bandwidth constraint
setting of Chapters[2|and [3] where we reveal for example that in certain cases combin-
ing the locally optimal tests in each trial results in a suboptimal meta-analysis method
and develop approaches to achieve the global optima. We also explore the possible
gains of allowing limited coordination between the trial designs by using shared ran-
domness. Our results connect meta-analysis with bandwidth constraint distributed
inference.

As noted in [35], there does not exist a general uniformly most powerful p-value com-
bination method for all alternative hypotheses. The distribution of a p-value or its
underlying test statistic under the alternative hypothesis should be taken into consid-
eration when selecting a method of combination. The performance of different p-value
combination techniques was investigated extensively by empirical experiments in var-
ious synthetic and real world scenarios, see for instance [148],[224]. However, a unified,
general theoretical description is lacking, especially in non-trivial, multidimensional
composite testing problems, where the likelihood ratio test is not necessarily uniformly
most powerful.

E-values are an increasingly popular and important notion of evidence, see [I78] [TTT],
179]. E-values allow the combination of several tests in a straightforward manner
while preserving the prescribed level of the tests (see Section4.2.2)). Formally, e-values
are nonnegative random variables whose expected values under the null hypothesis
are bounded by one. In contrast to p-values defined by probabilities, e-values are
defined by expectation. This imposes significant differences in their interpretation,
application and combination compared to the more standard p-values. However, as
for p-values, very little is known about the power of these combination procedures.
Theoretical results focus on specific optimality criteria, for instance the worst-case
growth-rate (GROW), see [I11]. However, these do not directly imply guarantees on
the testing power, which is the main focus in practice.

We consider the signal detection problem in the many-normal-means model as con-
sidered in the earlier chapters. One possible interpretation of this testing problem
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is to learn whether a treatment has an effect on any of the dimensions investigated.
This model is directly applied in several fields where high-dimensional statistics and
machine learning settings are concerned, such as detecting differentially expressed
genes [167, [132] [149] 200, ©2], bankruptcy prediction for publicly traded companies
using Altman’s Z-score in finance [211 [22], separation of the background and source in
astronomical images [62, [112], and wavelet analysis [, 125]. Furthermore, the model
allows for tractable computations and it typically serves as the platform to inves-
tigate more difficult statistical and learning problems, including high- and infinite-
dimensional models, see for instance [119, 204} 92} [T06]. Results for the many-normal-
means model in principle can translate to many other multidimensional models, where
a certain loss in power is to be expected, since combining multidimensional data into
a real-valued statistic (e.g. p-value or e-value) requires data compression.

In each experiment j € {1,...,m} the observations are summarized by an appropri-
ate real-valued summary statistic SU). These local test statistics (e.g. p- or e-values)
are combined into C,,(S™,...,S(™)). We consider a general class of combination

functions C,, requiring only Hdlder type continuity. Roughly speaking, such a re-
striction assures that Cp, does not exploit the richness of the real numbers to encode
the data in full. We aim to quantify the loss of summarizing, the gain of perform-
ing a meta-analysis and the best testing strategies in the individual experiments
meta-analysis. This introduces only a mild restriction, and includes many standard
meta-analysis techniques, for instance the standard p-value combination methods (see
Section ; e-value techniques (see Section ; and other ad hoc and natural
test statistic combination approaches, see the beginning of Section for additional
examples.

Our setting provides a principled and unified framework to study the power of stan-
dard meta-analysis testing methods. Within the framework of the many-normal-
means model, we derive a minimax lower bound for the testing (separation) error
and provide test statistics with associated combination methods that attain this the-
oretical limit (up to a logarithmic factor). Our results reveal that there is a certain
unavoidable loss associated with compressing the data of each experiment to a real
valued test statistic. We see that while it is always possible to obtain better testing
rates using m trials instead of the best possible test based on a single trial, there is
always a loss incurred when compared to the full, pooled data and optimal test in
moderate- to large dimensional problems. Our theoretical results quantify these gains
and losses in terms of the dimension d, sample size n and number of trials m.

Furthermore, we observe an elbow effect, which occurs when the number of trials is
large compared to the dimension of the signal. In this regime, combinations of the
(locally) optimal test in each individual trial performs suboptimally as a whole when
aggregated and meta-analysis approaches based on directional test statistics are shown
to perform better. Finally, we show that the performance of the meta-level tests can
substantially improve (in certain regimes, depending on d, m,n) if a certain amount of
coordination between the trials is allowed (e.g. by having access to the same random
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seed). For the theoretical analysis of meta-analysis techniques we derive connections
with the distributed statistical learning literature under communication constraints.
Our paper builds on the recent information theoretical developments in distributed
testing [8, 193}, [195], allowing us to address several fundamental questions for the first
time with mathematical rigor.

The chapter is organized as follows. In Section [£.I] we introduce the mathematical
framework we consider in our investigation and present the corresponding minimax
testing lower bound results. Next in Subsection [f.1.1] we show that the derived results
are sharp by providing several meta-analysis approaches attaining the limits. Then we
investigate the benefits of allowing a mild coordination between the trials in Subsec-
tion We collect and discuss the standard p- and e-value combination methods
in Section [4:2) and demonstrate our theoretical results numerically on synthetic data
sets in Section .3l We discuss our results and derive conclusions in Section [£.4l The
proofs of our results are deferred to the Appendix. In Section we present the
proof of our main results while the proofs of the technical lemmas are given in

4.1 Main results

We recall the distributed version of the many-normal-means model as studied earlier
in the thesis, where we tailor the language the meta-analysis setting: We assume
that in each local trial j € {1,...,m} (in each machine) we observe a d-dimensional
random variable X @) e R?, subject to

X0 = f 4 %Z(J), ZW N0, 1), j=1,...,m, (4.1)

for some unknown f € R%. Denote by P; the joint distribution of the observations and
let E¢ be the corresponding expectation. We note that this framework is equivalent
to having n independent N(f,I;) observations within each local sample.

As in the earlier chapters, our goal is to test the presence or absence of the “signal
component” f € R?. More formally, we consider the simple null hypothesis Hy :
f = 0 versus composite alternative hypothesis H, : |f[|2 = p, for some p > 0.
This corresponds to testing for joint significance of variables, such as the presence
of an effect of a treatment on any of the dimensions investigated. The difficulty in
distinguishing the hypotheses depends on the effect size, the sample size and the
dimension d. Here, p can be seen as the smallest effect size deemed important.

For a {0, 1}-valued test T', define the testing risk R(H,,T) as the sum of the Type I
error probability and worst case Type II error probability, i.e.

R(H,,T) :=Po(T = 1) + s9p P (T =0). (4.2)

In the case of a single trial (i.e. m = 1), this testing problem is known to have minimax
separation rate or “detection boundary” p? = \/a/n



4.1. MAIN RESULTS 155

This means that if p? » \/E/n, there exist consisten tests T' = T} 5, in the sense that
R(H,,T) — 0, whilst no consistent tests exist when p? « v/d/n. That is, for effect
sizes of smaller order than v/d/n, the null hypothesis cannot be consistently distin-
guished from the alternative hypothesis. Such a testing rate is attainable through a
chi-square test based on |[v/nX ™ |3 (see e.g. [29]).

In case of m trials, if the full data were pooled (with aggregated sample size nm), the
minimax separation rate would be v/d/ (mn). However, pooling the data might not be
possible or allowed in practice and often only real-valued test statistics are available
that describe the significance in the local problems (e.g. a p- or an e-value). These
m test statistics S¢), j = 1,...,m, then can be combined with some combination
function C,, : R™ — R, providing the test statistic in the meta-analysis. We now ask
whether the above pooled testing rate is attainable with this meta-analysis procedure.

Without any restrictions on the test statistics S = (S(l), ey S(m)) or the combination
function C,, any of the conventional optimal “full-data” tests can be reconstructed,
since the real numbers and mappings between the real numbers form an overly rich
class. We wish to restrict our analysis to S and C,, that are reasonable in practice
and capture (most of) the relevant meta-analysis methods as listed in Section

Based on each of the local observations X (), a real-valued test statistic S(@) is com-
puted, where each S is a function of X () and possibly a source of randomness U
independent of X := (X1, ... X)),

Assumption 4.1. For measurable functions f; : R?xR — R and independent random
variables UMD U™ which are independent of the data X, the j-th test statistic
SG) = fj(X(j),U(j)) satisfies Bo| S| < M, for some M >0, j =1,...,m.

We consider Holder continuous combination functions C), : R™ — R. Arguably, this
is the most important assumption in ruling out bijections between R? and R. This
ensures that a small change in the underlying local test statistics cannot result in a
large change in the combination of test statistics C,,(S™M), ..., S(™)),

Assumption 4.2. There exist L,p,q > 0 such that for all s,s’ € R™

Ci(s) — Cra(8)] < L(i|8j — s;\p)q. (4.3)

The special case of p = 2 and ¢ = 1/2 leads to Lipschitz continuous functions. As-
sumption and Assumption should be considered in conjunction. By rescaling
and centering test statistics S), one can typically obtain test statistics satisfying
Assumption Rescaling and centering typically does affect how the test statistics
need to be combined, which might “break” Assumption [4:2]

Finally, following the standard testing approach, we compare the aggregated test
statistics Cp,(S™,...,80™) to a threshold value. If the combined test statistics

IFor any asymptotics in p, d and n such that p? » v/d/n.
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result in a large enough value, the null hypothesis of no effect is rejected. We note
here that two-sided tests can be written as one-sided tests through straightforward
transformations (e.g. centering and taking absolute value). More formally, we consider
tests Ty, of level « satisfying the following assumption.

Assumption 4.3. There exists a strictly decreasing function o — Ko so that
T,=1 {cm(s<1>, L, 8my > na} (4.4)

satisfies PoT, < a.

The map a — k. could be taken as the quantile function of C,, (S(l), ..., 80m)) under
its null distribution if it is appropriately standardized. If EoC,,(SM, ..., S(™) is
bounded in m, we can choose k. equal to 1/« times the upper bound, in view of
Markov’s inequality.

Our first main result, Theorem [£.I] below, establishes a lower bound for tests of
the form (4.4) and C,, and S satisfying the above assumptions. More concretely,
under our assumptions, any test T, (of level a@ < 0.1) has large Type II-error under

alternatives with p? of smaller order than (y/m A %)\/ﬁ/ (mn). When the number

of trials is small compared to the dimension (i.e. m log?(m) < d?), this means that the
separation rate is at least v/d/(y/mn). Thus even though there is a benefit in terms
of separation rate compared to testing based on just a single trial, the gain is at best
the square root of what one would gain based on testing on the pooled data. When
mlog®(m) = d?, the rate in the lower bound changes to dv/d/(mnlog(m)), resulting
in an elbow effect.

Theorem 4.1. Let SO, ... S C,. and T, satisfy Assumptions @ with Ty,
of level a € (0,0.1]. Then there exists a constant ¢ > 0 depending only on L, p,q and

M, such that if
Vm A —3E)/d
o< s )V (4.5)
mn

it holds for all n,m,d e N that

sup Py (T, = 0) > 3/4. (4.6)
feH,

Remark 9. The ranges of values 0 < a < 0.1 and 8 = 3/4 for the Type I and II
errors, respectively, are arbitrary. Similar results hold for different choices as well.
For instance, one can take arbitrary « € (0,1/5] and 8 € (0,2/3], see the proof of
the theorem for details. The result implies in particular that consistent testing is
not possible for signals of a smaller order than the right-hand side of , where
asymptotics can be considered in n, m and d simultaneously.

In the next section we show that the lower bounds in the theorems above are sharp
(up to a logarithmic factor).



4.1. MAIN RESULTS 157

4.1.1 Rate optimal combination methods

To attain the lower bound rate derived in Theorem different tests can be con-
sidered, for example the 1-bit testing strategies considered in Chapter Here, we
shall display tests that are based on single p-values, which attain the same rates (but
probably outperform at the level of constants). The optimal rate in the setting de-
scribed here displays a similar elbow effect around m = d? as in the 1-bit bandwidth
constrained case. When the dimension is large compared to the number of trials m
(i.e. m < d?), strategies that combine p-values for the optimal local tests (based on
[v/nX@)|3 ~Ho x2) turn out to achieve the optimal rate, as exhibited below. Such a
test statistic is invariant to the directionality of X ) and invariant under the model
in the sense that the resulting power for the alternative P or P, is the same as long

as | fl2 = lgll2-

On the other hand, when the dimension is small compared to the number of trials
(i.e. m = d?), optimal strategies exhibited below use information on the direction of
X @), In fact, we show in Theorem in the Appendix that if no such information
is available (i.e. the events defined by the signs of the (X (j)) j=1,...,m vector are not
contained in the sigma algebra generated by the test statistics S), one cannot obtain
a rate better than \/ﬁ/(\/ﬁn) This implies that by combining the locally optimal
test statistics SU) = |\/nX (2 (or their arbitrary functions, e.g. the corresponding
local p-values) would result in information loss and hence suboptimal rates in the
meta-analysis.

Furthermore, it turns out, in accordance with the empirical literature discussed in
the introduction, that there does not exist a uniquely best meta-analysis method. In
fact, multiple standard meta-analysis techniques provide (up to a logarithmic factor)
optimal rates, see below for some standard approaches attaining the lower bounds
derived in Theorem 411

First we consider the scenario when the dimension d of the model is large compared
to the number of trials m, i.e. m < d?. Locally the optimal test is based on the test

statistic |/nX ) |3 2o X3 A natural way to combine these statistics would be to sum
these locally optimal test statistics to obtain

T, =1 {i H\/EXU’) Hz > Fgl (1- a)} , (4.7)

which has level «. Alternatively, one could also apply p-value combination methods,
such as Fisher’s or Edgington’s method based on the p-value pt/) = 1-F,2 (|v/nX D) |3),
see Section Lemma [£.6] in the appendix establishes that these tests are rate op-
timal.

Second, consider the case that the number of trials is large compared to the dimension,
i.e. m = d?. Rate optimal tests can be constructed based on a variation of Edgington’s
or Stouffer’s method, see Section for their descriptions. Taking a partition of



4. CONSEQUENCES FOR META-ANALYSIS BASED ON COMBINED TEST STATISTICS
158 ACROSS INDEPENDENT STUDIES

{1,...,m} = Ul J; where |J;| = m/d and setting SU) = \/ﬁXi(j) if j € J;, the
meta-level test

2
T,=1 \fi <Z S(j)> > d‘l/QF);zil(l —a) (4.8)

i=1 \jeJi

achieves the lower bounds. The above test is similar to employing Stouffer’s method
for each of the coordinates and averaging, i.e. computing approximately m/d i.i.d. p-
values pl7) = q)(\/ﬁXi(j)) for j € J; and applying the inverse Gaussian CDF &~ (p(?)).
Alternatively, the following variation of Edgington’s method,

T, =1 fi(z (p(j)—;)>2>na , (4.9)

i=1 \jeJ;

is also rate optimal, as proven in Lemma [4.7] in the appendix. Essentially, these
strategies divide the trials across the d different directions, and combines the evidence
for each of the directions. Theorem 4] affirms that the information on the “direction”
of the data is crucial to achieve the optimal rate in the m = d? case, by showing that
strategies that do not contain such information (rotationally invariant strategies such
as norm-based test statistics) achieve the rate v/d/(y/mn) at best. We summarize the
above testing upper bounds in the theorem below.

Theorem 4.2. For all o, 8 € (0,1) there exist S, Cy, : R™ — R and tests T, of level
a satisfying Assumptions such that if

= CQ,BM, (4.10)
mn

we have

sup Py (T, = 0)
feH,

N

B

for a large enough constant Cy g > 0 depending only on a, 5 € (0,1), for all n,m,d €
N.

4.1.2 Benefits of coordination between the trials

When the dimension is small relative to the number of trials, as exhibited in the
previous section, optimal strategies include information on the directionality of the
observation vector. In this section we show that in this regime, there could be an ad-
ditional benefit from allowing mild coordination between the trials through employing
shared randomness, e.g. a shared random seed between the trials. Such a phenomenon
has been observed before in the distributed testing literature [11 [8, 193] [195], which
forms the basis of our analysis below.

We consider the following variation on Assumption [I.I} where the key difference is
that the source of randomness is allowed to be shared between the m trials.
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Assumption 4.4. For functions f; : R? x R — R and a random variable U which is
independent of the data X , the j-th test statistic SU) = f;(X ) U) satisfies Eo|SU)| <
M for some M >0 and all j =1,...,m.

Test statistics satisfying this assumption shall be referred to as shared randomness
(or public coin) protocols.

The theorem below establishes the optimal rate when coordination through shared
randomness is allowed. When the number of trials is small compared to the dimension
(i.e. m < d/logm), there is no difference between protocols that coordinate using
shared randomness or those without coordination. In fact, the optimal rate (p?> =
V/d/(y/mn)) in this case is reached by the test or the ones below it, which do not
employ shared randomness. However, when the number of trials is large compared
to the dimension (i.e. m 2 d), the testing rate substantially improves in the shared
randomness protocols.

Theorem 4.3. Let U, ... S0 C,. and T, satisfy Assumptions @—@ Then
there exists a constant ¢ > 0 depending only on L, p,q and M, such that if

V) VA

mn

2
po <

(4.11)

3

it holds that sup Py (T = 0) > 2/3 for all n,m,d € N and any level a € (0,0.1].
feH,

At the same time, for all o, B € (0,1) there exists a constant Cy. g > 0 depending only

on B, L, p,q, the function a — ko and M, such that if

p° = Cap— " (4.12)

it holds that sup Py (T, = 0) < B for some test T, of level v satisfying Assumptions

feH,
24

Remark 10. Similarly to Theorem the choice of ranges 0 < o < 0.1 and 8 = 2/3
in the lower bound result is arbitrary, other choices are also possible as presented in
the proof.

A shared randomness method that attains the rate in is given next. Consider
drawing an orthonormal d x d matrix U taking values from the uniform measure on
such matrices. As a test statistic, each trial computes (y/2U X))y, which is a N(0,1)
random variable under the null hypothesis. A level « € (0,1) meta-level test is then
given by combining the local test statistics as

Iom1 {%iwww >0l - a/2>}7 (1.13)

Jj=1
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where @ is the standard Gaussian CDF. The core idea here is that for each trial,
the same 1-dimensional projection of the d -dimensional data is computed, where
the projection is taken uniformly at random and the test is conducted along the
projected direction. The above method corresponds to Stouffer’s method for the p-
values pt¥) = &(\/n(UXU));) for j = 1,...,m. Lemma in the appendix shows
that the above test attains a small Type II error probability whenever p? = d/(mn).

4.2 Examples for various meta-analysis methods

Combinations of independent test statistics that fall into the framework of Assump-
tions are subject to the rate optimality theory established by the main the-
orems in Section In this section, we look into common methods for combining
p-values, e-values and other test-statistics, as mentioned in the introduction.

When the distribution under the null hypothesis of the test statistics are known, cer-
tain combinations are natural. For example, the sum of normal or chi-square test
statistics is again normal or chi-square distributed, respectively. Similarly, voting
based mechanisms typically rely on summing Bernoulli random variables. It is easy
to see that these and similar combinations methods fall into the framework of As-

sumptions [I.LIHEA4]

For more specific test statistics, such as p-values or e-values, many general combi-
nation methods have been introduced in the literature. We cover some of the most
prominent combination approaches for p-values and e-values in Section and
Section [.2.2] respectively. The list of methods is certainly non-exhaustive and many
more combination methods exist, but they serve as context for the range of techniques
covered by our general theory. Our main results allow establishing lower bound rates
for the ones listed below, whilst in Sections and attainability of these rates
by some of the listed methods was exhibited.

4.2.1 Combinations of p-values

If p, ..., p("™) are p-values obtained from m independent test statistics concerning
the same hypothesis, then under the null p(#) ~%#d: U(0,1). One can aim to combine
the m p-values to form a test T,, = To(p?), ..., p"™)) with Type I error probability a,
which hopefully has higher power than a test based on one of the individual p-values.
Below we list standard methods in the literature.

e Fisher’s method [I00]. Because the variables —2log p/)’s are i.i.d. x3-distributed
under the null hypothesis, their sum follows a x3,,-distribution. Therefore, the
combination method Z;"Zl —2log pY) results in a x3,, distributed random vari-
able, and the corresponding quantile function provides level-a one-sided tests
at the meta-level.
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e Similar flavor to Fisher’s method are the combinations Z;nzl —log(1—pY)) (Pear-

son’s method [164]), 377" | — log pt9) (1—p9)) (the logit method / Mudholkar and

George method [155]) and m~1/2 Z;":l(p(j) —1/2) (Edgington’s method [88]).

e Order-based methods such as Tippett’s method [202] based on min{p("), ... p(™) o
Beta(1,m).

e Methods based on inverse CDF’s, such as by Stouffer et al. [I85] based on
m_1/223-n=1<1>_1(p(j)) ~ N(0, 1) under the null hypothesis.

e Generalized averages as considered in [212], T, = 1 {a, ;M. (pV,...,p™) < a},

where M., (p), ..., p™) equals (m='37", (p7))") Y for v e R\{0}, the ge-
ometric mean, minimum (i.e. Tippett’s method) and maximum for r = 0,
r — —oo, and r — o, respectively. For r € {—w} u [1/(m — 1),0], arm
can be taken to obtain precisely level « tests (i.e. PgT, = «). We note that
this means that canonical multiple testing methods (see e.g. [I02]) such as Bon-
ferroni’s correction (which corresponds with taking as M, ,, the minimum and
ar.m = m) also fall within our framework.

Lemma[4.T] below shows that all the methods mentioned above fall into the framework
of Assumptions (4.1 This means that the error rate lower bounds of Theorem
and Theorem[4.3] respectively, apply to the p-value combination methods listed above.
That is, one cannot attain a better separation rate when considering the worst case
Type II error probability for the alternative hypothesis in (4.2)), with any of the p-value
combination methods listed above. Whether Assumption [4.1] or [£.4] applies depends
on whether shared randomness is used in generating the p-values. To confirm that
Assumptions and apply to tests based on the combined p-values, some algebra
is needed. The proof of the lemma is deferred to the appendix.

Lemma 4.1. Consider p-values p™V, ... pU"™)  where each p{9) depends on the local
data XU and possibly local randomness that is independent of the data. For each of
the combination methods for p-values mentioned above and corresponding test T, of
level a € (0,1), the conclusions of Theorem holds.

We remark that the p-values are obtained using shared randomness (i.e. in the sense
of Assumption , the lower bound rate of Theorem applies. Furthermore, as
exhibited in Sections and for p-values corresponding to well-chosen test
statistics, these combination methods can achieve the theoretical limits established in

Theorems [£.1] and respectively.

4.2.2 Combining e-values

An e-value is a nonnegative random variable E such that supp cpy, PoE < 1. The
threshold test corresponding to E of level a is 1{E > a~'}. This test yields a so
called strict p-value; for Py € Hy we have Po(E > o~ 1) < a by Markov’s inequality.
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E-values lend themselves for combining outcomes of independent studies for two main
reasons. First, they are easy to combine, see Section 4 in [213] for an in-depth dis-
cussion of specific combination functions for independent e-values. Second, they are
robust to misspecification and offer optional stopping/continuation guarantees [111].
Common examples of e-values are Bayes factors and likelihood ratios, which are non-
negative and have expectation equal to 1 in the case of a simple null hypothesis such
as considered in this article.

Several combination methods (e-merging functions) were proposed in the literature.
For instance, the product of independent e-values is also again an e-value. This
was shown to weakly dominate any other combination of independent e-values in the
sense that 117, EU) > C,,(E), for any E = (E@W) € [1,00)™ and E ~> Cp,(E) such
that C,,(EM, ..., E(™) is an e-value for any independent e-values B, ... E(™),
see [213]. Similarly, the average of e-values is again an e-value. The product and the
average are admissible in the sense that there is no e-merging function that strictly
dominates them on [0,00]™. The lemma below shows that these two, arguably most
prominent e-value combination methods fulfill Assumptions [I1}- [£:4] and hence the
lower bounds derived in Theorems [4.1] and apply.

Lemma 4.2. Consider e-values EV, ... E(™) where each EY) depends on the lo-
cal data X9 and possibly local randomness that is independent of the data. Let
Cpm @ R™ — R correspond to either the average or the product and let T, be the
corresponding threshold test of level a € (0,1),

T, =1 {Cm(E(l),...,E(m)) > a—l}.

If C,, is the product, assume in addition that Eq|log EY)| is uniformly bounded. Then,
the conclusion of Theorem[.d] holds. In case the e-values are generated using shared
randomness, then Theorem [].3 applies.

4.3 Simulations

In this section, we investigate the numerical performance of the testing strategies
outlined in Section on synthetic data sets. We compare the tests based on their
receiver operating characteristic (ROC) curve. For a range of significance levels we
compute for each test the “true positive rate” (TPR) and “false positive rates” or
(FPR), i.e. the fraction of the simulation runs in which the test correctly identifies
the underlying signal, falsely rejects the null hypothesis, respectively. Plotting the
TPR against the FPR (both given as a function of the significance level) provides us
the ROC curve, visualizing the diagnostic ability of the test.

In our simulations we set m = 20, n = 30, let d range from 2 to 20 and take p? =
v/d/(4n). This value of p? corresponds to a signal that is almost indistinguishable
from noise using just a single trial, whilst consistently detectable if the data were to
be pooled with m ~ 20 (which increases the signal size to noise ratio effectively by
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Figure 4.1: ROC curves for different values of d, whilst keeping m = 20, n = 30,
p? = \/E/(zln) From left to right, top to bottom: d =2, d =5, d = 10, d = 20.

a factor /20 > 4). For each level a € {0.01,0.02,...,0.99} we compute the power
for different combination strategies 100 times, each time drawing a different f € R¢
with || f|la = p according to f; = d~'/?pR; and R; i.i.d. Rademacher random variables
for i = 1,...,d. As combination strategies, we compare the strategies ({4.7),
and from Section which are called “chi-square combined”, “coordinated
directional” and “uncoordinated directional” in the legend of Figure [£.3] In addition,
we display the ROC curves for the chi-square test based on pooled data (“chi-square
pooled”) and that of a single trial (“single trial”).

We make the following observations, in line with our theoretical findings. The meta-
analysis methods based on combining the locally optimal chi-squared test statistics
(yellow curves) substantially out-performed the chi-squared test statistics based on a
single trial (blue curve), but was substantially worse than the chi-square test based
on the pooled data (pink curve). Second note that the large dimensional case (d = 10
and d = 20) the best strategy is indeed to combine the local chi-square statistics
(yellow curve), while in the low dimensional setting (d = 2) it is more advantageous
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to combine the directional test statistics Xi(J ) (blue curve). Finally, note that allow-
ing coordination between the trials by a shared randomness protocol can result in
improved performance (green curve) compared to the independent experiments (blue
curve). In fact this approach provides the best meta-analysis method in the small
dimensional setting (e.g. d = 2 and d = 5 for small «, which is the most interesting
case).

In the appendix, Section [4.5.6] we explore eight additional simulation settings, where
we consider larger values of d and m. Whilst these simulations do not reveal additional
phenomena to the ones observed in Figure they do give insight into the relative
performance of the testing methods for different values of d and m.

4.4 Discussion

We briefly summarize the main contributions of the chapter and discuss possible
extensions and research directions. First, by establishing a connection between meta-
analysis and distributed learning under communication constraints, we have provided
a unified, theoretical framework for evaluating the behavior of standard meta-analysis
techniques. In our analysis, we considered the many-normal-means model, but these
results can be extended to other more complex models as well, building on the con-
nection with distributed computation. For example, minimax estimation rates under
communication constraints were derived for other parametric models [229], density
estimation [30], signal-in-Gaussian-white-noise [231], 190} [47], nonparametric regres-
sion [I89] and in abstract settings [226] including binary and Poisson regression, drift
estimation, and more. The normal means model allows for a tractable analysis, but
results in this model are known to extend to more complicated models, such as dis-
crete density testing (see e.g. [57]). With the due technical work, our results are
expected to translate to these settings as well, but we leave this for future endeavor.

In the normal means model we have shown that by combining the locally optimal
chi-square statistics at a meta-level one can gain a factor of 4/m compared to using
a single trial. Nevertheless, regardless of the choice of the combination method, a
factor of \/m A v/d is lost compared to the scenario when all data from all trials are
at our disposal. This loss is clearly visible even in small sample sizes, dimensions
and trial numbers, as demonstrated in our numerical analysis, as can be seen in the
corresponding ROC curves. For more complex models, such a numerical study can
be a first step to quantify the efficiency of the meta-analysis method. We have also
shown that in the small dimension - large number of trials setting combining the
locally optimal chi-square statistics (or any rotationally invariant statistics for that
matter) results in information loss and suboptimal accuracy. In this case, better rates
can be attained by test statistics based on the direction of the observations combined
at the meta-level. In practice, one often cannot choose which test statistics can be
obtained from independent trials. In such cases, the y/m-factor loss in the case of
e.g. rotationally invariant test statistics is of interest when considering power calcu-
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lations. Meta-analysis approaches based on directional test statistics are designed for
scenarios where individual datasets are not centrally collected, but there is some level
of coordination among experimenters.

The assumption throughout the paper of homogeneity between the trials (i.e. each
trial consisting of the same number of observations) simplifies the presentation, but
the results can be extended to cases where the number of observations in each trial
differ by constant factors. Situations where the number of observations differs greatly
(e.g. k « m trials have as many observations as the other m — k trials combined) are
certainly of interest, but beyond the scope of the thesis.

4.5 Appendix

The proofs of the main theorems (Theorem and are divided over the
subsections as follows. In Section the lower bounds of Theorem and
are proven. Auxiliary lemmas for the proof of the lower bounds are proven in [4.5.2
The attainability of the lower bound rates are given in Lemmas 47 and [£§] in

Section In Section Lemmas [.1] and [.2] are proven.

4.5.1 Proof of the lower bounds (Theorems and 4.3)

The proof is based around the following idea. If C,, satisfies the continuity condition
of Assumption it implies C,,(S™, ..., S(™)) should not change too much if the
statistics S, ..., S(™) are replaced by finite bit approximations. If b is the number
of bits used for the approximation of SU), we should be able to get an approxima-
tion with accuracy of the order 27° through e.g. binary expansion. Since C,, and
consequently the test based on C,, do not change (much) from passing to a finite bit
approximation, tools and results from testing under bit-constrained communication
apply, which finally yield the theorems.

Proof. We prove the statement for any a € (0,1/10]. Since a — kK, is strictly de-
creasing, k1/g < K1/10 < Ko holds for any a € (0,1/10]. Take 0 < ¢ < %(51/10 — K1/8)-
Then |¢ — kq| < € implies 2 > k45, which by the definition of the quantile function
provides

Po (|Con(S) — ko] < 2€¢) < 1/8. (4.14)

By Lemma there exist BU)-bit binary approximations SU) such that
1/q 1/p
(@) _ §U) L
|S SV < (Ll/qm) (4.15)

and

) () 1 c/a
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Write S = (S, ..., S). By combining Assumption |4.2| with ([.15)),
Cin(S) = C(S)] < e.

Consequently,

R(Ta, H,) =Py (cm(é) 1O (S) = C ()| = Fa

+ sup Py (Cm(‘g) < Ka — ‘Om(s) - Om(g)‘)
feH,

=P (C’m(g) > Ko + e) + fsué) Py (Cm(S’) < Ko — e) .
€

Define the test _
T, =1 {C’m(S) > Ko — e}.

Since
Py (C’m(g’) > Ko + e) =P <Cm(§) > Ko — e) — Py <—e < Cn(S) — ko < e) ,
the second last display can now be written as
R(T', H,) — P, (|cm(§) — ol < e) .
Applying again, using the reverse triangle inequality and , we obtain
Po (ICm(S) = kal < €) <Po(ICm(S) — ral < 2) <1/5.

It suffices to show that for p satisfying (4.5) in the case of Theorem or p satisfy-
ing (4.11)) in case of Theorem for a small enough ¢ > 0, we have

R(T', H,) > 7/8. (4.17)
This follows from Lemma [4.4] where it is left to verify that
Zd AEoBY < m(d A (1 v logm)) (4.18)
j=1

for a constant independent of d,n, m and ¢ > 0. By (4.16) and E0|S(j)| < M for some
constant M > 0 for j = 1,...,m (following from Assumption or , we obtain

that > d A EqBWY) is bounded by
=1

j
1 el/a
m (d/\ <log2(1 +M)+3-— Elog <L1/4m>)> ,
from which (4.18) follows. Putting things together, we now have that for ¢ > 0 small

enough we obtain (4.17)), from which we conclude that (4.17)) holds and the proof of
the theorems is concluded. O
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4.5.2 Auxiliary lemmas to the lower bound theorems

As a first tool, we introduce finite bit approximations of real numbers through their
binary expansion. Consider the binary expansion of z € R; i.e. there exist digits
ar(z),...,a1(z),ao(x) € {0,1} for a k, = k € N U {0} and (b;(x))ien € {0,1}" such

that
[ee]
x = sign(z (221% + ZQ‘ibi(x)) (4.19)
i=1

with k the largest element in N U {0} such that 2¥ — 1 < |2|. We now define Z to be
the B-bit binary expansion giving the smallest approximation error in absolute value,
where the first bit encodes sign(x). That is, for B > k + 2, we have

o0

o —Fpl < ). 27bi(x). (4.20)

i=B—k—1
The following is well known, we exhibit its proof for completeness.

Lemma 4.3. Let V' be a random variable with a first moment. Given 1 > € > 0, let
B. = B denote the number of bits required such that

(4.21)

It holds that
EB < Elogy(|V]) v 0+ 1 + log,(1/e) + 2

Proof. Tf |V| < 1, we have that

V- Vgl < 2 27by(

i=B—1

So in the case that |V| < 1, since b;(V) € {0, 1}, for ) to hold it suffices that
B > logy(1/e) +2. Let B’ denote the amount of bits requlred to obtain [V — V| < 1.
When 2% < |V| < 28+ it holds that B’ < k + 1. Using Markov’s inequality,

0
EB' =EB' Y 1{2" < |V| < 2"*}
k=0

<EN (k+ 1)1 {k <logy(|V]) <k + 1} < Elog,(|V]) v 0 + 1.

Bl
gM8

In conclusion, EB < Elog,(|V]) v 0+ 1 + log,(1/€) + 2. O

For the lemmas below, we introduce the following notation. Let m be a probability
distribution on R?. Write P, := (Pydn(f) for the mixture distribution, where P
denotes the joint distribution on X, U and S. Let F' denote the draw from 7. Let
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P? denote the forward measure induced on the random variable S and let L;? denote
the likelihood ratio of the mixture distribution and Py, i.e.

s _ [

L = f—~d7r(f). (4.22)
dPs

Because of the Markov chain structure of F — (X,U) — S and the independence

between U and X, the joint distribution of (X, U, S) under the mixture disintegrates

as

dPXVS (2 u,s) = fdIP’S‘(X’U)(s)dIF’ff(m)dIP’U(u)dw(f) (4.23)

where PV is the marginal distribution of U. For the likelihood ratio conditionally on
U = u, we shall write

S|U=u

— dP;

L5IU=u J%dw(f). (4.24)
dP;

Furthermore, by the independence of the statistics given U,

dpSI(X.0) @dPS“”(X“’ ), (4.25)

=1

Let S denote the BU)-bit binary approximations to S() such that - ) holds.
Note that the above displays are true for the random variable S = (S ... S(™)) in
place of S since F — (X,U) — S — S forms a Markov chain as well. The followmg
lemma allows us to bound the chi-square divergence between the forward measure for
S, which we will denote by IP’S and ]P’S

The following lemma lower bounds the worst-case risk for any test T’ depending only
on S, the binary approximation of S as in (4.15)).

Lemma 4.4. Let T" be a test depending only on S taking values in R™, satisfy-
ing (.23) and where SY) allows for an exact BY)-bit binary expansion as in ([#.19)),
with BgBY) < oo forj=1,...,m.

There exists ¢ > 0 independent of n,m and d such that
R(T',H,) =7/8

for all n,m,d e N whenever

Ed A EoBY) < m(d A logm) (4.26)
j=1

i addition to

(it A )i
pPP<e T:i(m) : (4.27)
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if S is generated using public randomness, or

(Vm A 710g‘(im) Wd
pP<c , (4.28)
mn

in case S is generated using only local randomness.

Proof. Consider a probability distribution 7 on R? and Lf: as in (4.22). Consider the
set

D:= {u YA AEBYNU = u] <64 d A EOBU)} :
j=1

Jj=1

whose complement, D¢, has PY-mass less than or equal to 1/64 by Markov’s inequality
and EY(d A Eo[BYD|U]) < d A EgBY). By conditioning on U (writing IP’!)U:H =
PO(|U = U’))7

R(T',H,) =PoT' +Pr(1-T") —7(f ¢ H,)

> J (PLU:“(T’) +PIV=(1 - T’)) 1p(u)dPY (u) — 7(f ¢ H,).

SinceOgT’<1andL§>O,forallO<’y<1,

BY (T + P ) > BT (717 + LU - 1) {£507 > o)
> APy (Lf'U:“ > ’y)

U=u S|U=u
> (1 - By (LS — 1] 21— ).
The probability on the right-hand side of the above display can be bounded by ap-
plying Chebyshev’s inequality and bounding the resulting chi-square divergence using

the tools of [195], in particular using Lemma 10.1 from the aforementioned paper.
This lemma applies if S takes values in a space of finite, fixed cardinality.

m .
Define B* = 3 64Eq|BY)| and the event
j=1

A= {iBU) < B*},

Jj=1

so that A°® by Markov’s inequality occurs with Py-probability less than 1/64.
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Let S() be the éfj) := BU) A B* binary approximation of SU) and note that on the
event A, SU) = §U) . We have

JRE= ({12877 =112 1 =9} 0 4) 1P () + Bo(4%) <
JP‘OU:u (\L§'U=“ -1=1- 7) Lp (u)dP (u) +1/64,

where § = (5’(1), .. .,S'(m)). Using (4.23)) and Chebyshev’s inequality, it suffices to

show that on the event D, IE‘OU="|L7§‘U=H — 1% is smaller than 5 (1 — v)? for ¢ small
enough when p satisfies or , some v = 5/6 for a specific choice of 7. By
Lemma such a distribution 7 exists, satisfying =(f ¢ H,) < 1/32, as long as
Tr(Z,) can be sufficiently bounded, which can be done in terms of , as we will
show next.

Let SU (b, u) be the space in which S&)|[BY) = b, U = u] takes values. Write

%M=E{Xm

g(j)zs,Uzu].

We have

= ZVMVT Py (SY) = s|U = w)

J
u

DP(BY =bU =u) Y Po(SV =5|BY = b, U = w)V,, V],
beN s=89(b,u)

By Lemma the trace of the matrix
Y B (S*@ = s|BD =b,U = u) VeuViL
SESI (b,u)
is bounded by (2 log(Z)g A1) %. By linearity of the trace operation,

Trace(Z ZIP’O (B(J =b|U = u) (2 log(2)g /\1> %

beN
d A Eo[BD|U = ]
n

< 2log(2)

and consequently, since BW < BY and u e D,

m

Trace(z 7) < 2log(2 1ZdAEO[VU)\U=u]

Jj=1

< 128 log(2)n~! 2 d A Ky [BU)]
j=1
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The result follows after using that p? satisfies (4.28) and (4.27)) in the case of local or
shared randomness protocols, respectively. O

Lemma 4.5. Let Lf be as defined through (4.22)), with S = (5’(1)7 .. .,S'(m)) taking
values in a space of finite cardinality. Let =, = Z;n:l =J with

.
= = EVT"E, [X @ SO U = u] : (4.29)

§0) 17 — u] E, [Xu)

Let p? satisfy [(@.27) or (.28). For ¢ > 0 small enough (in ([&.27) or (4.28)) there

exists a probability distribution = on R? such that

n(f ¢ H,) <1/32 (4.30)
and
2 4 3 .4
[U=u|7S|U=u 2 mn=p mn-p =
Ey L5 — 1] <exp (C( R Tr(uu)> -1, (4.31)

for a constant C > 0 that does not depend on d,n,m or c. Furthermore, in case of

private coin randomness (U is degenerate), there exists a probability distribution m on
R? such that ([4.30)) is satisfied and (the sharper bound)

2 .4 4.4
§_ 1< mn’pt nipt o)
Eo|L7 — 1|* < exp <C’( R Tr(Z,) 1 (4.32)
holds for ¢ > 0 small enough.
Proof. The proof is an immediate consequence of Lemma [2.§ O

4.5.3 Theorem concerning necessity of signs

The theorem below tells us that in order to attain the rate of %, the statistics S()
need to contain at least some information on the signs of X ) in the sense that
Vd/(y/mn) is the rate that can be attained at best when SU) is measurable with
respect to the absolute values of the coordinates of X ). This is in particular the
case for statistics based on e.g. the norm | X )|y or rotation invariant statistics such
as the worst-case growth rate optimal e-values (see e.g. [I11]), which consequently

attain the rate % at best and are thus suboptimal when d is small compared to m.

Theorem 4.4. Suppose that SU) = f (X U) is such that SY) is measurable with

respect to o(U, (\ij)|, cee |X(§j)\)) forj=1,....,m. Then, for any « € (0,0.1] there
exists ¢ > 0 such that

sup Py (T, = 0) > 3/4, (4.33)
feH,

whenever

(4.34)
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Proof. In view of Lemma [£.4] and the proof of the main theorems in [£.5.1] it suffices
to bound the trace of E, in (4.32) and (4.31) in Lemma (the first term in the
exponent is controlled by (4.34))). By assumption on S ()| we have

a(SD,U,(1X7),.. . 1XP]) = o(U, (X7, X)), (4.35)

which implies that the sign(Xi(j)) is independent of o(SU), U, (|X£j)|7 ce |Xc(lj)|).
Writing X = sign(X7)|(X?)|, we obtain that

E, [X(j)

S, U = u] - (EO [sign(Xi(j))l(ij))I‘S“)»U = UD

1<i<d

- (Bosien (X0 [|X)[s9.0 =) -0,

1<i<d
where the second last inequality follows from the fact that sign(X l-(j )) is independent
of the sigma algebra in (4.35)) and the final equality by the symmetry of the Gaussian
distribution around the mean. Following the proof of Theorem [£.1] with =, = 0, we

obtain that the testing risk is bounded from below whenever p? < \/\/Ean' O

4.5.4 Lemmas related to rate attainability

Lemma 4.6. Let T, correspond to a test of level a based on Edgington’s method
based for p-values p¥) = x2(|\/nX W |3) or simply the sum of |/nXY|3. For all

a,Be(0,1) if
Vd
2
p- = Caﬁﬁ (4.36)

we have

sup Py (To = 0) < 8
feH,

for d = Cy gm a large enough constant Cy g depending only on o, € (0,1). The
above result holds for Fisher’s method also, under the additional assumption that

log(m) < Vd.

Proof. The test in (4.7) has level o under the null hypothesis. Under the alternative
hypothesis,

Nio d , :
[VRX D5 < [ fI5 +2vn(Z)Tf + 293,
where Z(9) ~ N(0,I,). Rearranging, the test T,, of ({.7) can be seen to equal

:
N R AN L S (1202 — _ mn
1 2ﬁ<mw;za P s (1798 d) 2 i = Y1
(4.37)
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in distribution under Py, with

Tdm = %( S —a)- md).

By Lemma Nam — ®71(1 — «) as both or either d,m — 00, 50 74,m is bounded
in d and m. Consequently, P¢(1 — T,,) equals

P (( *f 1£12)05(1) < m — ﬂ” |f|2>

as the left-hand side of the test in (4.37) is mean 0 and has constant variance. Since
1£13 = Oa”g%, the latter display can be bounded from above by

v i
- <<1 + Y2 1s10n() < - L7 |f||2)

for a large enough C, 3. The latter display is smaller than g for Cyp 3 > 0 large
enough depending only on « and £3.

For Edgington’s method, one can take p() = 1 — FX3(||\/ﬁX(j)H%) and compute the
test

m

Ta;=1{m—1/2c m ), (09~ 2)>12‘1/2<1> a 04)}7 (4.38)

Jj=1
where (o,m — 1 in m is such that PyT,, = a, by Lemma [£.9]
Under the alternative, E;pl) = Pr(|y/nf + Z9)|3 < x3). Therefore, by Lemma 4

n [193],
1 1 1
B > 5+ g5 (Pl A ).

where we note that we can take d larger than an arbitrary constant as the rate
Vd/(y/mn) being optimal (v/d/(y/mn) < d/(mn)) implies d = m and for constant
order m there is nothing to prove. We obtain that

Ps(1—T,) =P <C i(<ﬁ>—1/2)<12 2-1(1 — a))

_ _ 1
[(p(J) _ Efp(])) + Efp(J) _ 5] < 12*1/2@*1(1 _ a))

<P (0p() + o (B A 5 ) < 1270 1))

where the Op(1) term in last equality follows from the fact that ¢, o is bounded and
the central limit theorem (the p'/)’s are bounded and independent still under Py). If
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the minimum is taken in 1/2; the result follows for large enough m. If the minimum
is taken in the first argument,

Cm,a\/m —1/2 2 1 Ca,ﬁCm,a
T d ”Hf||2/\§ T

so for large enough C, g, we obtain that Pf(1 —T,,) < f.
For Fisher’s method, the test of level « is given by

T, := JI{Z —2logpt) > F! (1—04)}, (4.39)
2m
j=1
for the p-value p¥) := 1 — in(H\/ﬁX(j) |3) (or equivalently Pearson’s method for the
p-value Fyz ([v/nX7[3)).

For the Type II error bound, assume first that n|f|3 = 20v/d. We have that | Z)(3 >

d — 5+/d on an event of probability at least 1 — e, via e.g. Theorem 3.1.1 in [210].
By using a union and a standard Gaussian concentration inequality, the event

VIt L0)
2V

has mass at least 1 — me—"I/12/32 >1- me~V4/2_ On the intersection of these two
events,

max
1<jsm

(4.40)

n 2
< —=IfI3,

; A VA P Vn , n
F nf+29)2) = pr (Xd”2 <ol Tz L = 2)
allvas + 29R) o <2V 720+ L1

2
X5 —d n 5 )
> Pr < —— -5

2
X;—d )
> Pr <5,
(7

where the right-hand side tends to ®(5) in d by the central limit theorem. As ®(5) >
e~2, we obtain —logp@¥) > 2. Since Z(M) ..., Z(™) are independent, by binomial
concentration, there are at least (3/4)m indexes j = 1,...,m such that |Z(0)|3 >
d — 5v/d whilst also satisfying with probability 1 —e™7™ — me=V/2 for some
constant 7 > 0. Using that we can without loss of generality take m > M, g for a
constant M, g > 0 (otherwise the separation rate is effectively the same the one for
m = 1) and since we consider d 2 m, we obtain that the event the joint event occurs
has mass less than 1— 3. Furthermore, on this event, we have 1-T, = 0 for M, g > 0
large enough, since

m

Z —2logp) = dm - (3/4)

j=1
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and by the fact that the chi-square quantile tends to 2m + Cy+/2m for some constant
only depending on «, which is less than 4m - (3/4) = 3m for m > M, g.

Assume now that n|f||3 < 20+/d. Consider the following claim: for d large enough it
holds that

—2E; log (1 ~ Fe(lvaf+ 2913 )) eV @f\g (4.41)

for a fixed constant C' > 0. If the claim holds,

n e S ]
Pr(1-Ta) < (CJICHQ\F@ vl p — Z 2(log p¥) Eflogp<f>)<nm,a>

with 1)y, q 1= \/%(F; (1 —a)—2m). Since the method is rate optimal when m < d,

the second term of tf1e left-hand side in the above display may be assumed to be
small. For the third term, note that

Ef(72logp(j))2 = 4Ef log(l — in(H\/ﬁf + Z(j)”g))
< 4log(l—Fpe (n]f15 +d)),

where the last inequality follows from the log-concavity of z — 1 — F,- (x) (see e.g.

Theorem 3.4 in [98]). For n|f|3 < 20V/d, the latter quantity is uniformly bounded in
n,m and d. Since the second moment bounds the variance, this implies that

Z 2(logp") — Eflogp¥)) = Op(1)

by the independence of p¥) and p*) for k # j. Consequently, for some constant
7>0,

Pf(l - T ) < (fn|f|2 mef-r\/g + Op(l) < 7]m,a> .

Cvd
Since N, — ®71(1 — ) by Lemma the fact that
vmn| f|3
> C,3/C
“ova O

for large enough C, g > 0 depending only on o and /5 and the fact that m < d, we
have that Py(1 —T,) < 5.

It remains to prove the claim of (4.41)). We start by writing —2E ¢ log (p(j)) as

1 - Fy(lv/af + Z9)3)
- Fa(JZ200]3)

2B log(1 — Fg(|1Z9)[3) — 2E; log (
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The first term equals 2. Using log(z) < |z — 1|, the second term is bounded from
below by

Fea(lvnf + Z9)3) — Fa(129]3)

9F
1-F\(|20) Hg)

> QEf‘Fxg(H\/ﬁerZ(j)Hg) 2 (1Z9]3)].
By the same argument as used for (4.40)),

Er1 s 200<0y P (WA + 29) > B Fg IV + 1290) — e,

which is larger than EfF\2 (|2 (@)||2) for all large enough d. Additionally, on the event
that fTZU) > 0, it holds that

Fea(lvnf +29(3) > Ey ( IVaflz +12913) = E¢Fa (129]3).

Furthermore, we have

2 =2
7 7@))2) = p ngdfxdgl 2
Xd(2H\Ff||2+H 13) —EfF\a2(12V]3) = Pr 7 2\/g|\f|\2 ;

where X37 )23 are independent chi square random variables with d degrees of freedom,

which tends in d to
n n
O ——=|FI2) —®0) = ——|fI3,

where the inequality holds under the assumption n|f|3 < 20+/d for a large enough
constant C' > 0. Putting the above lower bounds together, we obtain (4.41]). O

Lemma 4.7. Let T, correspond to a test of level a considered in (4.8]) or (4.9). For
all a, B € (0,1) if
) d3/2
p N (4.42)

we have
sup By (T = 0) <
feH,

for a large enough constant Cy g depending only on o, 8 € (0,1).

Proof. The proof follows a similar line of reasoning as e.g. the proof of Lemma A.8
in [I95]. Starting with (4.8), note that

Py(1—T,) = Pr(\}ai ((d*WWﬁ + Z,»))2 <dVFG(1- a))
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for independent Zy,...,Z; ~ N(0,1). The latter display equals
d

Pr( 2113 + 2 FZLZ FAn ) < a0 ) ) -

d

Pr( I+ (0 %\fuzmp(l) <dVHEG (- ) =) <

Pr((1+ /1190 (1) < 3 22 13).

where the last inequality holds for large enough C, 3 since LT H fl3 = Cap and

d=12( FX}1(1 — a) — d) is bounded in d by Lemma The resultlng probability can
d
be made arbitrarily small by taking large enough C

For a variation to Edgington’s method, i.e. ., similar reasoning applies. Under
the null hypothesis, Eq®(y/nX ) = 1/2 so a conservative test (i.e. PoT, < «) based
on Edgington’s method is given by

> Ca1/2}

T —1{ l (% p<j>;>)QVaro<p<f‘>>]

JjeTi
for a constant ¢ > 0 by e.g. Chebyshev’s inequality. Under the alternative hypothesis,
we have pl) = ‘ID(\/HXZ-U)) = d(y/nf; + ZZ-(j)) whenever j € J;. The Type II error
P;(1 —T,) equals

NI j j j
P (\WZ [m(Z (0 —2(z7) +2(27) -

Jj€Ti

N =

)>2 B Varo(p(j))] ‘ < Ca—1/2> =

Pf(‘C+§+ Z LS @+ 29) - <I><Z§”>>)2‘<ca—1/2>

— jes
(4.43)
where ., | o |
= 72 l (Z (@2 - 5)) - Varo(p(]))l
=1 J€T:
and

29 (S @yisi + 29) - 229) (3 (@(29) - 1),

=1 jeJ; J€Ti 2

By independence between Zi(j ) and Zi(k) when j # k, the random variable ( is mean
0 under E; with constant variance (i.e. not depending on d, m,n) and is thus Op(1).
Similarly, £ has constant order variance and expectation. By Jensen’s inequality

Es(@(vnf; + Z7) - o(Z9)? = (@272 /nfi) — 9(0))?
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where it is used that
Esd(vnfi + Z9) = Pr(Vnfi + Z = Z') = (272 \/nf,).

By Lemma A 11 in [I95], the right-hand side of the second last display is lower

bounded by mm{an2 1}. By the independence of Z(j) and Z( ) when J # k, it
also holds that

Ef(@(vnfi + 27) — a(Z))(@(Vnfi + Z7) — @(Z)) = (@(272V/nf;) — 8(0))%.
Therefore,

£, L (X (s + 20) - a(z) 2

i min{= nf2271}
: 12d
JE€T:

12

Adding and subtracting the above expectation and noting that

Z LN @+ 22) - 2(20))’

J€Ti

has constant variance by the independence of Zi(j ) and Zi(k) when j # k, we obtain
that (4.43)) is bounded above by

Py (Op( 12d\/72 min{- nfl,l} _1/2> :

If the minimum is taken by 1 for any ¢ = 1,...,d, the proof is completed by noting

that m = d? by assumption whenever the rate < f is the optimal rate and considering
m large enough. Otherwise, the power is arbltrarlly small for

mn 2
—|fl3=C
d\/a”f“Z a,B

and C, g large enough. O

Lemma 4.8. Let T, correspond to a test of level a considered in (4.13)). For all
a,fe(0,1) 4f
9 d

>Cohp— 4.44
P B (4.44)

we have

supPy (T, =0) <
feH,

for a large enough constant Cy 5 depending only on o, 8 € (0,1).



4.5. APPENDIX 179

Proof. The proof follows a similar line of reasoning as e.g. the proof of Lemma A.7
in [195]. For any f € R? such that |f|2 > p, we have

UynXD L nUf+ 20

under P; by rotational invariance of the normal distribution. The probability of a
Type II error of the test of level a given in (4.13)) is then equal to

Pr (|v/ny/m(Uf)1 + 2| < 27'(1 - 0/2))

with Z ~ N(0,1). The random variable (U f); is in distribution equal to || f[|221/(|Z' |2
for a d-dimensional standard Gaussian random vector Z’. For any 8 € (0,1), there

exists ¢ > 0 such that |Z|ls > ¢/A/d occurs with probability 1 — 3/2. Also, for

7””?}5“2 = Cy p/c large enough,

. Omm
v

This concludes the proof of the lemma. O

+Z|<® M (1- a/2)) < B/2.

The following fact is well known and included for completeness. For a random variable
V, let Fy denote its CDF.

Lemma 4.9. Let Wy, ..., W,, be random variables and let V,, = Z;nzl W;. Suppose
that

m™ 23 (W) — EW;) o N(0,07).

j=1

Then, for all a € (0,1),
m
(o)1 (F;;<a> 5 ij) o)
j=1
where ® is the standard Gaussian CDF.

Proof. The quantile function
F‘Zj(a) =inf{xeR:Pr(V,, <2) = a}

satisfies z(F‘j1 () —y) = F;(‘l/mfy) (). The result now follows by e.g. Lemma 21.2
in [205)]. O
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4.5.5 Proof Lemma and Lemma

Proof of Lemmal[{.1 The lemma directly follows from Theorem [£.1]and Theorem
after verifying the corresponding conditions. Assumption is satisfied if p) is
generated using only local randomness, while in case of shared randomness, the same
conclusion holds for Assumption [£.4 Below, we prove Assumptions [£.2] and [£.3] for
the examples listed in the lemmas.

1. Fisher’s method: let SU) = —21og pl) ~Ho X3 and consider the test of level a
as

]l{r]%m\/iimg(é'(j) )= l(1— a)}

with ®~! the inverse standard normal CDF and

Ham = D11 — ) (&n (Fi t-a)- Qm)> -

In view of the CLT, see Lemma the sequence 7,,,m converges to one, hence
it is bounded. Furthermore, note that the corresponding combination function
C(s) := (na,m/w/m)Zyll(s]’ — 1) with s = (s;) € R™ satisfies Assumption
(e.g. with p = ¢ = 1). This in turn implies the moment condition for SG),
concluding the proof.

2. Mudholkar and George’s method: The corresponding combination function
Cpn(s) := |m~1/? Yty s4], by triangle inequality, satisfies Assumptionﬂ Since
SU) := —log(p') (1 — p)), the moment conditions are also satisfied.

3. Pearson’s and Edgington’s methods: the proofs follow the same reasoning as

above with an additional application of the reverse triangle inequality in case
of a two-sided test.

4. Tippett’s method: when small p-values are expected under the alternative hy-
pothesis, a test of level a € (0, 1) is given by

T, =1 {1 - (1 fmin{p(l),...,p(m)})m < a},

where 1 — (1 —min{p™, ..., p(™})™ is uniformly distributed under the null (see
e.g. [202]). Observe that it is equivalent to

1 {—mmin {— log(1 —p(j))} > log(1 — a)} .
For j = 1,...,m, take SU) = —log(1 — p¥)) ~Ho Exp(1). The threshold

a — log(l — ) is strictly decreasing and the combination function Cy,(s) =
—mmin s; satisfies

m
|Cr(8) = Cu(8')] < mmin |s; — 87| < Z|SJ — 8.
j=1
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Consequently, Assumptions [I.3] and [£.2] are satisfied.

5. Generalized averages: The case where r = —o0 corresponds to Tippett’s method
above. Similarly, r = oo corresponds to the maximum of p-values, for which the
proof follows by similar steps. For r € [ﬁ,o@), ar,m can be chosen such
that the test T, in defined in Section has precise level: PoT, = «, see
Proposition 2 and 3 in [212]. For such a,m, the set {a,m, : r € [-15,0)}
is bounded (see Table 1 in the aforementioned paper). This test can eas-
ily be seen to be of the form and for the generalized average, we have
(m™ 30 (s)")Y" = [m=Y7s],., which yields

—1/r

= sl = ls'le] < m=V7)s — 8] < max |s; — ]

ils
so Assumption is satisfied since a, ,, is bounded.
O

Proof of Lemma[/.3. Product of e-values: The e-value test T, for the combination

function (e;) — II e; can be written as
J=1

T, = ]l{ilogE(j) = log(l/a)}.
j=

For SU) := log EU) and C,,(s) = 2o, 8j note that Ey|log EY)| < oo and C,
satisfies (4.3)). Since o+ log(1/a) is strictly decreasing on (0, 1), the assumptions of

Theorems [4.1] and are met.

Average of e-values: Since EU) is nonnegative, the moment condition is satisfied.
The map (e;) — m™* Yo, e; satisfies (4.3), while the map a — a~! is strictly
decreasing and independent of m. Hence, the conditions of Theorems and [£.3] are
satisfied. O

4.5.6 Additional simulations

Figure[£.5.6]shows the further improvement of the combined chi-square tests compared
to the directional methods as d grows with respect to the number of trials, for signals
that are around the detection threshold. Figure shows the further worsening
of performance of the combined chi-square tests compared method as m grows with
respect to the dimension, for signals that are around the detection threshold. For
each of these simulations, 10,000 repetitions for every value « € {0.01,0.02,...,0.99}
of the level of the tests are considered.



4. CONSEQUENCES FOR META-ANALYSIS BASED ON COMBINED TEST STATISTICS

182 ACROSS INDEPENDENT STUDIES

1.00 1.00

=

—

n
=
)
n

True Positive Rate
o =)
(%] [
.,. &
True Positive Rate
=
&

=
[
in

Curve

0.00 0.00 ) .
—  identity
0.0 0.25 0.5D 0.75 1.00 0.0 0.25 0.50 0.75 1 .-30_ Chissquare combined
False Posttive Rate False Positive Rate =
— directional coordinated

directional uncoordinats

single trial
Chi-square pooled

=

-

n
=
-
n

True Positive Rate
) =)
ra [
a &
True Positive Rate
=
E

=
P
in

0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False Positive Rate False Positive Rate

Figure 4.2: ROC curves for different values of d, whilst keeping m = 20, n = 30,
p* = 9v/d/(16n). From left to right, top to bottom: d = 30, d = 60, d = 90, d = 120.
The uncoordinated directional test requires m > d and is therefore has TPR set to 0.
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Figure 4.3: ROC curves for different values of m, whilst keeping d = 5, n = 30,

p? = 9d/(16nm). From left to right, top to bottom: m = 30, m = 60, m = 100,
m = 200.
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Chapter 5

Adaptation in nonparametric
distributed testing with
bandwidth and privacy
constraints

“I wanted to see if it was really true that I had to give up all the beautiful
features in order to do the applications. To answer this question, you must
think about it differently. You need to find out what the constraints are
imposed by the applications, whether those constraints can be added to the
ones of the model, and whether the whole construction can be rebuilt.”

- Ingrid Daubechies

In this chapter, we shall describe the minimax rate for a nonparametric distributed
problem for both bandwidth- and privacy constraints. A natural extension of the
finite dimensional signal in Gaussian noise setting considered in the previous chap-
ters is the infinite dimensional signal-in-white-noise model. The latter model serves
as a benchmark model for nonparametric goodness-of-fit testing and has been exten-
sively studied outside of the distributed setting, see [94] 121 140, 184, 118]. In the
distributed setting, the j = 1,...,m machines each observe i = 1,...,n i.i.d, XZ.(])
taking values in X < Ls[0, 1] and subject to the stochastic differential equation
dX\) = f(t)dt + aw ) (5.1)
under Py, with m(l), .. .,Wi(m) ii.d. Brownian motions and f € Ly[0,1] for i =
1,...,n. Besides the difference in the local observations, the distributed setup con-
sidered for this model remains exactly the same. For notational convenience, we shall

185
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use N = mn throughout the chapter and will consider asymptotic regimes where
N — oo0. The results derived for the null hypothesis “f = 0” and alternative that
“Ifllz = p” in the many-normal-means model translate in the infinite dimensional
model to testing Hy : f = 0 € Ly[0, 1] against the alternative hypotheses that

feHyT = {f e [0,1] : | flr, > p and |2 < R}. (5:2)

Here, H*% = H*%([0,1]) denotes the Sobolev ball of radius R in the space of s-
smooth Sobolev functions and | - [3s the Sobolev norm, see Section in the
chapter appendix for the definitions. We furthermore remark here that the results
(minimax rates) extend to general Besov-(s,p,q) spaces (e.g. alternatives bounded
in Besov norm), for any p € [2,0] and ¢ € [1,00], up to possibly an additional
logarithmic factor due to the use of a Gaussian prior in the Bayes risk.

The smoothness parameter s > 0 determines the difficulty of the classical (non-
distributed, m = 1) nonparametric testing problem as considered in e.g. [123]. The

asymptotic minimax rate for the non-distributed case is p? = (n)*?sisl/2 for the s-
smooth Sobolev alternative class.

This problem is closely related to “classical” nonparametric goodness-of-fit testing in
the sense of [23] [182] [67, 211], in which we aim to distinguish the null hypothesis that
an ii.d. sample is generated from a cumulative distribution function F' = Fy versus
the alternative hypothesis that F' # Fp, see the Section[I.4]in the introduction of the
thesis, and Section 1.4 in [I23] and references therein for further discussion on this
comparison.

If we consider the total variation distance between probability distributions admitting
densities, which in the above example reduces to (1/2)|fo — f|l1 in case Fy(t) =
Sé fo(t)dt, another motivation for the Gaussian shift experiment can be given through

Le Cam theory and the equivalence of experiments, which we shall further explore in
Chapter [6]

We consider the separation rate p in the nonparametric problem to be a sequence
of positive numbers in both N, m = my, n := N/m and depending on the type of
constraint, b or (e,4). A distributed test T in the nonparametric setting is called
a-consistent for a € (0,1) if R(H5",T) < o for all N large enough. The distributed
setting for the nonparametric model remains unchanged in comparison with the finite
dimensional model introduced in earlier chapters, except of course for the sample
space in which the observations Xi(j ) take values and the parameter space. These
become (subsets of) Ly[0,1] instead of R

The minimax rates when s is known, follow more or less straightforwardly from Chap-
ter 2] and Chapter 3] Roughly speaking, after taking e.g. a Fourier or wavelet trans-
form of the observations, the resulting problem in the infinite dimensional sequence
space is well approximated by one in a finite dimensional subspace, by optimally
truncating the sequence based on the knowledge of s. Such an approximation, com-
bined with the results from the earlier chapter yield tight minimax lower- and upper
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bounds for the minimax distributed testing problem in the nonparametric signal-in-
white-noise model.

In practice, however, the true smoothness of the underlying parameter is unknown.
When the smoothness s is unknown, the results and methods of the earlier chapters
do not transfer as straightforwardly to the nonparametric problem. In this case,
optimal methods need to be able to adapt to the unknown regularity of the underlying
function.

In this chapter, we consider both the adaptive settings, both under bandwidth and
differential privacy constraints. First, in Section [5.1} we derive tight minimax rates
under bandwidth constraints when the smoothness is known. After this, in Section[5.2]
we consider the setting where the smoothness is unknown, and derive minimax testing
lower bounds in the adaptive setting under bandwidth constraints. In Section [5.2.1
where we exhibit adaptive testing methods attaining the lower bounds up to a log — log
factor. Then, we switch to the differential privacy setting, deriving (up to logarithmic
factors) the known smoothness minimax optimal rates in Section and exhibiting
an adaptive method that attains these rates (up to logarithmic factors) whilst also
adhering to the desired differential privacy constraints in Section

5.1 Optimal nonparametric testing under bandwidth
constraints with known regularity

The following theorem is a straightforward extension of Theorems and It de-
scribes the minimax testing rate under bandwidth constraints whenever the regularity
is known. Optimal inference in this case boils down approximating the data using
a sufficiently regular orthonormal basis that provides a good approximation of the
(possibly) underlying signal in Sobolev space (such as a wavelet basis). Truncating
the basis expansion of the data then effectively puts us in the setting of Chapters
and [3] A full proof of the theorem is given in Section [5.1.1

Theorem 5.1. Let s, R > 0 and let b =by, m =mpy and n = N/m be sequences of
natural numbers, take p = pp.p.m,s be a sequence of positive numbers satisfying

__2s _ . 1
N 2_<>»+1/27 Zf b > N 2s+1/2 ,
2s
T 2s+1 1 =25 1
p2 — (\/BN) + 7 Z'fnzs+1/2m2s+1/2 <b< Nz+172 (53)
2s 1 —2s
( /mn)_ 2s+1/2 , Zf b < nZs+12m2s+1/2

For all a € (0,1) there exist constants Cy,co > 0 depending only on «, s and R such
that for all N large enough,

inf R(HZET)>1-a and inf R(Hé’Rp,T) <o
Teﬂs(g) Teﬂs(;? “
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Similarly, in the case of local randomness protocols, p = ppp,m satisfying

__2s . N S
N~ 2s+1/2 Zf b > N 2s+1/2 ,

9 __2s ) 1 —s+1/4 1
pe = (bN) 25+3/2 Zf NTFIR M2 L h < N2 (5_4)
( /mn)_Qsisl/2 Zf b < nﬁm%’

provides the minimaz testing rate, i.e. for all a € (0,1) there exist constants Cy, o > 0
depending only on a, s and R such that for all N large enough,

inf RHZET)>1-a and inf RHZE,T)<a.
Te 7 Te 7}

The proof of the theorem is given in Section The theorem reveals the relation-
ship between the (local) signal-to-noise-ratio n, communication budget per machine
b, the number of machines m and the smoothness of the signal s. Before providing the
proof we briefly discuss the connection with distributed minimax estimation rates.

The distributed minimax estimation rates under bandwidth constraints were estab-
lished in Corollary 2.2 of [I87] or Theorem 3.1 in [230]. A slight reformulation of the
latter yields that

N~z ifb> N7,
o sup BYLF(Y) = fZ, = § (ON) T (nm 172 < < N
(f.L(Y))EED) fer=T (bm) 2 if b < (nm—172%) 7

(5.5)
where £(b) is the class of all distributed estimators based on b-bit transcripts ¥ =
(YW, . ym),

A first observation is that consistent testing is possible in any regime of b > 1 and m,
whereas this is not the case in estimation. Consider for instance the regime where m
and b are fixed. In nonparametric distributed estimation, the Lo-risk does not improve
once the sample size is large enough. In fact, even when allowing for asymptotics in
b and m (but assuming that (nm_l_Qs)ﬁ> b) one is better off performing the
estimation locally using just one of the machines with local signal-to-noise-ratio n/m,
attaining the locally optimal rate N T

In the case of nonparametric testing, not only can we consistently test for any fixed
m and b, the distributed testing rate is bounded from above by (y/mmn)=2%/(2s+1/2)
(regardless of the communication budget b), which is significantly smaller (for large m)
than the minimax testing rate based on the local signal-to-noise-ratio n—2%/(2s+1/2)
which can be achieved by using only a single local machine. One possible explanation
for this discrepancy is that in nonparametric estimation, the output of the inference
is a high-dimensional object, which requires a large total communication budget to
be reconstructed with sufficient granularity. In testing, the output of our inference is
binary.
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A perhaps less surprising difference is that a larger budget is needed for testing at
the non-distributed minimax testing rate compared to estimation. That is, in order
to obtain the non-distributed minimax rate of p? = N 7233;751/27 the communication
budget needs to satisfy b = N %172 On the other hand, the non-distributed minimax
estimation rate N~ z+1 requires only b = N 771 This follows from the fact that the
Lo-disk testing rate is faster than the Lo estimation rate and hence to achieve this
faster rate one has to collect information about the signal at higher frequency level
as well (up to the O(N ﬁ) coefficients in the spectral decomposition).

Increasing m decreases the local signal-to-noise-ratio when the total number of ob-
servations nm = N is kept fixed. When the total budget bm grows at a similar or
faster rate than the “effective dimension” of the model, the rate that can be achieved
no longer depends on m in both estimation and testing settings. In this regime, this
effect is offset by the total number of bits being received by the central machine.
What is different in testing problem, however, is that having access to shared ran-
domness strictly improves the performance (until the local communication budget b
reaches the effective dimension N Tll/? as after that both methods reach the minimax
non-distributed testing rate N~ 25+1772). One might wonder whether having access to
shared randomness improves the rate in the estimation setting also. It turns out
that this is not the case. See also Section Theorem which shows that under
the shared randomness protocol the distributed minimax estimation rate does not
improve compared to the local randomness protocol.

5.1.1 Proof of Theorem [5.1

For convenience, we consider a sufficiently smooth orthonormal wavelet basis {1 :
leNy, k=0,1,...,20 — 1} for Ly[0,1], see Section for a brief introduction of
wavelets and collection of properties used during the proof. Nevertheless, we note,
that other basis (e.g. Fourier) could be used equivalently.

For L=LeN,let Vi = (¢, : L <L, k=0,1,...,2" — 1} and define v, = 3 , 2.
For f € L»[0,1], let f¥ denote the projection of f onto V7, i.e.

L 2'—1

Fr=3000 fubw (5.6)

1=0k=0
with fi, := § fo. Let XU) = (ij),...,Xr(Lj)) and let X () denote the average of
the observed paths in machine j = 1,...,m, for which it holds that

— 4 1 )
dX@, L f(t)dt + %th@,

where W9 is a Brownian motion. We denote the wavelet coefficients of X @) by
)N(l(,g) = Sé P1dX (7). For the coefficients at resolution level L, write

29 _ (X9, .., V)
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for the R2" valued vector and let Xé, denote the concatenated coefficients from
resolution level L' < L up to resolution level L, i.e. X(J) = (Xé,), ... ,Xg)) taking
values in R¥27"2’-1. The vector Xéf% = (Xé ),Xl(J) X(])) follows the dynamics

(= 1
o(@ =ft+ %Z(])’ (5.7)

where ZU) ~i4d- N(0,1,,), j = 1,...,m, and fLi= (fir)i= —0,...,L; k=0,...,21—1-

The existence of C,, > 0 such that f € Hai can be detected.

In view of Theorem there exists a constant C?, > 0 and a b-bit shared randomness
distributed testing protocol T' with transcripts generated according to Y )| (X éj %, U) ~

Kj('|X(():jz,U) such that if | f]2 > (C%) 2‘/27 (4/ FasT /\\/>> we have

BT +Ep(1-T) <o

Similarly, there exists a constant C7, > 0 and a b-bit local randomness distributed test-
ing protocol T  such that the above display holds if || fZ|3 = (C",)? V2L <bA2L A \/7)

mn

See Section [3.1] for the construction of such testlng protocols.

Consequently, it suffices to show that for f e Hg ', | fLH2 satisfies the above lower
bounds for some L € N and ¢ > 0. In view of (a —l— b) /2 — b <a?
|/ HL
17512, = =572 = If = 212

Furthermore, f € H, é’fp implies that

P =Y S e Y Y o < Wl B2 ) >
”f_f HL2 = fl <27 f 277 92Ls 22LS and HfHL2 Cap
I>L k=0 I>L k=0

Consequently, in view of Plancharel’s theorem and taking L =1 v [—7 log p],
1215 = 1513, = p°C2/2 — R?27%00 = p*(C2/2 - R?).

Consequently, there exists a b-bit shared randomness distributed testing protocol such
that
E()T + Ef(l — T) < «Q

whenever

\/7 1\/ 1/9 1v —1/s
Zm(VbAQL/\f> = (\/m15p 1/s /\\F>
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since the constant (%2“ — R?) can be made arbitrary large by large enough choice of
C, > 0. In the case that b > (1 v p~/*), the above display is satisfied whenever
,02+i 2 (mn)~!, which provides the first case in . Similarly, if b < p~%/*, the
above display boﬂs down to p2+s 2 (\[ mn)~! whenever bm > p Vs Wthh leads to
the second case in (5.3). If bm < p~/*, the inequality reduces to p2+% 2 1/y/mn
and consequently provides the third case in .

By similar argument as for the shared randomness protocol above, there exists a b-bit
local randomness distributed testing protocol with testing risk less than a whenever

—1/s —1/s
e (i e AV 59)

rr= mn (Ivp~

and C, > 0 large enough. Then a similar computation as in the shared randomness
case above leads to the three cases in (5.4]).

The existence of co for which the risk is lower bounded. Furthermore, let ¥, : R2"
L5[0,1] be the measurable map defined by

2l

v ft = Z fitbri,

for f = (fo,..., far_1) € R2". For any distribution 7, on R2", 7/ o U, ! defines a
probability measure on the Borel sigma algebra of Ls[0,1]. The testing risk is lower
bounded as follows

R(HSRT) > Po(T = 1) + pr(T — 0)dmp o WM ()~ (fe RS 1 wof ¢ HIR).
The likelihood ratio & Fiss (X(J)) with f = U, f equals
— n .

v (o [ ax - 2|f§) = exp (n(ATXY - LI FH13) = 2, XV,
where X(]) So t(j), .. .,Sé wL(QL,l)(t)dXt(j)) e R2". That is, under Py,
ff(Xg )) is equal in d1str1bution to the likelihood ratio

AN ( 7, %IQL)
dN (0, 1Ipr)

This effectively puts us in the setting of Section By Lemma there exists
= L L
a symmetric, idempotent matrix I' € R? " *2" such that for 7, = N(0,T) with I’ =

VeSO T e R2U%2" it holds that

RHSET) > — 7, (fe]R2 foLf¢H§j§), (5.10)

Cap?



5. ADAPTATION IN NONPARAMETRIC DISTRIBUTED TESTING WITH BANDWIDTH
192 AND PRIVACY CONSTRAINTS

L L/2
2 < e Y2 <2/\ ﬁm>
mn \+b A 2L

in the case of shared randomness protocols or

p2<c @(QL/\\/E)

as long as p satisfies

«
mn

in the case of local randomness protocols, and ¢, > 0 small enough in both cases.
Taking again L = 2 v [log p~ Y ], by similar argument as given below display (5.8))
the above upper bounds for p? result in (5.3)) and ([5.4).

It remained to bound the prior mass term in (5.10) for L = 2 v [log p~/*]. That is,
we will show that

m (Fe R ULfI3, = cap® 1WLfI3e < B2) 21-a/2, (511

for all n large enough. Note that for all L € N, W, f]3,. < 22L5| Wy | ,. Conse-
quently, using Plancharel’s theorem, we obtain that the left-hand side of (5.11)) is
bounded from below by

. (fe R :cap? < ||fJ2 < 2*2“32) > Pr (cap® < Z'TZ < R?p?)
R2

Vea

=Pr (@QL <Z'TZ< 2L) , (5.12)

where Z is a 2-dimensional standard normal vector. Since the matrix T is symmetric,
idempotent and has rank proportional to 2*, Lemma yields that the right-hand
side of the above display is bounded from below by

1 VCa —1—0.5logc, 1 R?/\/ca —1—0.5log (R*/c,)
- C2 1 )—exp(—C2 1 ),

1—exp(

for a universal constant C' > 0. The above expression can be set arbitrarily close to
1 per small enough choice of ¢, > 0, verifying the prior mass condition.

5.2 Adaptation under bandwidth constraints

In the previous section we have derived minimax lower and matching upper bounds
for the nonparametric distributed testing problem in context of the Gaussian white
noise model. The proposed tests, however, depend on the regularity hyperparameter
s of the functional parameter of interest f. Typically, the regularity of the function
is not known in practice and one has to use data driven methods to find the best
testing strategies. In this section we derive distributed tests adapting to this unknown
regularity. We derive both lower and upper bounds and observe surprising, additional
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phase transition in the small budget regime which was not present in the non-adaptive
setting.

First, we note that even in the non-distributed setting, we have to pay an additional
loglog N factor as a price for adaptation (see e.g. Theorem 2.3 in [I84] or Section 7
in [123]). More concretely, if p, = N~%/(2571/2) it holds that for any smin < Smax,

sup R (HS’R T) — 1,
]

CN MN,sl)s ’
S€[Smin,Smax

s/
for all tests T', My s = (loglog N)Z+172 and any cy = o(1) whilst there exists a test
T satisfying

s R(HEN, ,0T) =0,

SE[Smin asmax]

for large enough constant C' > 0.

The distributed testing problem is more complicated as we have to consider different
regimes based on the number of transmitted bits, see Theorem These regimes,
however, depend on the unknown regularity hyperparameter and require different
testing procedures to achieve consistent testing. The transcripts transmitted require
a larger communication budget to attain the same performance as in Theorem
Theorem and below capture this increased difficulty in terms of lower- and
upper bounds on the detection rate (tight up to a log-log factor). In the proof of
the theorem, we derive such an adaptive distributed testing method which adapts
to the smoothness. These methods are in principle based on taking a 1/logmn grid
of the regularity interval [Smin, Smax], constructing optimal tests for each of the grid
points and combining them using Bonferroni’s correction. This results in loosing
a logarithmic factor in the intermediate case as the budget has to be divided over
O(log N) tests, each capturing a different possible level of smoothness.

The additional incurred cost in the distributed setting due to additional commu-
nication budget required is fundamental, as our accompanying lower bound shows.
This additional difficulty translates to a /log N and log N factor more observations
required in the intermediate budget regimes for the shared- and local randomness
settings, respectively. In the small budget regime, such a loss is incurred when the
local communication budget b is of smaller order than log N. When b 2 log N in the
small budget regime, the same rate as in Theorem [5.1] can be obtained, up to the
loglog N factor incurred by the Bonferroni correction.

The above described results are split over two theorems. The first, Theorem
concerns the case where b = log N. In the second, Theorem the case where
b < log N (both theorems coincide when b = log N). The case where b = O(1) is of
special interest, as b = 1 means each machine’s local transcript forms a test itself and
the global test can be seen as a “meta-analysis” on the basis of these m tests. The
proofs of the upper bounds in both theorems are given in Section [5.2.1] while the
proofs of the lower bound are deferred to Section in the supplement.
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Theorem 5.2. Let us consider some 0 < Spin < Smax < ©, R > 0, let m = my,
n= N/m and b= by such that b > log N be sequences of natural numbers and take
a sequence of positive numbers ps = pn p.m,s Satisfying

N~ m=5172, if b>log(N)N#172,

, VBN 7#;1 f ] N2e+1/2 <b<l (N)NWIUQ
2 = ool . if log(N 7n2251t}2 < og » (5.13)
(Vmn)~ W if log(N) < b < log(N) (stj:iz V 1>

m 2s+1/2

in the shared randomness case, and

N_2s%rsl/2 if b> 1Og )N2a+1/2
2s
bN T 25432 . N25+1/2 - 1
2= { (ét) i 1) (2EF V) <0 <Ny
2s 1
(y/mn)” =F12 if log(N) < b <log(N) (Nisf;/f \V 1) ,
m2s+1/2

in the case of only local randomness. Then, there exists a sequence of b-bit bandwidth
constrained distributed testing procedures T = T in the respective setups such that

sw R (M, T) =0,

SE[Smin,Smax]

for any My >» (log 10g(N))1/4. Similarly, for all distributed testing procedures in the
respective setups, we have that for all oo € (0,1) there exists co, > 0 such that
sup R (H st ) > .

CapPs)

SE[Smin,Smax

The above theorem recovers (up to log-factors) the three rates corresponding to the
three regimes also found in Theorem the different regimes corresponding to dif-
ferent testing strategies. Since the true smoothness is unknown, these different dis-
tributed testing strategies are to be conducted simultaneously.

We note that for m > N TominTT o1 m>=N w797 in the shared- and local randomness
cases, respectively, the small budget regime no longer occurs. The reason for this is
that, even though b could be relatively small, the total communication budget bm is
large enough to warrant the strategy for the intermediate and high budget regimes.

Furthermore, whenever b > log(N)N 2S+11/2, the budget is large enough to recover the
non-distributed regime rate.

For b < log N the separation rate is different from the non-adaptive low budget regime.
Depending on the interplay between n and m either the minimax rate corresponding
to the intermediate case applies or an additional poly-(log(mn)/b) factor is present
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compared to the non-adaptive low budget regime, both in the local- and shared ran-
domness settings. This results in an additional phase transition at b = log N. The
reason for this, is that in order to cover approximately log N different levels of smooth-
ness using less than log NV bits, each of the machines can no longer send an adequate
amount of information on all the relevant smoothness levels. Instead, an optimal
strategy is to divide the different machines over each of the smoothness levels, where
each machines foregoes sending information regarding certain smoothness levels all
together.

Theorem 5.3. Assume the conditions of Theorem with b < log N and assume
bm » log N. Let us consider

. .
Zf m = N2+T

( VON )22“
p? = { \WVlee™) ’ (5.15)

2s
Vby/mn\  2s+1/2 . 1
( log(N) , i m< N7,

in the shared randomness case and

 2s , s—1/4
bN 25+3/2 . —2rs b 25+3/2
> N2s+372 [ —%
2 (log(N)) me - (log(N)) /, (5 16)
s — 25 _ s—1/4 :
Vmn\/b 25+1/2 . 297232 b 25+3/2
( log(N) Zf m < Nz+3/ log(N) ’

in the local randomness case. Then, there exists a sequence of b-bit bandwidth con-
strained distributed testing procedures in the respective setups such that

sup R (HR T) -0,

Mnps>
S€[Smin,Smax]

for arbitrary My > (log log(N))1/4. Similarly, for all b-bit bandwidth constrained
distributed testing procedures in the respective setups, we have that for all o € (0,1)
there exists co, > 0 such that

sup R(HS’R T) > .

CapPs’
SE[Smin,Smax]

Remark 11. Both theorems together cover all cases where mb » log N. The cases
where mb < log N are excluded for technical reasons, as well as the fact that when
mb < log N, the optimal rate in — (up to at most a +/loglog N factor)
is attained by using a standard non-distributed method using just the data of one
machine (see e.g. [184]). Similarly, in order to contain the level of technicality, we
have foregone the (loglog N)** additional factor in the lower bound which we esteem
also to be present in the distributed setting. We refer the reader to the argument of
Theorem 2.3 in [I84] for how to obtain the (loglog N)¥/* factor in the lower bound in
addition to the 4/log N and log N factors in the shared- and local randomness cases,
respectively.
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5.2.1 Adaptive tests attaining the bounds Theorem and

Underlying the adaptive methods lies the wavelet transform of the observations, as
introduced in Section Let v;, = Zf:o 2! and let us introduce the notations
Ly = |s7tlog(1/ps)] v 1, and for shorthand write Ly, = L. and Lyax = L, and
note that Ls € C := {Lmin, - - -, Lmax} for all $ € [Smin, Smax]- Note that |C| <log N.

For each regularity hyperparameter s, we distinguish low-budget (2% = mb in the
shared randomness case, and 25L: > mb in the local randomness setting) and high-
budget (corresponding to 2%+ < mb in the case of shared randomness and 23L+ < mb
in the local randomness setting) cases. Since m and b are known for any given
regularity s we know which regime it falls and is sufficient to construct that test. For
notational convenience, without loss of generality, for each s we construct both the
high-budget and the low-budget optimal tests using all the m machines (and do not
split them between these two cases).

5.2.2 Proof of the upper bound in the low-budget regime

First we deal with the low-budget case (where the total budget is small compared
to the effective dimension), which coincides in both setups. For each L € C we take

a subset of machines M, < {1,...,m} such that |My| = m’ := % and

each machine appears in at most b such subsets. We note that this is possible since
m'|C| < mb. Then for each j € My, L € C we communicate

v Ww) X9 ~ Ber (x2, (valXE1I3)) (5.17)
and at the central machine, we can compute

Si(

—1).

]E]WL

Then we consider the following adaptive test based on Bonferroni’s correction
Tedert ]l{rgaCxSI(L) =2 loglogN}.
€

Since for L € C, it holds that L = log(N), the above y/loglog N blow up suffices
to guarantee that the test has asymptotically vanishing Type I error control, i.e.
EoT7P" = (1) by Lemma [5.1{in the Supplementary Material (as the random vari-

ables 2Y7) (L) — 1 are i.i.d. Rademacher under Py).
For the Type II error note that

B, (1 — Te) < Py (5,(Ls) <2 loglogN)

and aim to apply Lemma In view of Lemma (
and d = vy_), noting that by triangle inequality ||f7=|3 > | f||3/2 —272L+* R? (see also
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Section [5.1.1), we get for | f[3 = log log(N)p? > C2+/loglog(V \/W

b/\log

that for m large enough

n|fle2  1\2 ~loglog N
(e RPN

with C' = C2/2 — R?. By the assumption that bm » log(N), m’ can be taken larger
than arbitrary constant My > 0. This means that, in view of Lemma with
Ca,N = 4loglog N and large enough constant Cy (depending on R), the Type II error
is bounded by a.

5.2.3 Proof of the upper bound in the shared randomness,
high budget regime

We use similar arguments as before, applying a Bonferroni-type of correction. First
let us consider the shared randomness setting and take a one-to-one mapping &7, from
{1,...,vr} to {(1,4): 1=0,...,L, i=0,1,...,2" — 1}. Let us define the test

WP @)lv = 1{(vauLxY),)) > o}, (5.18)

where the random variable U; € RYL*YL is drawn from the Haar measure on the

rotation group on R¥Z. Similarly to before for each L we take a subset of machines
L € {1,...,m} such that |[ML| =m' := %, and each machine appears at

most in b such sets.

Then machine j € My, L € C, transmits the bits (Y, (L));, i = 1,...,b = ol

to the central machine, where these local test statistics are aggregated, similarly

to (3.6), as

ANV,

4

Su(L) = Vbim,z (Z [(YI@(L»i—l/z]) -= - (5.19)

i=1 | \jeMy

In view of Lemma [5.1] the Type I error of the test
Tﬁub’adapt = ]l{nLlacx St(L) = 24/loglog N}
€

is o(1). For the Type II error note that
Ey(1 - TH ") < By {Su(L,) < 2\/loglog N |

By Lemma [5.2] the above display is o(1) whenever p? = M Nﬁ, which, for
Tog () N<7°

the choice of Ly= |s~!log(1/ps)| v 1 yields the rates of Theorem [5.2 and
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5.2.4 Proof of the upper bound in the local randomness case,
high-budget regime

We proceed by adapting the test Ty1; provided in Section to the nonparametric
setting with unknown regularity using again a Bonferroni type correction to achieve
adaptation. For simplicity, we again apply the map &;, introduced previously to move
between the single and double index notations of the sequence model.

For all L € C, similarly to the previous cases we consider a collection of machines M7,
with |[Mp| =m' = % and similarly to Section let us use the notation
Z;(L) © My, for the collection of machines corresponding the ith coordinate. We note
that without loss of generality we can assume that m’ > M,+/loglog N2%E¢ /(b')2, for
some large enough constant M,, otherwise the test 77 dapt above covers the corre-
sponding range. Then we modify the test given in by increasing the threshold
with the Bonferroni correction, i.e.

TETivadept,l H{IEaXSHI’I(L) > 24/loglog N}, where

B T s e

i=1 jeI;(L)
@)@  _ ()
Y ‘XEL() IL{X?5 ()>O}.

To deal with large signal components, similarly to (3.9) (with d = vz, and including
the Bonferroni correction in the threshold), we propose the test,

Thriadapt,2 IL{ max  S™2(L) > k4/loglog N}, where
LeC,2log(L)<b

2

1 . 1
I11,2 _ L—1 =
S (L) ‘dm/Cb’L <Z (}/;ount Cb 2 )) 4

j=1

)

with Cy . = 20=F and YY) given by

cou

Cora d (
count Z ZBlzj) € {07 17 .. ~7Cb,dd}7
=1 1i=1
with fori =1,...,dand j =1,...,m, let us generate

BY "5 Ber (Fyp (vax)?)),  le .., Coa = [2°/(d+ 1)}

Note that C q > 1 by assumption. Then machine j communicates the transcript

YY) . to the central machine, which can be done using logy(Ch qd + 1) < b bits in

coun

total. Finally, we aggregate these tests by taking

iv,adapt priv,adapt,l priv,adapt, 2
TPrev,a =T ) oy T
111 111 111
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In view of the law of Lemma [5.1] the Type I error tends to zero for both tests.
Therefore, it remains to show that the Type II error is bounded by «. Similarly to
the previous cases, note that

Ey(1-TEredepty < Ef(n {SHU(LS) < 2/loglog N}ml {SHLQ(LS) < 2¢/loglog N})

Following the proofs of Lemmas and (with d = vr,_, f taken to be the
vy, dimensional vector fL+ b replaced by b, and M, replaced by My+/loglogn, for
some large enough My > 0), noting that for C2 > 4R?

|75<13 = £13/2 — R*27%+* 2 Co+/loglog N}
_ Cp23L+/2\/loglog N - Co2%+/loglog N

2N (gogimy A 28) Ny™

)

and applying Lemmas and with ¢, = 24/loglog N, we get that the Type
IT error of TET*4%P" is hounded from above by /2.

Finally, we combine the above tests by taking

Tpm‘v,adapt _ Tpriv,adapt v Tpriv,adapt Tpub,adapt o Tpub,adapt v Tpub,adapt
= 41 I — I I .

and
Note that both of the above tests still have vanishing Type I error, while the Type II
errors are bounded by the prescribed level « in view of taking the union of the above
optimal tests.

5.3 Optimal nonparametric testing under differen-
tial privacy constraints

In this section, we study goodness-of-fit testing in the distributed nonparametric
signal-in-white-noise model as described in the start of this chapter (i.e. in (5.1))) under
differential privacy constraints, as laid out in Definition[3] The specific goodness-of-fit
test we shall consider is that of testing Hy : f = 0 € L[0, 1] against the alternative
hypotheses that

feH = {fen*B[0,1]: |f|L, = p and | f[s- < R}.

As is the case under bandwidth constraints, the nonparametric testing problem un-
der privacy constraints closely resembles the goodness-of-fit testing problem in the
many-normal-means model under privacy constraints, as studied in Chapters[2 and [3]
Loosely speaking, this is a consequence of the fact that, when the model its parame-
ter space restricted to the above Sobolev ball, it is well approximated by the many-
normal-means model. That is, after applying e.g. a wavelet transform and considering
the wavelet coefficients only up until a certain resolution determined by the model



5. ADAPTATION IN NONPARAMETRIC DISTRIBUTED TESTING WITH BANDWIDTH
200 AND PRIVACY CONSTRAINTS

characteristics, n,m, e and s (sometimes referred to as its “effective dimension”), we
end up in the many-normal-means model with the dimension as a function of the
other model characteristics.

In this section, we shall consider the smoothness level s to be known and derive
the minimax separation rate p for the nonparametric problem under (¢, §)-differential
privacy constraints. That is, for sufficiently d, finding p as function of n,m,e for
which the minimax nonparametric testing risk

inf  R(Hy . T)
Teﬂs(;;‘;)

tends to either 0 or 1 depending on the sequence My > 0. Here, as in earlier chap-
ters, 93(;’5) consists of all distributed protocols satisfying the (¢, §)-differential privacy
constraint (see Definition . Likewise, we consider the class 9]:(;6) as consisting of
distributed protocols using local randomness only and satisfying the same differential
privacy constraint.

As is observed in Theorem [T.2] the separation rate many-normal-means model under
privacy constraints is subject to many phase transitions, depending on the values
of n,m,e and d. These same phase transitions are observed in the nonparametric
signal-in-white-noise models too, depending on n,m, ¢ and s.

In the case of shared randomness, the minimax rate in the nonparametric model is
(up to logarithmic factors) given by

__2s . 1 1/2—2s
(mn) 2s5+1/2 if e > mmnm’
__2s . __2s  1/2-2s _1_ 1/2-2s
(mnS/QG) Ts+1 ifm™ THin 61T <e<mTHin 4+ | and € > 71*1/27
__2s . _ 1 1-2s _
9 (mn?e?)” 241 if m—in = <e<n 2
P = —_2s _ . 1/2 __2s  1/2—2s
( /mn) 25+1/2 ifn— <e<m THip 4st1
— 25 . _1 _14s 1 1-2s _
(Vmn®2e)" =12 if min %+ <e<m zn i and e < n /2
. 1 14s
(mn2e2)~1 ife<m™2n 2541,

(5.20)

For different values of € ranging between 0 and 1, the minimax rate changes, which
we shall refer to as different regimes. We note also that, depending on the particular
values of m,n and s, some of the above regimes do not occur for any value of € €
(0,1]. When considering only local randomness protocols, the minimax rate (up to
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logarithmic factors) for s > 1/4 satisfies

. 1/2-2s
(mn) 2s+1/2 if e > m49+1n EEE2 I
1/4—s 1/2—2s 1/2—2s 1/2
(m ) 25+3/2 ifmastin s+ <e< m4s+1n s+1 and e = n~ / ,
1 5/2-2s
9 (m € ) 2<+s/2 ifmzn4—1T <e< n*1/2
P = . 1/4—s  1/2— 25
( /mn) 25+1/2 ifn~V2 < <e<mBbFIp HFL
_2s . 1 14s _1 5/2-2s _
(v/mn®?e)” 72 ifmin B <e<m - in w1 and e <n 12,
. 1 _1l+s
[ (mn2e2)~1 if e<m™2n” 241,
(5.21)
We note that here, the minimax rate is subject to five different rates, where the
rate (mn2e?)”%+372 is split into two different cases. Even though the case where

1 5/2—2s

m~2n -1 < e <n~ /2 does not change the minimax rate in (5.21]), we do highlight
it separately as it creates for an easier comparison with the shared randomness rate

of (:20)

Whenever s < 1/4, the conditions for local randomness minimax rate in 1)) change
to

(Vmn)~ 747 if e >n1/2,
p? =13 (yVmn?2e )72171/2 if m=3n 3 <e<n V2, (5.22)
(mn2e?)~! if € < m—3n AT,

We further comment on the derived rates after the full statement on the minimax
rate, which is given by the following theorem.

Theorem 5.4. Let s, R > 0 be given and consider any sequences of natural numbers
m=my and n := N/m such that N = mn — o0, e=ex in (N~ 1] and § = on =
(mn)~P for some constant p = 2. Let p = pn.m,e,s be a sequence of positive numbers
satisfying .

Then,

0 for any My > logS(N),

1 for any My — 0.

Similarly, for p satisfying - for s> 1/4 or (5.21) for 0 < s < 1/4 we have that

. s,R
Tegl<ff,6> R(Hyjyp T) = {

0 for any My » log®(N),

inf  R(HST T)—
1 for any My — 0.

Mnyp>
TeﬂL(;"s) p

The theorem shows that the minimax rate under (e, 0)-differentially privacy is indeed
captured by ([5.20)) and ([5.21)) in the case of shared- and local randomness, respectively,
up to a poly-logarithmic factor. The rate is asymptotic in the sense that the total
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number of observations N = nm is assumed to tend to infinity. We note here that,
for the cases where ¢ < n~!/2, the rates are in fact attained by (e, 0)-differentially
private protocols.

A first observation is that consistent testing against H ;”R alternatives is possible for
any value of € » m~1/2n"110g®(N). That is, whenever € » m~/2n""10g®(IV), the
p tends to zero as N — o0, meaning that a signal in H*%[0,1] of arbitrary size can
be consistently distinguished from 0 as long as the total sample size is large enough.

Whenever € » N ﬁ/ 4/n, the minimax testing rate of the unconstrained problem
can be attained, up to poly-logarithmic factors. This means that, for the distributed
nonparametric testing problem under privacy constraints with ¢ < 1 exhibit similar
performance as in the unconstrained problem, m is required to be small in comparison
to n, where the smoothness plays a part in the threshold. To be precise, attaining
the optimal, unconstrained rate for € < 1 requires m < n?*~%2, which in turn means
that the unconstrained rate can only be attained whenever s > 1/4. This is true for
both the shared- and local randomness distributed protocols. The drastic change in
terms of achievable regimes around s = 1/4 in the case of local randomness protocols
as prescribed by and is due to the “effective dimension” becoming too
large (i.e. larger than \/mn) for the “high-privacy-budget” regime to occur (see also

Section |1.3.2)).

The estimation rate in this model can be derived from Theorems and in
Section We will not provide the technical steps here in the thesis, but refer
the reader to [51], where nonparametric regression is treated, which is subject to the
same minimax estimation rate. This rate amounts to

_inf sup [Ef Hf(Y) — f‘
fe&(e,9) feHs=1[0,1]

2 S s
=My (NT?H + (mn%%**z?ﬂ), (5.23)
2

where & (¢,0) denotes the class of all (¢, §)-differentially private estimation protocols,
log(1/8) = log(nm), € € ((v/mn)~',1] and My is at most of the order log®(N). The
estimation rate reveals that consistent estimation uniformly over the Sobolev ball
is possible whenever € » m~1/2n~!, the same threshold as for the testing problem.
To attain the same rate as in the unconstrained problem (up to possibly a poly-

logarithmic factor), the estimation problem requires € » N T //n, which means
that the unconstrained minimax rate can be attained in estimation for smaller privacy
budgets than in testing. However, as can be observed in and the relative
cost of privacy can be seen to be much higher in the estimation problem, in the sense
that a change in € has a larger effect on the estimation minimax rates.

How the privacy constraint affects the minimax rate can be seen to heavily depend on
the regularity parameter s. In order to understand this impact, it helps to visualize
the p-e relationship as governed by and . The relationship is depicted
in Figure below, which shows the minimax rate p as function of €, for different
smoothness levels. The slope of the curve captures the cost of increasing privacy



5.3. OPTIMAL NONPARAMETRIC TESTING UNDER DIFFERENTIAL PRIVACY
CONSTRAINTS 203

in terms of its effect on the minimax rate. The six regimes are summarized in the
accompanying Table

(m=15n=2) (m=5,n=6)
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Figure 5.1: The relationship of the minimax testing rate p and €, given by
and (5.21)), for (n,m) = (6,5) in the left column and (n,m) = (2,15) in the right
column, ¢ = 1 and smoothness levels s = 1/5, s = 1/2, s = 1 and s = 3. The
panels on the first row correspond to distributed (e, d)-DP (local randomness only)
protocols (i.e. ), the bottom row corresponds to distributed (¢, §)-DP protocols
with shared randomness (i.e. (5.21))). The regimes correspond to the six regimes (e.g.
different rates) in Table

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 Regime 6
25 £
2s 2s 2s S+ 172 Ssr172
1 \zs+i2 1 Zs+1 1 ZTs+1 1 2s+1/2 1 2s+1/2 1
Shared U ( mn ) ' ('nm3/2( ) ( mn?e? ) ( 'mn ) vmn3/2¢ mn?e?
2s 2s
2s 2s 2s Sar172 brEsye)
1 \3s51/2 1 3513/ 1 25+3/2 1 2s+1/2 1 2s+1/ 1
Local only ( mn ) ' (aneZ ) (mn?@ ) mn Vmn32e mn2e?

Table 5.1: The minimax separation rates for the testing problem under privacy con-
straints, for both the local randomness and shared randomness settings. The rates
are given up to logarithmic factors. The regimes are defined by the values of ¢ and
the model characteristics m, n, s.

Figure [5.1] shows the minimax testing rates under privacy constraints with various
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values for m and n and various levels of smoothness. In particular, the curves give
insights into the cost of decreasing the privacy parameter ¢ depending on the regime.
When the curve is flat, it means that € can be decreased without incurring a cost
in terms of having a larger detection boundary. A steep curve mean that, when e
decreases, it causes a large increase in the detection boundary. It can be observed
that s has a “flattening” effect on the impact of ¢ on the detection boundary for
“moderate” to “large” values of e.

What constitute “moderate” or “large” values, depends on the size of m relative to
n, as can be seen when comparing the n = 6 and m = 5 the setting with n = 2 and
m = 15. It can be seen that, as the local sample n is larger compared to the number
of times the total number of data points N is divided m, the cost of privacy is less.
This underlines the idea that, in large samples, it is easier to retain privacy.

When € becomes “very small” (smaller than a threshold depending on s, m and n),
the smoothness starts to matter less and less, up to the point where the difficulty
of the problem is no different for (very) different regularity levels. These scenarios
correspond to settings where the privacy requirement underlying the problem is so
stringent, that it effectively becomes the bottleneck of the testing problem. In such
scenarios, the estimation problem locally becomes easier than the global testing prob-
lem under privacy constraints, meaning that the signal can locally be estimated at
a smaller error than that the global testing problem can be solved, solely due to the
presence of the differential privacy demands.

The estimation rate of only exhibits one phase transition. This phase transition
occurs between the optimal unconstrained rate and values of € small enough such
that the privacy constraint causes a worse rate. Comparing to the testing rates of
Figures[5.1] we see that the cost of privacy for estimation is larger for “intermediate”
to “small” values of e, where the slope is much steeper for estimation, up until the
“very small” values of ¢, where both the testing and estimation minimax rates no
longer tend to zero, which occurs for € < 1/(y/mn).

Lastly, as in the case of bandwidth constraints, there is a benefit to shared ran-
domness, strictly for moderate to large values of e. [75], [44] study interactive versus
non-interactive protocols and finds a difference in terms of minimax performance
between the two in the local differential privacy setting. Interestingly, for n = 1
(which yields the local differential privacy setting), we find the similar minimax rates
for nonparametric goodness-of-fit testing in the large privacy-budget regimes, for the
shared randomness and local randomness protocols, as they do for interactive and
non-interactive protocols, whenever € is in the high-budget regime. Although they
study a different model, observations from smooth densities; it is interesting to see that
the same rates seem to be attainable without sequential interaction, by using shared
randomness instead. We note here that, when sequential- or interactive protocols
are allowed, shared randomness can be employed in particular. In real applications
without interaction, one should always use shared randomness if at all possible.
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5.3.1 Proof of Theorem [5.4

In a similar manenr to the proof the nonparametric testing rate under bandwidth
constraints, we will make extensive use of the wavelet transform, which allows the
tools of Chapter [2] and Chapter [3] to apply. We note that a wavelet basis is taken
for convenience and other orthonormal bases for L3[0, 1], such as Fourier- or spline
bases would work as well. We separate the proof of the theorem into proving upper-
and lower bounds. Before delving into the proof of the upper- and lower bounds, we
introduce some notation.

We consider a smooth orthonormal wavelet basis {1/;; : | € No, i = 0,1,...,2! —1}.
See Section for a brief introduction of wavelets and collection of properties used
in this proof.

For Le N, let Vo = {afy; : L < L, i =0,1,...,2" — 1} and define vy, = ZZL:OQl. For
f € Ls[0,1], let fX denote the projection of f onto V7, i.e.

L 2'—1

=300 fuu,

1=01i=0

with f; := § fii. A slight difference with the approach taken in the case of band-
width constraints, is that the wavelet transform is to be applied at the level of each
observation. That is, consider

, 1 ,
Xl(lg;)i = f UdXD | fori=1,....,n.
0

tii 0
For the coefficients at resolution level L, write ng = (ng;i, ce Xéj()QL—l);i) e R2"
and let )N(éj ?L;i denote the concatenated coefficients from resolution level L' < L
up to resolution level L, i.e. )N(éj,)Lz = (X'g,)z, ... ,XéjZ) e R2“7' 2" The vector
Xéjgl = (Xéfi),f(gi), . ,ng) follows the dynamics
X = fr+ 29, (5.24)

where Zi(j) ~tid N(0,1,,), j=1,...,m, and fL:= (fli)l:o,...,L;z':o,...,zl—1~ Further-
more, let Xl(,z) = (Xl(li;)i)i=1 ,,,,, n and Xg,?L = (Xéj/?L;,L-)Z'=1 ,,,,, n-

The existence of a sequence of (€,8)-DP consistent tests: The wavelet coeflicients
X, é] zz corresponding to the observation X i(] )7 effectively place us in the many-normal-
means setting of Chapters [2 and |3, with d = 2¥. For transcripts YL(j ) generated
according to

Y(X9,0) ~ K (X5).U).

a change in one datum Xl(j ) translates to a change in )N((SJ%Z only, which means that
the privacy preserving mechanisms of Chapter [3| apply after the wavelet transform
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and truncation up to resolution level L. Theorem [3.2] yields that, for L € N and
€ (0,1), there exists a distributed (e, d)-differentially private, shared randomness

testing protocol
OéL—{TOéLv{KJ}] 17(2/{702/7]P)U>} (5'25)

such that PyT,,r, < a and furthermore the condition

2L V2L 1
> C, log® (2F N ;
8 ) (mn\/n62A1\/n62A2L/\<\/En\/n62/\1\/m71262)>

implies that Ps(1 — T,,z.) < . For local randomness protocols, the same is true
whenever

" 9(3/2)L NGT3 .
HfLH2 > Calog’(2"N) (mn(n62 A 25) /\ <\/ﬁn\/n52 Al \/ mn262>> .

Next, we show that for f € H é:j;, [ fLH% satisfies the above lower bounds for some
LeN.

In view of (a + b)?/2 — b* < d?,

|/ HLQ

1515, =

= f = fH1Z,-

Furthermore, f € H, é,’fp implies that

2! 1 21
r3 —2Ls 3 s Hf| S
IF=fEI2, = 20 2 fae <2720 ) DL fa2™ < Tkt < —QM and |f[7, = C2p*.

I>L k=0 I>L k=0

Consequently, in view of Plancharel’s theorem and taking L =1 v [—% log, p],
IFE13 = 1£713, = p°C2/2 = R?27%0 = p*(C2/2 — RP).

Consequently, whenever p satisfies either

1vp /s 1vop 1/5
= , (5.26
P <mn\/ne2 A 1\/n€2 (1v p=1/s) /\ <\/>n\/71627 \/ aneQ ( )

in the case of shared randomness, or

1v —1/5\3/2 1v 1/5
p2 2 (mn(7(162 /\p(l v)p_l/s)) /\ (\/;n\/':@i \/ mn2 62>> ) (5.27)

in the case of local randomness, we have that for all My » log® (2 N),

sup (EoTu,r +Ef(1—Tor)) <2«

s, R
feHcap
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2
for N large enough since (% — R?) tends to zero as C,, — 0. Since « is arbitrary, it
follows that

inf RHESE T)—0
Tegl(e,ﬁ) (Hyiypr T)

for both classes of shared randomness protocols and local randomness protocols when
My » log®(2V'N), whenever p satisfies ([5.26)) or (5:27), respectively.

The testing risk lower bound for (e,0)-DP tests:
Consider for L € N the linear operator ¥y : R — L, [0,1] defined by

2k 1
U ft = Z fivrs, (5.28)
for fL = (f~0, cee fQL_l) e R2". Since U is measurable, any probability distribution

mr, on RQL, L © \I/EI defines a probability measure on the Borel sigma algebra of
L5[0,1]. This means that the testing risk is lower bounded as follows

cap’

R(HSE.T) > Py(T = 1) + pr(T = 0)dr, 0 U~L(f) — 11 (fe R U, f¢ Hj;jj) .
The likelihood ratio %(Xi(j)) with f = U, f equals

exp(fldefi)—1|f|§>=eXp((f)TX(” 517718) = 2,(X2),
0 ’ 2

where X17) = (§3 ¢ro()dX”, ..., {y¥rer_1()dX)) € R?". That is, under Py,
.,?f (ng) is equal in dlstrlbutlon to the likelihood ratio

AN ( FL IQL)
dN (O,IQL) ’
Since the observations given f L arei.i.d., restricting to the above Bayes risk effectively
puts us in the setting of Section [2.3| with d = 2%. By Lemma if L < log(N),

there exists a symmetric, idempotent matrix I € R2"*2" guch that for 7, = N(0,T)
2 __
with I' = Y52 T e R2"*2" it holds that

R(HSE,T) > oz—ﬂ'L(fe]RQ \I:Lf¢ng§), (5.29)

Ccap?

as long as p satisfies

2L V2L 1
o (mnx/n‘s2 A 1Vne2 A 2L /\ <\/77m\/n62 Al \/ mn262>)

0

N
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in the case of shared randomness protocols or

, 9(3/2)L VoL 1
P7S Ca 2 ~ oL /\ \/ 2.2
mn(ne2 A 2L) Vmnvne2 Al mn2e

in the case of local randomness protocols, and ¢, > 0 small enough in both cases. The
choice minimizing the left-hand side whilst also satisfying the prior mass requirement
and L < log(N), is shown below tobe L = 2v [log, p~'/*]. The condition L < log(N)
follows if p satisfies or - We verify the prior mass requirement further
down below. The ch01ce of L =2 v [log, p~ /] yields that if

1vp Vs 1\/p 1/S
< , (8.30
P (mn\/n€2 A 1\/n62 A1 v p1/) /\ ( mnA/ne2 A \/ mnz 2 ( )

in the case of shared randomness, or

1v —1/8)3/2 1 v 1/5
PR (mn(fmeQ /\p(l v p=1/9)) /\ (x/*n\/rizi \/ mn2e 2>> ’ (5.31)

in case of local randomness, the corresponding class 7 (¢, §) is such that

inf HSE Ty o
Te T (e.6) R(Hypyp T) =0

for any sequence My — 0.

It remained to bound the prior mass term in (5.29) for L = 2 v [log, p~/*]. That is,
we will show that

m (Fe R ULfI3, = car® 1WLfI3e < B2) 21-0a/2,  (5:32)
for all n large enough. Note that for all L € N, W, f]3,. < 225, f|L,. Conse-
quently, using Plancharel’s theorem, we obtain that the left-hand side of (5.32)) is
bounded from below by

L (fe R : cop® < |fI2 < 2*2“32) > Pr (cop? < Z'TZ < R2p?)

_ R?
=Pr (aﬁca# <Z'TZ < CzL) , (5.33)
vV o

where Z is a 2°-dimensional standard normal vector. Since the matrix I is symmetric,
idempotent and has rank proportional to 2, Lemma yields that the right-hand
side of the above display is bounded from below by

V¢ —1—0.5logc, ; R?/\/ca —1—0.51log (R*/cy)
C2 1 ) —exp(—CQ 1 ),

1—exp(—
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for a universal constant C' > 0. The above expression can be set arbitrarily close to
1 per small enough choice of ¢, > 0, verifying the prior mass condition.

In summary:

Putting everything together, we have obtained the result of the theorem whenever (.26
and - ) hold in the case of shared randomness protocols, or (5.27] i and (5-31) in
case of local randomness protocols. That is, when

_ 1vp s /\ N1y p=ls \/
P mnvne2 A 1y/ne2 A (1 v p=1/9) vmnvne2 a n2 2] )

in the case of shared randomness, or

- (Lv p7t/e)3e Vv pls
P= (mn(ne2 A (1 v p~ls)) /\ <\Fn\/ne2—\/ mn2e 2)) ’

in the case of local randomness protocols, we obtain the statement of the theorem.
A straightforward calculation yields the corresponding expressions of (5.20)), (5.21))

and ((5.22)) for p?.

5.4 Adaptive nonparametric methods under privacy
constraints

In the previous section, minimax (up to a poly-log factor) optimal (e,d)-DP dis-
tributed testing protocols T,.;, were derived, where the choice of L yielded the optimal
performance. This optimal choice of L was contingent on the hyperparamter s > 0,
the true smoothness of the signals in the alternative class.

In many settings, the true underlying smoothness of a signals is not known in ad-
vance and it is desirable in these cases to consider testing risk for various levels of
smoothness. In such cases, it makes sense to consider the minimax testing risk

sw R (HE,.T).

S€[Smin,Smax]

for certain predetermined values 0 < Spin < Smax < 00. Here, we consider separa-
tion rates ps depending on the underlying smoothness. In the case that s = sy,
which results in a relatively larger separation rate than when (for example) s = Syax-
The results of the previous section indicate that the rate ps_, can be attained (up
to a poly-logarithmic factor) by a (e,0)-DP distributed protocol when pg . —satis-
fies (5.20), (5.21) and (5.22) with s = suyi,. However, in the case that the true
smoothness s is larger than s;, we would like to attain the smaller of the two rates

Ps-
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In this section, it is shown that adaptation under (e, §)-differential privacy constraints,
adaptive testing is possible at the cost of at most a logarithmic factor in N. Specifi-
cally, by deriving tests that adapt to the optimal rate (up to a poly-logarithmic factor)
established in the previous section, we prove the following theorem.

Theorem 5.5. Let 0 < Spin < Smax < 0, R > 0 be given and consider sequences of
natural numbers m = my, n = N/m, positive numbers ¢ = ex in ((mn)~1,1] and
§ = 6y = (mn)~P for some constant p = 2. Consider for every s € [Smin, Smax| @
sequence of nonnegative ps satisfying . Then, there exists a shared randomness
distributed (e, d)-differentially private protocol Tsgr such that

sw R (HY, . Tsn) =0

S€[Smin,Smax]

whenever My s » logPs(N), where ps < 11/4 is a constant depending only on s > 0.
Furthermore, whenever each ps satisfies (5.21]) when s > 1/4 or (5.22) when s < 1/4,
there exists a local randomness distributed (e, d)-differentially private protocol Trr

sup R (Hgﬁstps,TLR) — 0,

s€ [Smin ;Smax]

whenever My s » logP* (N) where ps is a constant depending only on s > 0.

Proof. We start by introducing the notation Lg = |s~!logy(1/ps)| v 1. Define fur-
thermore C := {Ls,_, ..., Ls,. .} and note that L, € C for all s € [Smin, Smax] and
IC] < Cs,. log N for some constant Cs . > 0 depending only on Spax, whenever p;
satisfies the conditions of the theorem.

The adaptive test we construct can be seen as the maximum of the tests T,.r,, consid-
ered in in addition to a Bonferroni correction to compensate for the increasing
Type I error resulting from taking the maximum of tests. To be precise, let €’ = ¢/|C]|
and ¢ = §/|C|. For every s € [Smin, Smax| and Ls € C, we release the (¢/,¢')-DP tran-
scripts (YL(] )) je[m] corresponding to the rate-optimal test 77, of the previous section
(i.e. as in ) The full collection of transcripts received is

{(Ylgz))je[m] : Ls € C} )
which can be generated through independent noise mechanisms, is (e,6)-DP (see e.g.

Theorem 3.16 in [82]).

Next, we discuss the construction of the test 17, for each Ly € C. What is the optimal
test depends on whether there is access to shared randomness or not, so we consider
these cases separately. We recall the notation vy, := ZZL:O 2L

An adaptive shared randomness protocol: For vy _/i/mn < €, let (YL(Z))jE[m]
be generated by (3.21) with as the underlying observations the wavelet coefficients
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X(()fzs, i.e. setting d = vy, and compute the test cpi, defined in (3.22) for all 7 € T,
where the latter collection is given (3.23) with M = R. For the critical value of ¢¢
setting J = 1/(|C||T|) results in the test

’

Tp, := max ¢S (5.34)
TeT

having Type I error less than a/|C| by Lemma for arbitrary o € (0,1). By the
proof of the same Lemma, the above test has Type II error of the order o whenever

2Ls 1
> O, log® (1 _—— — |,
og”(1+mn) («/mn(\/ﬁe’ A 1)) \/ (mnz(e’)2>
with C, = C/|C| with C?, > 0 large enough.

7

Whenever v, /y/mn > €, let (YL(Z))je[m] be generated by (3.39) (d = vr_) with as
the underlying observations the wavelet coefficients X(g] % Using these transcripts,
the test Tf;’é/ as defined in (3.40) with ko, = &l 4/|C|, K, > 0 has Type I error less
than o/|C| by Lemma|3.23} By Lemma|3.14|combined with Lemma|3.23] this test has
Type II error of the order k2 /C2? < o whenever

2Ls1og(1 + 2L<nm) log(1 + nm)
mnA/n(e')2 A 2Ly /n(€)2 A 1

and C, = Cl ko 2 C|C| with C!, > 0 large enough.

Jr=, > <

For the distributed protocol described above, the test

T :=maxTy,
LseC

satisfies
EoT +E;(1-T) < > BTy, +Ef(1—Tpx) <a+Ep(1-Tp,)
LseC

for any s* € [Smin, Smax]- This means that the test T has its Type I error bounded
by «a, and its Type II error is also less than o whenever

- 2 oL« 2Lg*
fLS* 2 M2 ,
H 2 N\ mnvne A 1vne? A 2Lux /\ Vmnvne? Al \/ mn262

for some nonnegative sequence M% that is at most of the order logg/ 2 (N). By the
same computation as in the proof of Theorem the above display is satisfied when

fe HS R with s* € [Smin, Smax], $ — Mn,s as in the assumptions of the theorem

sk Pgk
1 5_1/5 \/1vps
2L /\ \/mn22

and s — pé, satisfying
/s N ne2 A
mnvnez A \/ne2 (1v ps Y ) mnyvne

pPs R




5. ADAPTATION IN NONPARAMETRIC DISTRIBUTED TESTING WITH BANDWIDTH
212 AND PRIVACY CONSTRAINTS

where the latter follows from the choice Ly = |s71 log,(1/ps)] v 1. Solving for p, yields
the rates described by the theorem. Taking a positive sequence o = an converging
zero slow enough (depending on My ;) completes the proof for shared randomness
protocols.

An adaptive local randomness protocol: The procedure in this case is essentially
the same as in the case of having access to shared randomness, except for using a
different testing procedure when ¢ is “large” relative to 2¥¢, m and n. Whenever
€ < 1/y/n and ¢ < 2% /\/mn, or whenever ¢ > 1/y/n and € < 2L¢/(\/mn), set the

test T7,, equal to the one computed in (5.34]) and let (YL(] )) je[m] be generated by (3.21])

with as the underlying observations the wavelet coefficients Xéj I)Jy i.e. settingd = vp,,.

We note here that the kernel generating the transcripts underlying this test require
no shared randomness.

Otherwise, whenever ¢ < 1/y/n and € > 2%/ /mn, or whenever ¢ > 1/y/n and € >
2Ls /(\/mn), let (YL(J )) je[m] be generated by with as the underlying observations
the wavelet coefficients Xéjz Using these transcripts, let Tr,, = T;;’f/ (withd =vyp,)
as computed in (3.45)), with ko = k/,4/|C|. By Lemma this test has level a/|C| for

k., > 0 large enough. Furthermore, by the same lemma combined with Lemma [3.15]
gives that 77, as such has Type II error less than o whenever

26/2)Ls Jog(1 + 25snm) log(1 + nm)
mn(n(e)? A 2Ls) ’

2
> C,|C|
2

7

which is in particular true whenever

9(3/2) L.

~ 2
H 75| % 1og® () log(1 + 2% N) log(1 + N)

Since Ly = [s ' logy(1/ps)] v 1,

(1v ps—l/s)B/Z /\ A1 v ,05_1/8 \/ 1
mn2e2 | |’

>
P Jls vmnvne? Al

mn(ne A (1v ps 7))

ensures that the test T := ana>éTLs has Type I and P;-Type II error less than o
S€

* R . .
whenever f € HJSWN P for any s* € [Smin, Smax), $ — Mn s as in the assumptions

of the theorem. O

Chapter acknowledgements: The quote at the start of the chapter is taken
from [60].
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5.5 Appendix

5.5.1 Proof of the adaptation lower bounds Theorems and

Let fL and Xg,)L as defined in and , respectively. Let T = (T, K,PY) be
a distributed testing protocol (with U degenerate in the case it is a local randomness
protocol) and fix « € (0,1). For given $min < Smax, consider for s € [Smin, Smax] the
map s — ps.

Recall that for Uy as defined in (5.28)) and any distribution 77 on R*"), 77 o \I/Z1
defines a probability measure on the Borel sigma algebra of Ls[0,1]. Define the
mixture of the above probability measures by

dimpovy (5.35)

]Gl olLec

where Cy © C. There exists a grid of points & < [Smin, Smax] Such that the map
s +— L is a one-to-one map from S to C. Let L — sy denote its inverse.

By the same steps as in ([2.82)),

sup P} (T =0) > Py, (T'=0) =m0 0! (f¢ 55;,5) (5.36)
fEHiéﬂsL

for all L € C. Using the above display, we can bound the risk in the adaptive setting
from below:

sup R(Hfa]zs T) C ZR Hcsipi T)
SE[Sn}inySmaX] | |LEC
>PY (T =1)+PH(T = D mpov;! (f¢ 55,55)
|C |L€C0 -
(5.37)

Taking 77, as in the proof of Theorem [5.1] then by the same reasoning as in proof the
proof of Theorem that the third term in the above display can be made arbitrarily
small per choice of ¢, for ps satisfying (5.13))-(5.14). For the first two terms, define

d]P)Y\U:u
Lyl = Jif drr(f)
a Y |U=u
- apy
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and note that

PY (T = 1) + PY(T = 0) ICol > JPYlU “ T+L}r’L|u(1—T))dPU(u)
LeCy

> @L;‘ JE§'U=“ (v + Xl = 1)) 1 {£r) > 4} P ()

ZJ pYIU= u(£Y|u>,y)dH;DU( ),

|C0| Led,

where the conditioning follows from the Markov chain structure and the inequality
holds for 0 < v < 1. We can conclude that it suffices to show that for all € > 0,

\co\ 2B (

LeCyp

- 1’ > g) (5.38)

can be made arbitrarily small per small enough choice of ¢, in order obtain the
required lower bound in (5.37)). Using ]P’(YU) dIP’Ud]P’YIU conditioning on the [P, yiv_

variance of Enlu with Chebyshev’s 1nequahty and IEYlU u£Y|u =1 lead to

\co DI ((E’QU 1) > el 2 (B ery 1)+ 5

LeCy

for all ¢ > 0 and ¢ > 0. Noting that EY|U:“(£¥L|U=U)2 > 1, sufficiently bound-
ing (5.38)) follows from Markov’s inequality and showing

3 flog IEY|U w(LYIU=n) )dJPU( ) < Ca. (5.39)

‘CO‘LEC

Noting that EYIU=v(£XV="2 _ p 2(IP3/‘I((J “ PZLlUKu) + 1, we can apply the argu-
ment of the proof of Theorem [2.3] for boundlng the chi-square divergence, and we
obtain that for some fixed C' > 0,

4 4

n o5, —_ 2 . .
log (EYlU:u(LzL‘U:“)Q) < Ceq - Tr(HL,u) + Ap.y, if U is degenerate,

mn3pl .
Ceo—5er 2 Tr (Ep,u) + AL, otherwise,

(5.40)
where
() 2
n YD |U=n d]PX ~ (i .
= Z log | E, | Eo [J d]}”gm (Xéj))de(f)‘Y(]), U=u
j=1 0

e P T
and Zp,, = Y, 5], with E, = BoEo | XY 0, U = u| By | X YD, U = u|
Via a data processing argument (Lemma ,

camn2p§L(b A |Col)
Z ArudP”( LECO 2L|Co| '
LGCU

|C0|
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When U is degenerate, Lemma[5.3] implies that there exists a choice for Cy < Cy such

that for all L € Cp,
2 b L 2 m2
Tr (5, ., ot}
s () T

When U is not degenerate, Lemma [5.4] implies that taking Cy = C,

1 mn®ps, N2p? b I

_ < ___"SsL |

0 2 ger T Era) S max s (g 22

Combining the above with the fact that s — Ly = |[s7!log(1/ps)] v 1 maps a grid
S C [Smin, Smax]| one-to-one to Cy with inverse map L — sy, on Cy, we obtain

2 4 2 4
N2pt | (g £2")° v/ NZp? (balog(N))

max £ - ’
Y|U=u/pY|U=u U < LeC 2 m2L log(N)
|CO|L§C1 Jlog £ (L: ) )d]P) ( ) Ca max N2p§L(log(n) N2 ) \/ N2p§L(bAlog(N))
22k m2Llog(N) ’
LeC g

where the first case corresponds to a degenerate U, the latter to the general (shared

randomness) case. The conditions (5.13))-(5.14) for ps, yield (5.39), which in turn
finishes the proof.

5.5.2 Auxiliary lemmas concerning adaptation under band-
width constraints

The following lemma controls the Type I error of the adaptive tests defined in Sec-

tion

Lemma 5.1. Consider for L € N and a nonnegative positive integer sequence K,

1 %
Sn(L) := \/?ZCI‘,L
=1

where (C1,1, - - -,Ck,,,1) independent random variables with mean 0 and unit variance.

Assume that the random variables satisfy Cramér’s condition, i.e. for some € > 0 and
allte (—ee),i=1,...,K, and L € C, for some set C = N satisfying |C| = log(n),

Ee'Sr < 0.

Then for K,, » (loglogn)S, it holds that
Pr (max |Sh(L)| = ¢ loglog(n)> -0
LeC

forallc>\/§asn—>oo.
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If the random variables are i.i.d. Rademacher or are of the form

Q 2
o= 5 | (DB ] —@
L — 4Q = qL

with R = (Rir,...,Ror) independent Rademacher random variables and Q € N, the
statement holds for any sequence K, as n — 0.

Proof. By using union bounds,

Pr (maXS’n(L) = cy/log 1og(n)) < ZPr (|Sn(L)\ > cy/log log(n)) <

LeC iec
Z [Pr (Sn(L) > cy/log log(n)) +Pr (—Sn(L) > cy/log log(n))] .
LeC

The proof follows by showing that S, (L) and —S, (L) are or tend to sub-Gaussian
variables with sub-Gaussianity constant less than or equal to 1, since this allows for
bounding the above display by

2 1
) 6—7103; log(n) e —
LZGC (log(n))<*/21

and the result follows.

For the first statement, by Cramér’s theorem (see e.g. Theorem 7 in Section 8.2
of [169]),

Pr (Sn(L) = cy/log log(n)) (O(l) (log log n)3> (1 Lo (log logn>) ]

= eX B = — 1.
1 — ®(cy/loglog(n)) P VK, VK,

Note that the above statement holds for —S,, (L) also. The statement now follows by

using 1 — ®(z) < e /2.

For the second statement, note that by symmetry of the Rademacher distribution, it
suffices to consider only S,(L). In case the (; 1’s are i.i.d. Rademacher, note that a
Chernoff bound yields

Pr (Sn(L) > cy/log log(n)> < ;mge%*‘:tVlOg log(n) _ o= loglog(n) (5.41)
>

)
)

Similarly, for the sum of Rademacher random variables, we have

Q
Y RyRyr

q#q’

Q
Z Ryr Ry

q#q’

E exp (\/;(—Ci,L) = Eexp <4Q\t/K7

< Ee ( t
<Eexp| ——
Qv K,
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where the inequality follows from e.g. Theorem 6.1.1 in [210] with R = (R},..., Rgp)
independent of R. The latter implies that (Ryr R}/ 1)(q,¢)e(1,....@)2 itself is a vector
of independent Rademacher random variables, and consequently the above display is

further bounded by
£Q(Q - 1) £
-7 7 < .
exp ( 2K, 07 exp | 5 K.

The proof of the last statement now follows via Chernoff bound as in (5.41). O

The next lemma controls the Type 2 error of the adaptive test in the high-budget
case for the shared randomness protocol.

Lemma 5.2. Consider Si(Lg) as in (5.19) in the paper. It holds that

E,1 {SH(LS) < 2+/log log n} <a/2

s,R . _
whenever f € He,. with p? = Cor/loglog(n m for Cy large enough, de
pending only on R.

Proof. The proof is similar in spirit to that of the risk bound in the finite dimensional,
non-adaptive, shared randomness setting given in Lemma [3.3]

We show below that the event

{ 2\/1? Z —1/2)2 =2 1oglogzv},

occurs with P¢-probability greater than 1—ca/4. Since on A the condition of Lemma
is satisfied With can = 2¢/loglog N and consequently, by the conclusion of Lemma

Ef1{Su(Ls) < 2«/10glogN} is bounded by a/2.

Following the proof of Lemma (with d = vy, considering the vy, dimensional
vector fVZs and taking N, = 24/loglog N), and noting that for C3 > 4R?

R29—2L.s > Co2%+/loglog(N) - Co2%++/loglog(N)

1713 > 15182 - LX) > s
we get that
-1 V1oglog N2Ls 72
Elae < m Z {CO 08 08 i ,1} <2/loglogN | . (5.42)
24V & 2m/\/V | Z|3

Considering the intersection with the event {|Z[3 < k2L:} for some large enough
k > 0, and noting that by Lemma

o2m/\VVk m/\/b'k
p 72> SNV ) gy __MNVIR ) o),
: (1282%/ "7 Cov/log logN> P < 2Co+/log logN> o(1)
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the right-hand side of (5.42) is further bounded by

(ZZ2 96t m’ k1)> +0(1) + /8 < a/4,

m(lIAl?g)(n)) Y o—
og(n ’ :
m'\c\ A VL and large enough choice of Cy (depending on k), see e.g. (3.7 in the proof

of Lemma [3.3] which finishes the proof of our statement. O

Where the last inequality holds for large enough choices m' :=

Next we provide the lemmas for the lower bound. From now on in this section,

we consider the setting of Section ﬂ That is, let Xéj ), Xl(J 2 denote the wavelet
coefficients of X() as in (5.7)). Define in addition the matrices

(4) >(4) . T

HLu = EoEq [XJ |y(J _u] E, [XLJ }Y(J)’U:u] ’
] (7 j = ( . T
E]L/:LM — EoE, [xgg\m, U= u] E, [ngL‘y(a), U= u] 7

= e m _ m o =g
Erui=25 By and Ey =300 57 . The lemma below allows for extend-

ing the data processing inequality of Lemma [2.11] to the adaptive local randomness
case, in which extra demands are placed on the communication budget in terms of
the budget needing to cover the coordinates corresponding to each resolution level.

Lemma 5.3. Suppose Y9 takes values in a space with cardinality at most 2° € N,
forj=1,....m and let C = {Lmin,---,Lmax}, for some Lyin < Lmax € N. There

exists Cy < C such that
b m
Tr(Zra) < < A 2L> —
C]

n

for all L € Cy.

Proof. Define Ap, = Tr(ZEr ) and let € : {1,..., Lyax — Lmin + 1} — C a map that
respects the ordering of the A’s in the sense that

Ag(i) < Ag(k) if i<k

Let Cy denote the first | Lmax=Lmintl| elements of the collection {Ag1, Agay, - .., Mgz,
For all L° € C,

max

2
Tr(ELoM)gF > Tr(Epa).

‘ | LEC\CO

By definition of the trace of a matrix, >;;, Tr(Zr.4) = Tr(ZEL,: L, )- By Lemma

= 2log(2)mb
Tr (L Lot ZTY( Loin: rnax,u) < L

n

Lanin+1) }+
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Combining the above two displays, we obtain that

mb

TI'Eou < —.
T

By an application of Lemma and a straightforward computation as in the proof

of Lemma [2.11] m
Tr(Zpe.) < —25. (5.43)
n

Combining the two bounds for Tr (Zr. ,) gives the result. O

The next lemma applies to the adaptive shared randomness setting. The bound below
is slightly more relaxed than the previous one, which relates to the local randomness
setting. The reason for this is the fact that in the shared randomness setting, the
hyperprior cannot be chosen in an adversarial way because of the shared randomness
draw essentially allowing multiple (coordinated) protocols across the m machines.

Lemma 5.4. With the notation as in the proof of Theorem it holds that

1 Nsng —_ N2p§L b L
72 ol Tr(Eru) < max —op <C| A2 ) .

Proof. Similarly to the proof of Lemmal5.3] we note that by the linearity of the trace,

Z Tr (2 =Tr(2,),

LeC

where £, = Z;n:l =) Loy EMINA yields Tr (Z,) < 2log(2)%2. Otherwise,

applying Lemma|2.11{yields Tr (Z, ,,) < sz Combining these two inequalities yields
the result: '

N3pt 1 N2p5, (. L
il 2 Z —at T (Bra) < WLZC@LL (ETr(:LM)/\? )
€

N2p4, 1

s n *
< L § Tr (= 2L
Hiaﬂzx 92L% <m|C|LeC r( L’“)/\ )

Whereas in the nonadaptive setting of Theorem [2.3] and Theorem [5.1] the local “chi-

square” based terms need no special data processing treatment it does in the adaptive
case. For each of the log(IN) resolution levels L, information on the norm of Xéj ) is
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communicated. Using b = log(N) to this without loss (compared to Theorem [5.1))
turns out to be fundamental, as is the content of the lemma below. The proof of the

lemma is based on exploiting the fact that even though Q*L/Q(H«/n/mffg)ug —25)
is sub-exponential, the fact that it tends to a sub-Gaussian random variable can be
exploited whenever the communication budget is small enough.

Lemma 5.5. Let 7, as in the proof of Theorem with ps = ps, satisfying (5.14])
or (b.13)). Furthermore, let

m o dﬂpgm 2

D= ~ (s .
Apy = Y log [ By 17 | By Ucﬂrfm(X?)dWL(f)’Y‘”,U =u1
j=1 0

Then for arbitrary C < N,

1 camn?p? (b A |C|)
= ApudPY (u) < N
C] LZec f rudP”(u) < max 2L|C]

Proof. Recalling the notation from Section [5.1.1] we shall write
2., () = [ 2 (& aru(r)
with

<)
dP i
d]P)g( (4)

(XD = en "X =3171E,

Lp(XY)) = :

Note that, using log(z) < z — 1, Eg.%;, ()N(éj)) = 1 and the fact that by the law of
total probability

]Eé/(j)IU:uEO |:$7TL (Xg))‘y(])v U= ’LL] = 17

we obtain that
v oy . 2
Apa < Y Ey 7= (Eo [.fn (X)) - 1'Y<J>,U = u] ) . (5.44)
j=1

We work out the case where m = N(0, 02Ic), the case where 7 = N(0, ¢°T") with
|T|| = 1 follows similarly with additional bookkeeping. Since f ~ N(0, ¢2I,c) with

Os = 0111/493/2L/27

g ()2
. 2 Ilvax 13
2l 1 JenfiX(Lﬁ)é(nJre;Q)ff &% 2 ned)

2 (XU =11 dfy = — 5.45
L) \/2mo? i = Tangyer (545

i=0
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where the last equality follows by the substitution v = f;4/1 + no? and completing

t (1+x) log(1+x)

the square. Taking the logarithm and using tha > 1 for z > 0, we find

v 2 VX B
Lo #2(1 +np?)

Therefore, using (5.45)), Taylor expanding, (a + b)? < 2a® + 2b% and (5.46)), we can
by

upper bound (|5.44

2) By (Eo [Vé”

j=1

2 .
S (IaxPl3-2")  (5.46)

— 2" og(1 + ne}) < ns

2 m .
YO, U = u] ) 2 YU DIy, (5.47)
j=1

with

_ n k|
DJ=E0[ AR — 2t [y .0~

We deal with the two terms in (5.47) separately. Since conditional expectation con-
tracts the Lo-norm,

nk k/2 2k i 32 24

[ee] 0
YD |U=u, 2 Ps- M'Ca” Py itk
ZlE D sm Z Z kQkLs/2[) 9i9iLs/24) EW

J k=2 1=2

where W £ 2-L/2 (H[X 13 — ZL) Furthermore, since H\/7X H2 ~ X3, is 2072

sub-exponential, EWF < Ck+i(j 4+ k)"** where C > 0 is a constant (see e.g.
Proposition 2. 71 in [210]). Then in view of (i + k)'** < 2+*ilk!l, we the above

display is O(“s5r? 9) whenever #zrs < 1. This is certainly the case when p? <

i los(mm 25+1/2 . .
<\/1g())> and mb 2 log(nm), which yields that

mna/bAalog(nm

i y@D|u= u )2 < CQnQP% 0 log(mn) .
m2L:/2 m(b A log(n))

It remained to deal with the first term in ([5.47)), where we proceed by a data processing
argument. When b > log(n),

m : .
S s

Jj=1

- ) Co mn2p4
(') E X j
Y ’ ’ ] > 2 ]E ( ) < 2L5 . ’

in which case the result follows.
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We continue with the case where b < log(n), which implies | V)| < 2'°2(") We bound
the average of the first terms in (5.47)) over C, by

LS (oo

LeCj=1

2
YW U= u] ) < (5.48)

m .
max P ZEY(”'U“T (MO (Y,

LeC 2L|C|
T . .
where M) (y [G“) YO =y U = u] Eo [G(J YO =y U = u] LG9 = (V) ec,
1
and Gy (7) _ (;p 5 . We show below that for all v = (v)rec of unit norm

By e, 6P < b, (5.49)
which by taking v = G(Cj)/”G(Cj) |2 yields that (5.48) is O(max, %b) as required.

Therefore, it remains to verify (5.49). For any A € R, independence and ([5.46) yield

2l
) . . A X2 _
EX(J)eAUTG(CJ) < I EX(J)eQLS/z vL igo (Xz:—1)

x .
0 LeC 0

When %v 1, < 7, the latter can be further bounded by
2,2\ _ 2
ngceXp ()\ vL) = exp (/\ ) ,

see e.g. Lemma 12 in [T192]. In view of 0 < K (y|X ), u) < 1 and the previously shown
sub-exponential behavior of {v¢, Gg )>, we get that

PYU‘)\U:u(y)EO [<Uc,Géj)>|Y(j) =y, U= u]
- B e, GO GIX D) < B | "1 {[Gue, GO > 1} KX wyar
< L " min {ng v (|<UC, GY)| > t) ,IPY(j)‘U:“(y)} dt < et + tPY VIU=u(y).
Taking tg = — log(Py(j)|U:“(y)) yields

E, [<Uc,Gg)>’Y(j) =yU= “] < —2log(PY " IU=4(y)) v (1 — log(B¥ "1V =1(y))).
(5.50)
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Furthermore, for A\, € R and y satisfying
—ole/242 < )\ — [<vc7Géj)>‘Y(j) =y, U= “] < 2he/2H2, (5.51)
the argument of Lemma yields
; ; 2 @
Eo [@c, Gg>>‘yu> —y,U = u] < —log (]P’YJ \U:"(y)) : (5.52)

Note, that if (5.51) does not hold, then in view of (5.50), —log(PY"1U=4(y)) >
2Ls/2+1.

Let us write p, = PYIU=u(y) and define Y = {y e YU log(1/p,) < 2Ls/2+2},
Since z — xlog?(1/z) is increasing on (0,e~2), it holds that

Dy logQ(I/Py) < e~ 20T (Lo 4) 1og(2)

for y € ( ij))c. Then, in view of (5.50) and (5.52)) we get that

2
Z pyEo [<Uc,GéJ)>'Y(j) =y,U = u] < Z pylog(1/p,) + 4 Z py log?(1/p,)
yey (@) yey’(kj) ye(y;j))“

< 1og|y(j)‘ + 9be—2"/* 24 (L. +4) log(2) <,

concluding the proof of (5.49) and hence the lemma. O

5.5.3 Definitions and notations for wavelets

In this section we briefly introduce wavelets and collect some properties used in the
article. For a more detailed and elaborate introduction of wavelets we refer to [115]
106].

In our work we consider the Cohen, Daubechies and Vial construction of compactly
supported, orthonormal, N-regular wavelet basis of L2[0,1], see for instance [64].
First for any N € N one can follow Daubechies’ construction of the father ¢(.) and
mother 1(.) wavelets with N vanishing moments and bounded support on [0, 2N — 1]
and [—N + 1, N], respectively, see for instance [70]. The basis functions are then
obtained as

{bjom,Vjr: me{0,...,2° =1}, j>jo, ke{0,...,27 —1}},
with ¢x(z) = 29/2¢(272—k), for k € [N—1,27— N], and ¢ x(2) = 270 (2702 —m), for

m € [0,27%0 — 2N], while for other values of k and m, the basis functions are specially
constructed, to form a basis with the required smoothness property. For notational
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convenience we take jo = 0 and denote the father wavelet by ¥g9. Then the function
f € L]0, 1] can be represented in the form

w 29-1

F=0 27 Fistin,

Jj=jo k=0
with fjr = (f,¥jx). Note that in view of the orthonormality of the wavelet basis the

Lo-norm of the function f is equal to

o 27-1

MDY

j=jo k=0

Next we give an equivalent definition of Sobolev spaces using wavelets. Let us define
the norm for s € (0, N) as

291

I £l = D, 2%° Z

Jj=jo

Then the Sobolev space H*([0,1]) and Sobolev ball H*%([0,1]) of radius R > 0 are
defined as

H* = {f € La[0,1] ¢ [flns <0}, and H>F([0,1]) = {f € Lo[0,1] = [ < R},

respectively. The above definition of the Sobolev space and norm is equivalent to
the classical one based on the weak derivatives of the function (see e.g. Chapter 4
n [I06]). Similarly, we can define s-smooth Holder function spaces using wavelets.
Consider the norm

cr 1= o+ sup 272 max | fiul,
=0 0<k<2i-1

I£|

which is equivalent to the s-smooth Hdélder norm defined through the modulus of
smoothness (e.g. Chapter 4 in [106]). The Holder space C*([0,1]) and Holder ball
C*%£([0,1]) of radius R > 0 are defined as

={feLs[0,1]: ||fllcs <}, and C*B([0,1]) = {f € L2[0,1] :

c <R}>

respectively.



Chapter 6

Statistical equivalence under
communication constraints

“Oh, my distances are very impossible to calculate; you know that. But
bounds are feasible. And for the Bayes risk, I know that just the metric
structure does not catch everything, but I don’t know what else to look at,
except, as you said, calculations.” - Lucien Le Cam

In this final chapter of the thesis, we explore the degree to which the results derived in
this thesis extend beyond the many-normal-means model and the infinite dimensional
signal-in-white-noise model studied in the earlier chapters. To do so, we shall leverage
existing results concerning the comparison of models, called Le Cam theory. This
allows us to obtain minimax rates for goodness-of-fit testing in other models, such as
the multinomial model, nonparametric regression and nonparametric density testing.

Le Cam theory is a general framework for decision problems. At the core of this
theory is the notion of a distance between statistical modelzﬂ7 known as Le Cam’s
deficiency distance. The objective of this distance is to quantify the extent to which
a complex statistical model can be approximated by a more simple one. If a model is
close to another model in Le Cam’s distance, then there is a mapping of solutions to
decision theoretic problems from one model to the other. Whenever the risk of the
decision problem is bounded, this means that similar performance can be achieved
in the two models. Consequently, studying the complex model can be reduced to
studying the corresponding simple model. For an extensive introduction to Le Cam
theory, see e.g. [I37, [I86]. For a brief introduction; [138, 151].

It has been a long-standing and persistent finding that models that describe seem-
ingly very different data and dynamics, can still be subject to the same phenomena,

LOr their corresponding statistical experiments, see Section

225
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such as the asymptotic minimax risk coinciding as the number of samples grows.
This finds mathematical substantiation using the Le Cam distance: if the Le Cam
distance between models tends to zero as e.g. the size of the data grows, they are
called asymptotically equivalent. For parametric models, asymptotic equivalence has
been established for a huge variety of models, in particular models that are “lo-
cally asymptotically normal”, see for instance [I38]. Starting in 1996, asymptotic
equivalence between the nonparametric signal-in-white-noise model studied in Chap-
ter [5] to observing i.i.d. draws from a density function or a nonparametric regression
model has been established by [40] [161]. Since then, asymptotic equivalence to the
signal-in-white-noise model has been established for many models, such as nonpara-
metric generalized linear models [109], nonparametric regression with non-identically
distributed data [124], nonparametric regression with non-Gaussian errors [I10], non-
parametric regression with random design [42], nonparametric drift diffusion mod-
els [71} 104 68, [69], the spectral density of a Gaussian process [107], densities with
known discontinuities [152] and jump-diffusion models [I50].

A phenomenon which is also of interest in this chapter, is that of asymptotic nonequiv-
alence. Two models are considered asymptotically nonequivalent if their Le Cam
distance remains bounded away from zero, even as the amount of data increases in
both models. Whilst a Le Cam distance lower bound only indicates that in some
loss functions concerning certain specific decision problems two models behave dif-
ferently, these results are still of interest. Firstly, they give fundamental insight into
specific statistical models. Secondly, they serve as a warning to tread carefully in
such cases, by indicating that the usual statistical phenomena one might expect in
the well studied simple model might not necessarily occur in the model of inter-
est. Asymptotic nonequivalence has been studied for the signal-in-white-noise model,
showing nonequivalence to e.g. nonparametric regression and i.i.d. draws from a den-
sity whenever the underlying space of functions is not of sufficient regularity [9T], 4]
or nonequivalence with i.i.d. sampling from densities when the class of densities are
not sufficiently bounded from below [I73]. In [217], nonequivalence is shown between
the drift diffusion model and a stochastic volatility model.

There are many reasons to study the Le Cam distance of models, not the least of
which scientific interest. The main concern in this chapter is the ability to obtain
distributed inference performance bounds in complex models which are known to be
asymptotically equivalent to the many-normal-means model and the infinite dimen-
sional signal-in-white-noise model. This allows us to obtain distributed bandwidth
and differential privacy constraint minimax testing rates for models for which these
have, up until now, not been established.

Whilst classically minimax goodness-of-fit testing rates are perhaps more easily de-
rived by studying the different models directly, this does not seem to be the case
for the bandwidth and differential privacy constraint distributed equivalent of these
testing problems. From the results of the earlier chapters of the thesis, it is clear
that to obtain the minimax rates in simple, stylized Gaussian models already requires
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substantial effort. By leveraging asymptotic equivalence in the distributed setting,
we can establish minimax distributed testing rates for the d-dimensional multinomial
model under bandwidth and local differential privacy constraints. Prior to this work,
such rates had only been available in the literature for the case of having just one
observation per machine (n = 1) in [9} 10, [I5]. To obtain the rates for the multinomial
model, we use the Le Cam deficiency bound between the Gaussian and multinomial
model of [57]. The multinomial model shall be our main illustrative example to
elucidate the role of the sample space in the distributed communication constraint
setting. These results give insight into whether models that are asymptotically equiv-
alent, have equivalent rates in the distributed setting as well. The answer here turns
out to be partly yes, but not always.

Furthermore, we extend our results of Chapter [5] to nonparametric models more com-
monly encountered in practice, such as nonparametric regression and goodness-of-fit
testing for nonparametric densities based on i.i.d. observations. The Le Cam distance
bound of [I72] allows us to establish bandwidth and local minimax distributed testing
rates for nonparametric density testing, which have been established in the literature
only for the case of just one observation per machine under privacy constraints in
[75 [136], where in [136], the authors consider adaptation as well. The work of this
chapter is also the first to establish minimax distributed testing rates for nonparamet-
ric regression under bandwidth and local differential privacy constraints. The latter
results leverage the Le Cam distance bound of [I74] between the signal-in-white-noise
model and nonparametric regression. The results for both of these models apply to
their respective adaptive settings.

Besides deriving distributed testing rates, we shall also study asymptotic nonequiva-
lence. The route with which we shall study asymptotic nonequivalence is novel and
perhaps surprising. By leveraging our result concerning asymptotic equivalence in
the distributed setting, we exhibit a proof method for obtaining lower bounds on the
Le Cam distance between models which, even though without communication con-
straints they behave similarly, display drastically different behavior when distributed
communication constraints are in place. We illustrate this principle using the multi-
nomial model and the many-normal-means-model. For the multinomial model and
the many-normal-means model, although the unconstrained minimax testing rate is
v/d/(mn) for both models, we exploit distributed settings in which these models have
different minimax rates to obtain lower bounds on the Le Cam distance of the models
that apply generally, that is to say; these lower bounds apply outside of the distributed
setting as well.

The chapter is structured as follows. First, in Section[6.1 we recall the formal notions
surrounding the Le Cam distance and prove results for general distributed settings
with communication constraints. In Section [6.2] we study the consequences of the
general theory for the multinomial model, obtaining minimax distributed testing rates
for the multinomial model under bandwidth and privacy constraints, as well as a
lower bound on the Le Cam distance between the many-normal-means model and the



228 6. STATISTICAL EQUIVALENCE UNDER COMMUNICATION CONSTRAINTS

multinomial model. Finally, in Section [6.3] we derive minimax distributed testing
rates for nonparametric regression and density testing using the machinery developed
in Section

6.1 Le Cam theory in distributed setting

We introduce some formal notions of Le Cam theory first in Section [6.1.1] Then, in
Section [6.1.2] we study the equivalence of models in the distributed setting.

6.1.1 Preliminary notions of Le Cam theory

A statistical experiment is a set of probability distributions P = {Py : f € F} (a
model) on a measurable space (X, Z") (the sample space). For the purpose of simpli-
fication, we shall consider only statistical experiments with Polish sample spaces and
corresponding Borel sigma-algebras. Furthermore, we shall only consider dominated
models, meaning that there exists a sigma-finite measure p such that Py « p for
all f e F. In a slight abuse of terminology, we shall sometimes refer to P as the
experiment, suppressing the presence of the sample space and indexing set.

Given another statistical experiment with model @ = {Qy : f € F} indexed by the
same set F and sample space (.927 Q;), we define the deficiency of P with respect to
Q as
(P; Q) = inf sup |PrC — Qyllrv. (6.1)
C feF

Here, we use the total variation norm as defined in earlier chapters (see e.g. (L.3))),
the infimum is taken over all Markov kernels C': 2" x X — [0,1] and the probability
measure PyC : & — [0,1] is understood as

P;C(A) = J _ ClA)iPy(a) (6.2)

This is equivalent to the more general notion of deficiency of [53] for dominated models
on Polish spaces (see Proposition 9.2 in [161]).

The deficiency 9(P; Q) quantifies the degree to which Q can be approximated by an
experiment P. If d(P; Q) < p, it implies that for bounded loss functions, each decision
procedure within Q has an associated procedure in P that achieves nearly the same
risk, up to a multiple of p.

To make this precise, let F be a measurable space and consider a function £ : F xD —
[0,1] on a measurable space (D, 2), such that ¢ — £(f,t) is measurable for all f € F,
which we shall refer to a loss functions. We shall consider a decision procedure for
(Q,D) to be a Markov kernel D : 2 x X — [0,1]. If 9(P; Q) < o, there exists

C: Z x X — [0,1] such that for all decision procedures D for (Q, D) we have that

Jf(f, ©)dPrCD(p) < Jf(f, ©)dQsD(p) + o, forall feF.
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Here, the Markov kernel QD is to be understood in the sense of (6.2) and CD :
P x X —[0,1] as

D(Alz) = fD(Aﬁ)dC(gz\x).

There is also the following reverse implication; suppose that there exists a loss function
£:F x D — [0,1] on a measurable space (D, 2), and

mf mf sup UE f,9)dQsD(p JE f,)dP;CD(p )‘ > o,
D reF

where the two infimums are over all decision procedures D and Markov kernels C' :
Z x X — [0,1]. Then, 9(Q,P) > . This follows immediately from e.g. Lemma
in the appendix, since x — {¢(f,¢)dD(p|x) is measurable. In the more extensive
framework considered in e.g. [53], such a reverse implication for risk functions fully
characterizes the deficiency between two models, but this framework is not needed in
what follows.

Le Cam’s deficiency distance between P and Q is then defined as
A(P, Q) = max {d(P; Q),0(Q,P)}.

This semi-metric becomes a metric whenever P and Q are identified whenever d(P; Q)+
9(Q,P) = 0. Two sequences of experiments P, and Q, are called asymptotically
equivalent if their difference A(P,, Q,) tends to zero as v approaches infinity. Con-
versely, such sequences shall be called asymptotically nonequivalent if A(P,,Q,) > ¢
as v — o for a fixed constant ¢ > 0.

The final notion we shall recall is that of sufficiency. A statistic S : X — /Qis sufficient
for the model P if for any A € 2 there exists a measurable map ¥4 : X — R such
that

Py (AnS7Y fqu (#)dPf (%) forall Be 2 and fe F.

Here, the measure Pf is to be understood as the push-forward measure Pf (B) =
Pr(S7Y(B)). A sufficient statistic allows for transforming observations from one
model to another, “sufficient” model which is equivalent in the sense of Le Cam dis-
tance. That is, if S is a sufficient statistic for P, then the model P’ := {PJ*? : feF}
satisfies A(P,P’) =

The next lemma is the Neyman-Fisher factorization theorem gives a useful character-
ization of sufficiency of a statistic for models that admit densities with respect to the
same dominating measure.

Lemma 6.1. Suppose that Py < p for all Py € P with p a sigma-finite measure. A
statistic S : X — X is sufficient for P if and only if there exists measurable functions
gr:R—=Rand h: X — R such that

Py

m () = gs(S(x))h(z) for almost every x € X and every f € F. (6.3)
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A proof for both the lemma and the last statement of the previous paragraph can be
found in Chapter 5 of [I137].

6.1.2 Equivalence of distributed decision problems

We now turn to the distributed setting considered in this thesis, where j =1,...,m
machines each receive data X() drawn from a distribution P and sample space
(X, Z). Each of the machines communicates a transcript based on the data to a
central server, which based on the aggregated transcripts computes its solution to the
decision problem at hand.

We start by stating the distributed setting as given in Section in the current con-
text. A distributed protocol for the experiment P with decision space (D, 9) consists of
a triplet {D, {Kj}j=1 ,,,,, m, U, % ,PY)}, where {Kj}j=1 ,,,,, m 18 a collection of Markov
kernels K7 : #U) x (X x U) — [0,1] defined on a measurable space (YU), #)) a
Markov kernel D : 7 x @', YU) —[0,1] and a probability space (U, % ,PY).

To unpack all this notation: the Markov kernel D takes the role of the decision
procedure, where the decision is to be made on the basis of the transcripts generated
by {K i }i=1,...m. The transcripts are in turn generated based on the data and a source
of shared randomness independent of the data. The probability space (U, % ,PY) plays
the role of the source of randomness that is shared by the machines. The distributed
protocol is said to have no access to shared randomness or to be a local randomness
protocol if % is the trivial sigma-algebra.

In terms of random variables, we have XU) ~ P;, U ~ PV, YO |(XW 1) ~
Ki(|XUD U) for j = 1,...,m and ¢ ~ D(-]Y) with Y = (Y, ... Y™)  This
gives rise to a Markov chain

x1) — y(1)|U\

: - L . (6.4)
xXm — ymg—
For x = (2M,...,2(M) e X™ we U and {K'};=1,  m, let © — K(Alz,u) be the
Markov kernel product distribution &}~ K -]z, u). Following the notation in the

earlier chapters, given a distributed protocol and i.i.d. data from P; we shall use
Py to denote the joint distribution of the data X ~ PJ", the shared randomness

U~PVand Y = (Y, ... Y™) with Y|(X,U) ~ K(Y|X,U). We have that
PI'K = @;n:l PrK 7 and the push-forward measure of Y then disintegrates as

PY(A) = Py'PUK(A) = PUPJ'K(A) = Jd(;)Pij(-\X(j)7u)(A)dIP’U(u), (6.5)

where the second equality follows from the independence of U with the data X :=
(XMW, ..., X(™) drawn from P;.
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We shall consider two types of communication constraints in this chapter: bandwidth
constraints and differential privacy constraints. For the first of these constraints, the
definition of a bandwidth constraint protocol is straightforward and fully overlaps
with the one considered in the rest of the thesis (i.e. Definition [2). A distributed
protocol is said to satisfy a b-bit bandwidth constraint if its kernels { K7 }iz1,...m are
defined on spaces satisfying [YU)| < 2°.

Given a Markov Kernel C': 2 x X — [0,1], a distributed protocol

{D,{K"};=

.....

for the model P, yields a distributed protocol for the model Q:
{Da {CKj}j:L...,ma (Z’{7 %7 ]P)U)}

If {K7},;_1, . m is a b-bit bandwidth constraint, the collection of kernels {CK7};_1 .,
do so too, as each CK7 is defined on ') x X.

Since the definition of differential privacy depends heavily on what one defines as the
sample space, it is difficult to obtain a similar “transfer of distributed protocols” that
respects the (e,d)-differential privacy constraint of Definition Instead, we shall
consider the notion of local (e, §)-differential privacy. A Markov kernel K : & x X —
[0,1] is called locally (e, d)-differentially private if

K(Alr) < e‘K(Al|z') +6 forall Ae & and x,2' € X. (6.6)

A distributed protocol shall be called locally (e, §)-differentially private if holds
for each K7; j = 1,...,m. The difference with Definition 3| is that we essentially
wish to retain privacy for the entire “local sample”, instead of for each observation
in the sample. Llocal differential privacy is a more demanding notion of differential
privacy than what was considered in earlier chapters and it is less general, as it
cannot accomodate for the fact that the datums in a server belong to e.g. different
individuals. The restriction to local differential privacy arises naturally, due to the
fact that sample spaces (and thus datums) can differ between different experiments.
The following lemma shows that local (e, d)-differential privacy, just like bandwidth
constraints, carry over from one model to the other.

Lemma 6.2. Let (X,.2) and (X, 2) be measurable spaces and consider Markov

kernels C : 2" x X — [0,1] and K : & x X — [0,1]. If K is b-bit bandwidth

constraint, so is the Markov kernel CK : % x X — [0,1]. If K is locally (€,9)-
differentially private, so is CK.

Proof. The first statement has been remarked on earlier in the section. For the
second statement, arbitrary z,7’ € X and A € %. Using that C is a Markov kernel
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and applying to K yields
CK(AF) JK(A\a:)dC’(xkE) _ “K(A|x)d0(g;|§:)d0(x'|g:~')
e JK<A|x')d0(x'|@') 46— CK(AF) + 9,
which shows CK is (e, 0)-differentially private. O

In an abuse of notation, let D denote the entire distributed protocol (triplet)
(D AK Yz, U, %, PY)}

for the experiment P (indexed by F) with decision space (D, Z). Given D and a loss
function ¢ : F x D — [—1,1], we define the distributed risk of D in P for £ as

=suw [ [ | tr.00dD0 d@Pfo (X9, ) (y)dBY (),

feF

We are now ready to formulate a straightforward consequence for the distributed
risk, following from models being close in Le Cam distance. This finding, formu-
lated in Lemma [6.3] shall serve as one of the main tools for deriving the main results
of this chapter. It states roughly that, whenever there is a b-bit bandwidth con-
strained distributed protocol that achieves a certain risk is one model and there is
small deficiency with the other model relative to the number of machines, there exists
a b-bit distributed protocol that achieves comparable risk for the other model. A sim-
ilar statement holds under local differential privacy constraints. If there is a locally
(€, 0)-differentially private distributed procedure in the one model and there is small
deficiency with another model, it means that there is comparable risk for the privacy
constraint distributed decision problem.

Lemma 6.3. Let m € N. Consider two experiments P and Q with indexing set F,
satisfying md(Q; P) < o for some o > 0. Let #p and Zg denote the class of b-bit
bandwidth constraint shared randommness protocols for the models P and Q respectively.

Then, for any loss function £ : F x D — [0,1],

i Ra(D0) ~ inf Rp(D,() < o0

where in the infimum, in an abuse of notation, D denotes the entire distributed pro-
tocol triplet {D,{K’};1,. m, U, % ,PY)}.

The same statement holds for #p and g denoting the classes of b-bit bandwidth
constraint local randomness protocols, distributed protocols satisfying (shared or local
randomness) local (e,0)-differential privacy constraints.

.....
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Remark 12. The result, might seem rudimentary as not much more than the triangle
inequality seems to be going into the proof. However, the statement is sufficient to
derive minimax rates for distributed goodness-of-fit testing in models other than the
many-normal-means model and the signal-in-white-noise model considered in the pre-
vious chapters. What is more, in Section [6.2] the lemma is leveraged to obtain lower
bounds on the deficiency between two models whenever two models have (substan-
tially) different distributed risks for the same decision problem under communication
constraints. This exemplifies also that, even though models P™ = {P" : f € F}
and Q™ = {Q?T : f € F} are close in Le Cam distance, distributed decision problems
formulated in terms the models P and Q, can have greatly different performance in
terms of associated risks.

Proof. By e.g. Theorem 2 in [I37], md(Q;P) < o implies that there exists a kernel
C:Z x X — [0,1] such that

sup [Py — Q¢Clrv < o/m. (6.7)
feF

By Lemma the kernels K7 := CK7, j = 1,...,m all satisfy a b-bit bandwidth
constraint or local (e, §)-differential privacy constraint if the collection {K7 biclom
does. That is, given a distributed protocol for P, {D,{K7};_1, _m, U, % ,PY)} € Ip,
the distributed protocol D = {D,{CK7};_1. . m, U, % ,PV)} is an element of Zg.

.....

Using the fact that ¢ is bounded by one and Lemma in the appendix, it follows
that

m m
Ro(D,6) = Rp(D,4) < [PY Q) PrK’ =PV Q) QsCK v

Jj=1 Jj=1

< Y PUP KT —PYQpCK |y
j=1

By Lemma [6.9]in the appendix,
|BY PrK? —PYQCK vy < [PV Py —PYQClrv = | Pr — QsCllrv.

which combined with (6.7 finishes the proof. O

In the remainder of this text, we shall constrain ourselves to a particular bounded
risk function and distributed decision problem; distributed hypothesis testing. The
following corollary formalizes the statement at the start of the paragraph for testing
a simple null versus a composite alternative hypothesis in the distributed setting. To
that extent, consider a test of the hypotheses

Hy : f = fo versus the alternative hypothesis f € H; (6.8)
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and an experiment P with indexing set F satisfying {fo} v H; < F. Consider for
m € N a distributed testing protocol for the model P to be a distributed protocol
T ={D,{K%};_1.  m, U, %,PY)}, where in a slight abuse of notation, we shall also
use T to denote the (possibly randomized) test T|Y ~ D(:|Y"). Recalling the notation
IP’}/ = P}”IPUK as given in , define the distributed testing risk for the hypotheses
in and the model P as

Rp(T,Hy) := P} D(T|Y) + sup Py (1 - D(T|Y)).
feH,

Here, D(T|Y) := D({1}|Y), but one can equivalently consider a deterministic measur-
able map T : jg1y<f> — [0,1] without loss of generality. Let Ik (P) (resp. F%(P))

denote the set of shared randomness (resp. local randomness) distributed testing pro-
tocols for P satisfying a b-bit bandwidth constraint. Similarly, let 75(;{’6) (P) (resp.
9151;’5) (P)) denote the set of shared randomness (resp. local randomness) distributed
testing protocols for P satisfying a local (¢, d)-differential privacy constraint. Define
the same classes for the model Q in the obvious way. Using Lemma [6.3] we obtain
the following result.

Corollary 6.1. Consider experiments P, Q such that md(Q;P) < o for o > 0. It
holds that
inf Rp(T,Hy) < inf Ro(T,H 20,
o p(T, Hy) . o(T, Hy) + 20

where T is either T&n, TPp, yéga) or ,7;;5).

Proof. Given {T,{K?};—1...m,U,%,PY)} € 7(P), Lemma applied to the loss
function

and using that {fo} U H;  F gives

P} D(T|Y) < Qf, D(T|Y)+¢ and sup PY (1 - D(T|Y)) < sup Qf (1—D(T|Y))+o
1 1

for some distributed testing protocol {D,{K7};—1 _ m, U, %,PY)} in F(Q), which
yields the first statement. O

The result above yields that for experiments with matching indexing sets, matching
hypotheses and that are close in Le Cam distance, the minimax separation rates (see
Section for a definition) for the hypotheses is the same in distributed settings, as
long as m is not too large compared to the Le Cam distance between the models. We
remark that a similar result can also be obtained for the meta-analysis “combination
of real-valued test-statistics” framework considered in Chapter

The implications of Lemma have implications beyond the testing framework.
Whilst in distributed estimation settings, the loss function under consideration is
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typically not bounded, rates can still be derived in probability. That is, if the mini-
max rate for the distance d on F in the model P, is p,, the bounded loss function

t,(f,9) = 1{d(f,9) < Cp,} for C>0

can be used describe minimax estimation rates (in probability) between models P and
Q. Since this thesis is about testing, we shall not pursue this direction any further
beyond this remark.

In the next sections, we will explore the consequences of Corollary for minimax
distributed testing rates for both bandwidth- and privacy constraints.

6.2 Distributed multinomial observations under com-
munication constraints

The multinomial distribution describes n discrete random variables that take one of d
mutually exclusive states, applying to any setting in which you sample independently
from a probability distribution on a discrete set.

Recently, there have been numerous applications in areas that handle large samples
of multinomial data over extensive domains, such as population genetics [166, [196]
and computer science; where it is used for e.g. information retrieval [228| [177], speech
and text and classification [126], text mining [49] and large language models [I6S].

This has sparked recent interest in studying the statistical decision theoretic proper-
ties of the multinomial model, see [27] for an overview. It has been extensively studied
in the context distributed inference under differential privacy- and bandwidth con-
straints, see e.g. [10T], [78, 30, 113l 58, (9, 17, 16, 13]. For distributing testing under
privacy- and bandwidth constraints specifically, much is still to be uncovered, with
minimax rates only having been obtained for the case of having just one draw from a
discrete distribution per machine [0, [0, [I5] at the time of writing. For some investi-
gations into the multiple observations case, see [73] [99].

The multinomial model describes sampling independently from a probability distri-
bution on a discrete set. We start by giving a formal description of the model in the
distributed setting. Let S? denote the d — 1-dimensional probability simplex

d
{q_((I17~-7Qd)€[0,1]d : Eqi—l}.
i=1

In the distributed multinomial model, each machine j = 1,...,m observes data X )
taking values in {1,...,d}"

X0 = ()N({j), LX)~ Q= Qn.q; Xi(j) i Multinomial(1, q) for g € F (6.9)
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where
.F={qud: Wg}z} (6.10)
min; g;
for some fixed constant R > 4. The statistical decision problem of interest shall be
that of uniformity testing, i.e. distinguishing the hypotheses

Hy:q=qo versus Hy : g€ {qge F:|q—qol, = p} =: Hp, (6.11)

with go = (qo1,---,q0a) = (1/d,...,1/d) € S*. We note that the results can easily be
extended to the case where ¢o = (qo1, . - -, qod) € F, with e.g.

w < R/A.

min; qo;
The latter assumption allows for (slightly) more flexibility than uniformity. How-
ever, some sort of uniformity assumption is critical, as the minimax rates for the
multinomial model depend on the “degree of uniformity” of null hypothesis (see [2§]).
Outside of the (approximately) uniform case, goodness-of-fit testing exhibits different
phenomena compared to the many-normal-means model.

The minimax rate for the hypothesis above in the m = 1 case is p? = %, as was

established in [163] and [206]. For distributed data, minimax rates have been derived
in [9, [10] for the hypothesis test above under both privacy- and bandwidth constraints
for the case where n = 1. This case corresponds with receiving only one observation
per machine. For their lower bounds, the authors use clever series expansions of a
combinatorial nature that are difficult to generalize to the large n case.

Theorems [6.1] and below will partly extend these results by giving minimax rates
in a regime where n is large. We will do so by comparing the statistical experiment
of the multinomial observations to that of the Gaussian many-normal-means model
considered in Chapters [2 and [3] of the thesis.

Consider for g € F and i = 1,...,d the random variables
; 1 ;
X9 = g+ A (6.12)

V2n

Z20) = (z{,...,29) ~ N(0,1,). Let Py = P} denote the distribution of X0) =

(X{j), . 7X(gj)). Let P denote the corresponding experiment. It is shown in [57] that
Q is close to P in the Le Cam metric when d is relatively small compared to n. More
precisely, it follows from Theorem 1 and Section 7 in [57] that

dlogd
Vi

where C'g > 0 is a constant depending only on R. Combining this with Corollary
and the lower bound results from Chapter [2] we obtain the following result.

A(P,Q) < Cg (6.13)
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Theorem 6.1. For any sequences m = m,, b =10,, d = d, and n = n, such that
md — oo whilst
mdlogd//n =70,

the minimax separation rate in the distributed multinomial model Q for testing the
hypotheses (6.11)) under a b-bandwidth constraint is given by

o= () A ) 019

in the case of having access to shared randomness. In the case of having only access
to local randomness, it is given by

NG e

Remark 13. The rates obtained for the L;-norm separated alternatives in the multino-
mial model, can be seen to correspond to Lo-separated alternative hypothesis rates in
the many-normal-means model. While this might seem odd up on first reading, these
are natural ‘equivalent hypotheses’ to consider. To see this, consider that the total
variation distance in the many-normal-means model (n = 1) satisfies (see e.g. [(2])

1Pz — Pyglltv = [Var — /a2

On the other hand, we have that |q1 — g2|rv = |q1 — g2]1/2 (see e.g. Lemma [6.6)).
An explicit comparison of these hypotheses shows up in the proof of the theorem.

We discuss a similar result for distributed testing under local differential privacy
constraints later on in the section, in the form Theorem We provide a proof for
both the aforementioned theorem and the one above at the very end of the section,
but before doing so, let us consider the ramifications of Theorem [6.1

The distributed b-bit bandwidth constraint minimax rate for the hypotheses (6.11))
in the multinomial model with n = 1 is established in [0, [I0]. Specifically, they find
that

mv2d (6.16)

m(2b ad)

9 d in case of access to shared randomness,
p =

without access to shared randomness.

Several aspects of this minimax rate are intriguing. Firstly, there is no elbow effect,
as is observed in the “large n case” for the same model and hypothesis (see (6.14])
and (6.15))). Secondly, the benefit (i.e. efficiency gain) from an increase in bandwidth
is exponential, compared to the polynomial factor observed in the Gaussian model.
We shall delve into this “communication super-efficiency” phenomenon further below.

The multinomial model considered thus far, where we draw n independent and indenti-
cally distributed draws taking valuesin {1,. .., d}, is equivalent to the Multinomial(n, d)
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model in which one observes NU) = (Nl(j), e 7N(gj)) taking values in {1,...,n}%,
where

N = NP (XO) = |{i: (X9); = k}). (6.17)

Let Q' denote the model generated by the observations N in (6.17). It easily
follows from Neyman-Fisher factorization (e.g. Lemma , that model is equivalent
to Q, meaning A(Q, Q') = 0. When n is large compared to d, one could standardize
the count statistics N to obtain a statistic that tends towards a d-dimensional
Gaussian random vector. When d and m are not too large with respect to n, one
can obtain transcripts and corresponding test statistics from these approximately
Gaussian vectors, that resemble those one would consider in the Gaussian model, and
attain the corresponding minimax rates.

Since the observation N) takes values in {1,... 7n}d7 the full data can be transmitted
whenever there are at least d log, n-bits are available per machine. However, recalling
that the observation X ) takes values in the space {1,...,d}", the cardinality which
is bounded above by 271829 we also obtain that the full data can be transmitted
whenever n log, d-bits are available. Consequently, whenever

b2 dlogy(n+ 1) A nlog,d,

the distributed problem has the same minimax separation rate for the hypothesis
in as the unconstrained problem with nm observations; p% = %. For the
Gaussian problem, this is only the case whenever b 2 d, as can be seen from The-
orem [2.3] This indicates a kind of “tipping point” occurring whenever n gets small
compared to d, where in a bandwidth constraint distributed setting, the testing prob-
lem in for the Gaussian model starts to exhibit very different behavior. More generally,
it means that, even though models P™ = {P;" : f € F} and Q™ = {Q} : f € F}
could be close in Le Cam distance, distributed decision problems formulated in terms
the models P and Q, can have greatly different performance in terms of associated
risks.

Interestingly, this does not imply that the multinomial model is “easier” from a dis-
tributed testing under bandwidth constraints perspective, as there are regimes in
which the Gaussian model has a solution whereas the multinomial model does not
and vice versa. It indicates that the “communication complexity” of the sample space
matters in the respective decision problems. We can leverage this fact, combined with
Corollary to obtain a lower bound on the Le Cam distance between the multino-
mial model and the Gaussian model; which is the content of the next theorem.

Theorem 6.2. There exists constants C,c > 0 such that for any n,d € N with

d

—_ > d > Vdlog(d 1
loa(d) C  and n=+dlog(d) (6.18)

it holds that
Q. P) >, (6.19)
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where P is the experiment generated by the observations in (6.12)), Q is generated
according to , both indezxed by F as given in (6.10)).

The conclusion of the theorem, that for such large d compared to n, the multino-
mial model is asymptotically nonequivalent to the Gaussian model, is unsuprising for
uniform-like distributions gq. The proof of the theorem, however, uses the distributed
bandwidth constraint results derived earlier in perhaps an interesting way: it lever-
ages that there exist distributed, b-bit bandwidth constraint settings in which the
(distributed) multinomial model allows for consistent goodness-of-fit testing, whereas
the (distributed) Gaussian model does not. The result then readily follows by Corol-
lary The fact that the separation in the respective (distributed) testing risks
occurs for a constant number of machines, yields that the two models are asymp-
totically nonequivalent whenever holds. This reasoning crucially exploits the
differing minimax rates that occur under the bandwidth constraint, since without such
a constraint, the same goodness-of-fit testing problem of would have similar
minimax performance for both of the models. Whilst it is unlikely that the condition
d/nlog(d) = 1 is “tight” for the above non-equivalence result, the proof technique
used in the theorem could be of interest for other settings where non-equivalence is
suspected due to differences in the models’ sample spaces.

We now turn to the case of local differential privacy constraints. Before stating the
theorem, let us avoid possible confusion by stressing that the privacy constraints con-
sidered in the earlier chapters of the thesis study a setting more general than local
differential privacy. Here, we shall require that a distributed protocol transcript gen-
erating Markov kernels { K7} ;c[,,) satisfy (6.6). We stress that this type of differential
privacy guarantee concerns the local data X)) as the “unit of privacy” or as an
“individual”, even X ) consists of multiple (i.e. n) observations.

For the Gaussian models studied in Chapters [2] [3] and [5] local differential privacy is
a special case corresponding to “n = 1”7 in the results found in these chapters. This
translates to guaranteeing differential privacy for a single observation

. 1 .
XD = g+ —29 6.20
Vit (6:20)
per machine j = 1,...,m in the Gaussian model considered in this section. Whilst
the above mode is equivalent to observing i = 1,...,2n iid. \/q + ZZ-(J ) observations

classically, under privacy constraints there is a pronounced difference.

The rates under local differential privacy for the Gaussian signal detection problem
follow from Theorems and by considering “n = 1”7 in the setting of those
chapters and considering +/n-rescaled signal in the (single) observation received at
each machine: XU) = \/nf + ZU). The hypotheses considered are Hy : f = 0 versus
the alternative

feH,:={feR": |Vaflz =/, [Vnfls < vnM},
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where p’ is the minimax rate for the single observation model under differential pri-
vacy, and setting p = p’/y/n we obtain the minimax rate corresponding to .
For details, we defer the reader [52]. In this “rescaled” version of the problem, the
minimax rate for (mn)~! < e < 1 and log(1/d) < log(mnd) is given by

mne? if e> ijl’
p* = poly-log(d,m,n,1/8) § ML if L <e< YL, (6.21)
1 1
prep—) if €< m,

in case of locally (e, §)-differentially private shared randomness protocols and

:Lﬁ if e> \/%’
p* = poly-log(d,m,n, 1/8) § AL it - <e< L, (6.22)
. 1
ne? lf €< m’

in case of non-shared randomness protocols. In the above, the poly-log(d, m,n) factor
should be understood as a factor at most of poly-logarithmic rate in d, m and n.
Because only the local case is considered, a lot of the phase transitions observed in
the earlier chapters are not observed (the ones that occur when € > 1/4/n). Leveraging
asymptotic equivalence between the two models, we obtain the following theorem.

Theorem 6.3. Consider sequences m = m,,, d =d, and n = n, such that md — 0,

mdlogd ,—s

v

nY«e=¢, <landd=6, < (md)~P for some p = 2. The minimaz separation
rate in the distributed multinomial model Q for testing the hypotheses using
locally (e, 6)-differentially private protocols is in the case of having access to
shared randomness. In the case of having only access to shared randomness, it is

given by (6.22)).

Remark 14. Also in the case of privacy, there is a difference between the one ob-
servation per machine case minimax rate (n = 1) and the multiple observations per
machine with local differential privacy case. The minimax rate in the multinomial for
n = 1 is worked out to be

0,

me2
dvd

me?2

. (6.23)
without access to shared randomness.

9 d_ in case of access to shared randomness,
p =

(see [9, [15]). Comparing this rate to the rate obtained in Theorem we observe
phase transitions in the distributed testing problem for multinomial model under local
differential privacy constraints which are not observed if the number of observations
locally is small compared to the cardinality of the sample space.
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6.2.1 Proofs of Theorems and

Proof of Theorems and[6-3 In what follows, let .7 denote a class of distributed
protocols satisfying either a b = b,-bit bandwidth constraint or a local (e, 0)-differential
privacy constraint for € = €,, § = §,, allowing either for shared randomness or only
local randomness.

For any sequences m = m,, d = d, and n = n, with Crmdlogd/+/n = o(1), it
follows from Corollary and the bound (6.13]) that the testing risks satisfy
inf = inf 1). .24
A Ro,(Hp,,T) = inf Rp,(Hp,,T)+o(1) (6.24)
Let p* = p¥ be the minimax rate of the P-distributed problem, over the class Zp, in
the sense that p* equals (up to constants) the right-hand side of (6.14]), (6.15]), (6.21)
or (6.22). We split the proof into showing that p* is an upper and lower bound for
the O-distributed problem over the class Jp.

The rate p* is an upper bound (up to a poly-logarithmic factor) for the minimaz rate
in Q: Write, for ¢ € F, \/q = (\/Gi)ie[q)- Since X —  /qo is a sufficient statistic for
X ) the model (6.12) is equivalent in the Le Cam sense the one generated by

| 1 4
XD = /g — a0 + —=—29 with 29 ~ N(0,1,), (6.25)
V2n

for ¢ € F, which we shall denote by P. Consequently, by another application of
Corollary it suffices to show

Anf Rp(H,,,T) 0.

If |¢ — qol1 = p, Lemma implies that [\/g — \/qoll2 = p/2. Consequently, if
p = p, » M,p* where p* is of equal order of the minimax rate for the respective

class of distributed protocols Zp and M, is an appropriately large factor (of poly-
logarithmic order in case of differential privacy constraints), a distributed protocol T' €
Ip exists for the Gaussian model that achieves the separation rate for whenever Hy :
Va4 = +/q0 = 0 versus H, : ||\/qg — \/qo|2 = p/2. By the established equivalence of the
minimax risks , this implies that a protocol T' € Jg exists for the multinomial
model as well. Thus, p, is an upper bound for the minimax separation rate for the
class of distributed protocols Jg of the multinomial model.

The rate p* is a lower bound for the minimaz rate in Q: Suppose that p = p, is of
smaller order than the minimax rate p* of the class Zp, in the sense that p*/p — ©
as v — 00. We aim to use the Bayes risk lower bound of Lemmas and which
apply to a Gaussian prior. To accommodate a Gaussian prior with sufficient mass
on the alternative hypothesis, we first need to address the “constraint on the signal”
imposed by Z;i:l g =1forqge F.

To that extent, consider without loss of generality d to be divisible by two. Let
Ig :=[-(R—-1)/(R+1),(R—1)/(R+ 1)]. For all (f;)ic[a2] € 1;‘52/\/8, there exists
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aql = (q{)ie[d] € F such that qlf = 1/d + fi/v/d for i = 1,...,d/2 and qlf =
1/d — fi,d/Z/\/E for i = d/2+1,...,d. To see that ¢/ € F, note that Z‘Ll qu =1,
¢/ >0 and

qf 1+e¢

max —Zf < max =
1<i,k<d qi celp 1 —c¢

Define F’ as the set

Ij‘é/Q f ficd1,e gpa/2 _
(%)ze[d] eF: (fl)'LE[d/Q] € W s.t. q; = 1/d + (1 - 21i>d/2)T for i e [d]

and
H), = {g:qeF |a—al, =pr}.
We have F' < F, which in turn implies that H, = H,. Combined with the fact that

the testing risk decreases by considering smaller alternative hypotheses, this results
in

. > . ! . .
T2n§p Rp(T,H,) Tlen;) Rp(T,H)) (6.26)

Define g; = (1/2)(f, —f) € R%. By Pinsker’s inequality,

mn
<1la \/DKL(P\/E\/QO; P.‘]f)
TV 4

A/ mn
5 H\/qO +2g7/Vd — /g0 — gf‘ =: Dy,
2

where Pz o denotes the distribution of (6.25)) and the square root is to be under-
stood as applied coordinate wise.

‘P\/?fw?o ~ o

=1A

Let 1 = N(0,d"'(p*)?T) for a symmetric, idempotent matrix T' € R¥2%4/2 with
d/4 < rank(T) < d/2.

We have that

nf Rop(T, Hy) > it [IP’OT(Y) + JInga - T(Y))dw(f)] - 2fod7r(f)

- (f 1 fé (IR/\/g)d/Q or H(qu)ie[d] - qul < p) )

By Lemma the model {P,, : f € Ié/ ?/\/d} is equivalent to the model generated
by the observations

_ 1
S g4 %Zf” (6.27)
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for i = 1,...,d/2. Since F' is bijective with (Ir/+v/d)¥?, the aforementioned equiva-
lence and Corollary implies that

Tieggp []P’OT(Y) + fpgfa - T(Y))dvr(f)] = Tier;g [lP’éT(Y) + JP}(l - T(Y))dW(f)]
(6.28)

P
where P is the model generated by the observations in display (6.27) for i = 1,...,d/2
and IP”f denotes the distribution of the distributed protocol with data generated from

feP.
It follows from Lemma [2.12] in the case of bandwidth constraints or Lemma [2.17]

in the case of privacy constraints (using that p « p* in both cases) that the latter
distributed testing risk is lower bounded by

L= o(t) = (£ RV 5 £ ¢ (InVDY or (@]~ o], < p) =2 | Dyar(s).

(6.29)
Addressing the third term in the display above; the theorem(s) assume that mdlog d/y/n
tends to zero as v — o0, b = 1 and € » n~ Y% we have that p* « 1/4/log(d), which
implies that
fieIg/Vd foralli=1,...,d/2, (6.30)

as |Vdfi] . — 0 with m-probability tending to one (see e.g. Lemma [3.27)).

Next, we show that H(qif)ie[d] — qol1 = p with 7-probability tending to one. Since
Zle |qu —qo| = 22?51 |f;/V/d|, we have that for some constants ¢, > 0,

w(lo” = al, <) <x (|17, <) <1-Pr (121 > 0l ).

where in the expression on the right-hand side, Z ~ N(0, I/3). Since p « p* and T
is idempotent with rank of the order d, we can conclude that the expression vanishes.
This takes care of the third term in ([6.29)).

For the last term in (6.29)), the Taylor approximation /I +y —1 = y/2 — y?/8 +
’ for some 7 € [0,%], combined with the fact that |[v/df|| = ox(1) yields

'\}8 <\/1+7\/glfi1]‘2/2>'<\/g4fi2

on a set of m-probability tending to one. This yields that

[ Drints) < [1 v |(52icarml anr) < g

Y
16(1+n5/%)

Since the theorem(s) assume that mdlogd/y/n "= 0, b > 1 and € » n~ 4, the right-
hand side of the above display vanishes when p* satisfies either of the bounds (6.14]),
(6.13), (6.21) or (6.22).




244 6. STATISTICAL EQUIVALENCE UNDER COMMUNICATION CONSTRAINTS

O

Proof of Theorem[6.2 Let Jg, 7p denote the class of distributed b-bit bandwidth
constrained testing protocols with b e N, m € N, d € 2N and n € N and no access to
shared randomness for the models Q and P, respectively. We note here that under
the conditions of the theorem, we can assume d and n are both larger than some
constant; and in particular we can assume d € 2N without loss of generality. Assume
d and n satisfy , for a constant C' to be set later. The proof follows by the fact
that the distributed testing problems have different minimax testing rates, for certain
values of b and m.

Consider the hypothesis test given in (6.11]), with Hy : qo = (1/d,...,1/d) € S% and
H, as in the display.

Set b = [nlogy(d)]. When b = nlog,(d), the observations X) in the multinomial
model as given in are valid b-bit transcripts, since |{1,...,d}"| < nlog,(d).

These transcripts are therefore sufficient for the nondistributed / unconstrained model
Q™. i.e. corresponding to observations

X = (XMW . XMy < Qyum forge F.

Consequently, the distributed, b-bit bandwidth constraint testing risk for Q is equal
to the testing risk Q™;

Jinf Ro(H,,T) = inf Ron (H,, T).

This means that, for all a € (0, 1), there exists C,, > 0 and a distributed protocol T
satisfying a b-bandwidth constraint for distributed experiment Q such that

Vd
. 2 S
T1en§Q Ro(H,,T) < a whenever p= > Ca—mn

where H, as defined in (6.11)), as the minimax rate for the unconstrained problem
with mn observations is pgm := Vd/(mn) (see e.g. Theorem 3 in [163]).

On the other hand, whenever mb = m[nlogy(d)] < d, the minimax rate for the
distributed testing risk of P for the (comparable) hypotheses

Hy:q=qo versus H,: |\/q—/Qol2 = p

is bounded from below by p2 = v/d/(/mn), as a consequence of Theorem Specif-
ically, following the proof of Theorem [6.1] above, we have that

. > . _ ry
Tlen}p Rp(H,,T) =2 Tlen}ﬁ Rp(Hp, T),

where

Hy = {f & (Le/VA"™ : 1f], > p}
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for Ir := [v2(1 = VR)/v/1+ R,v2(~VR — 1)//1 + R], P is generated by the obser-
vations

0y %Zu)

for ZU) ~ N(0, I4/2), indexed by f € (Ir/v/d)¥? and the class T is to be understood

as the b-bit bandwidth constraint distributed testing protocols for the model P and
j =1,...,m machines.

Lemma (2.12)) implies that for all o € (0,1) the latter is bounded by
— N(0,¢;Y2d"1p?T) (Hp> :

for a symmetric idempotent matrix T’ € RY2*4/2 with d/4 < rank(T) < d/2 a € (0,1),
whenever p? < ¢, \ﬁ‘f for some small enough constant ¢, > 0. By the same analysis

as conducted in the proof of Theorem [6.1] above (using that n < log(d)), we find that
the second term is at most «/2 for ¢, > 0 small enough. Summarizing, we find in
particular that for some constant ¢, > 0,

inf Rp(T,H,) >1/3,

T€7>

for all p?> < ev/d/(y/mn) and m,n,b,d such that mb < d, where the number 1/3 is
chosen without particular significance.

Whenever mb = m[nlog,(d)] < d,

Tlel’l} Ro(H, T)<1/6<1/3< Tlen}P Rp(H,,T). (6.31)

for some Cy > 0 large enough and ¢, > 0 small enough. Take the constant C' =
[C2/c2] such that if m = O, it holds that

Caﬁ < P2 < Caﬂ, wi
mn A/mn
Now suppose that Co(Q,P) < 1/6. Corollary then implies in that

inf Rp(H,,T) < Tlenﬂfg Ro(H,,T)+1/6 <1/3.

TeIp

This contradicts (6.31]). We conclude that
Co(Q,P) > 1/6, (6.32)

whenever d/[nlog,(d)] > C. The result now follows with ¢ = 1/(6C). O



246 6. STATISTICAL EQUIVALENCE UNDER COMMUNICATION CONSTRAINTS

6.3 Distributed testing rates for nonparametric mod-
els

In this section, we revisit the results for goodness-of-fit testing in the nonparametric
signal-in-white-noise model under communication constraints studied in Chapter
and exhibit how these results extend to goodness-of-fit testing in other nonparametric
models.

Specifically, we revisit the distributed setting in which 57 = 1,...,m machines each
observe

dxY) = f)dt + %th (6.33)

where f € L5[0,1]. We shall denote the experiment generated by the observed sample
path XU indexed by F < H**[0,1], for s > 0 and R > 0 as P r.

We discuss the extension of the distributed testing rates for goodness-of-fit test-
ing with two other nonparametric models, namely nonparametric regression (Sec-
tion and nonparametric densities (Section [6.3.2)), for both the adaptive and
nonadaptive settings.

Before deriving results for the other models, we briefly recall the results derived in
Chapter [5] as they apply to our setting here.

In the case of bandwidth constraints, a tight minimax rate for the model is
derived in Theorem when the smoothness of the underlying alternative is known.
Theorems and provide tight rates (up to a log-log(mn) factor) whenever s is
in a given range [Smin, Smax]-

For privacy constraints, the theory derived in this section concerns local differential
privacy constraints for nonparametric regression and nonparametric density testing.
The appropriate comparison in terms of the minimax rates for these respective testing
problems under local differential privacy constraints is to a distributed testing problem
corresponding to (6.33]), where the “individual” for which the privacy guarantee is to
be satisfied is X). We stress that “n” plays a different role here than what is
considered in Chapter p| where n is the number of “individuals for which privacy is
to be guaranteed”, per machine. In , n takes the role of the “noise level”, but
bares no relationship to the privacy guarantee.

The minimax rates for the testing problem under local DP of Hy : f = 0 versus
f e HSE[0,1] with ||[f|2 = p, s > 1/2, for data generated according to can
be obtained by an easy adjustment to the proof of Theorem in Section [5.3.1
(i.e. considering the single observation case for the rescaled model given by the SDE

dXt(j) = /nf(t)dt + dW;, we refer the reader to [52] for details) yields that the
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minimax rate p satisfies

(mnez)fﬁ% if mznt <e< 1,
(mn62)—1 lf €< m_%n_451+27

for locally (e,0)-DP shared randomness protocols. For local randomness protocols,
we have

__2s . 1 1
(mne?)" 7452 ifmTean? 2 <e<1
__2s . 1 1 1 1
P> =< (Jmne) THRE  if mTin TR <e<m EInZoiE (6.35)
: _1 1
(mne?)~1 ife<m™2zn %2,

We show that, under local differential privacy constraints, these rates for the signal-
in-white-noise model of extend to goodness-of-fit testing in the nonparametric
regression model and nonparametric density testing, in Sections [6.3.1] and [6.3.2] re-
spectively.

6.3.1 Nonparametric regression

We consider the following version of the fixed design version of the nonparamet-
ric regression model, where machines j = 1,...,m each observe random variables
Xl(])7 e ,Xfl]) satisfying

X[ = flifn) + 2, (6.36)

under the probability distribution Q; for f € Ly[0,1] and Z, ..., Z$) i.i.d. standard
Gaussian random variables. The above model is sometimes thought of as a discretized
version of . Observations are in practice often discrete, although it is tempting
to replace it with a continuous version of 7 which is more convenient to work
with as it avoids discretization effects.

In the random design nonparametric regression model we consider, machines j =
1,...,m each observe random variables (X{J), Cl(J)), e (Xff), T(LJ)) satisfying

Xi(j) = f(gi(j)) + Zi(j) under Qy, (6.37)

with Z{j), cee Zr(lj) ii.d. standard Gaussian random variables and Cl(j), e ,Q(«Lj) iid.

uniformly distributed on [0, 1], independent of ij ), cee z9.

Variations of the above model include non-equispaced or non-uniform random design,
or non-Gaussian errors, for which much of the theory that follows can also be extended
to, as long as the required asymptotic equivalence with can be established. See
for example [40] for results on more general fixed- and random design and [110] for
non-Gaussian errors.
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For f € H*%[0,1], let Q%4 be the experiment generated by the observations in
and let Q"™ be the experiment generated by the observations in . Outside of
the distributed setting, this model is well-studied, with both minimax estimation and
testing rates known, see e.g. [00, 122]. In the distributed, communication constrained
setting, only the estimation rates have been derived [I87, 23T [47], with the testing
minimax rates unknown until now. Leveraging Corollary we are able to (partly)
derive these rates.

Specifically, consider the goodness-of-fit testing problem Hy : f = 0 € L2[0, 1] against
the alternative hypotheses that

feHy = {feH> [0,1]: |f|r, > ps and | |- < R},

for ps > 0. The minimax distributed testing risk for the above hypotheses and a
distributed testing procedure T for the model Q = Q, g € {QX%, QLF'} is given by

Ro, »(HZ™T) =QyT(Y) + supRQ}“ 1-7)),
feHp;,

where Q}/ denotes the marginal distribution of the transcripts when the data is gen-
erated from Q. For some class of distributed protocols #¢g for the model Qg g, we
shall compare the distributed testing risk with that of the model Ps r over a class of
distributed protocols #p. In the nonadaptive setting, this means we compare

inf R HSE T) to th tit inf R sk 7y
TG:;IQS,R QS,R( ps ) [0) eCIuanlyTéan PS,R( ps )

When the regularity of the true underlying signal is unknown (but assumed to lie in a
given range [Smin, Smax]), it is desirable for a method to adapt to the true underlying
smoothness. For a given range 1/2 < spin < Smax < 9, the adaptive testing risk

inf sup  Ro, (HYF.T)

Te o, g S€[Smin,Smax]
is to be compared to

inf sup  Rp, (H3F,T).

Te j’Ps,R SE[Smin 73max]

Bounds on the Le Cam distance between nonparametric regression and the signal-in-
white-noise model were initially derived in [40], here we use the ones derived in [I74].
For fixed design points, we shall take the Le Cam distance bound of Theorem 2.8 of
the aforementioned paper, which gives

A(Ps,r, Q%) < C,Rnt/?~* (6.38)

for a constant Cs > 0 depending only on s > 1/2. The assumption s > 1/2 is
strictly necessary here for asymptotic equivalence, see Remark 4.6 in [40] for a counter
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example. For the i.i.d. uniform design case, the same paper (Theorem 4.8) offers the
Le Cam distance bound .
A(Pg,r, QW) < CyRn2vi (6.39)

for a constant Cs > 0 depending only on s > 1/2.

We present the minimax testing rates for distributed nonparametric regression un-
der both bandwidth and privacy constraints, known and unknown s, across three
theorems. We defer the proofs of these three theorems until the end of this section.

The first theorem gives the minimax rates for distributed nonparametric regression
under bandwidth constraints, for both fixed and random design, when s is known.
The rates are the same as those derived for the signal-in-white-noise model, where all
observed regimes occur depending on the values of s,m,n and b.

Theorem 6.4. Let R > 0, s > 1/2, Q; p € {Qf”é, QUr} and let b= by, m = my
and n = N/m be sequences of natural numbers such that

1/2—s

mn — 0 in case Qs g = QJS%% (6.40)

—2s
mn2+4a — 0 in case Qs g = Qrdm.

Take T7©®) ¢ {ysfb (b)} and let p = pppm,s be a sequence of positive numbers
satisfying

2s 1
]\7_23+1/27 Zfb > ]\725+1/27
2s
T 2s+1 1 _=2s 1 _
p? = (\/BN) + 7 if nTFIEMEBFIR L b < N2+172, (641)
2s 1 —2s
( /mn)_ 2s5+1/2 , Zf b < n2s+12m2s+1/2 ,

if 70 = 95(2, or

N~ 25131/2 ’Lf b> N25+11/2
p2 - (bN) 2s+3/2 an28+1/2mg:+11//24 <b< N23+1/2 (642)
(Vmn) T ifb < n2s+1/2mg<sill//;’

it 70 = 7 It holds that

1 i p«
inf Ro(HSET) L U<
TeT ®) ? 0 if o >»p.

The next theorem shows that, when s is unknown, but in some fixed range 1/2 <
Smin < 8 < Smax < 0, the adaptive minimax rate for distributed nonparametric
regression under bandwidth constraints matches that of the distributed signal-in-
white-noise model, as derived in Theorems [5.2] and [5.3]
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Theorem 6.5. Let R > 0, 1/2 < Smin < Smax < 0 be given and consider for
$ € [Smin, Smax), 9Qs.r € {fo,—c, Q;ﬁig}, Let b = by, m = my and n = N/m be
sequences of natural numbers such that

— i y d
mn1/2 Smin 5 () 40 case QS,R = QJ;IR’

1—-2smin

mn? min — 0 in case Qs r = QLR (6.43)

Take T©® ¢ {95(2, 9];(2}. Consider for s € [Smin, Smax] @ Sequence of positive num-

bers satisfying ps = pn,b,m,s Satisfying the minimax rate conditions of Theorems @
b
R

and i.e. (5.13)-(5.15) in case T®) = ys(g or (5.14)-(5.16) in case 7®) = 7,
It holds that

L if py<p,

inf R HS;R7T —
n sup o I ) {0 if ol » (loglog(N))Y4p,.

TeT® g

Smin;Smax)

Theorem [6.5]is a direct consequence of Corollary [6.1] and the Le Cam distance bounds
of and ‘ It essentially says that adaptation is equally difficult in dis-
tributed nonparametric regression under bandwidth constraints as in the signal-in-
white-noise model.

The next theorem shows that, under the local differential privacy constraints, the
rates of the distributed signal-in-white-noise model transfer to the distributed non-
parametric regression setting as well, both under fixed and random design. As in the
bandwidth constraint setting, this even holds in the adaptive setting.

Theorem 6.6. Let R > 0, 1/2 < Spin < Smax < © be given and for s € [Smin, Smax];
take Qs r € {Q?:%, Q:flgl . Consider sequences of natural numbers m = my and
n := N/m such that N = mn — 0, e = ex in (N"1,1] and § = 6y < (mn)~P for
some constant p = 2.

Take T€,0) € {Tsr(€,0), Trr(e, )} (i-e. either the class of shared or local random-
ness distributed locally (e,0)-DP distributed protocols), let ps = pn.m.e,s be a sequence

of positive numbers satisfying (6.34) in case e, ) = Tsr(e, ) or (6.35) in case
9(6,5) = ﬂLR(e,é).

If in addition, m,n and s > 1/2 satisfy (6.40), it holds that

. L if p' < ps
f  Ro(HSE,T) - ’
Te}n(e,é) olH, ) {O if o » log(1/6)log®(N)ps.

If (6.43)) holds, we furthermore have that

L if py < ps,

inf Ro(HSE,T)—
W qredty ReUHT) {o i ol > loa(1/8) log® (V).

5€[Smin,Smax] TET(€,0)
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Proof of Theorems [6-5 and[6.6. Corollary [6.1] implies that, for any sequences of
distributed protocols T'= T in Jg there exists a sequence of distributed protocols
T=Ty in Ip

|RQS,R(HS;R’T) - R/PS‘R(H;;R7T)| < mA(PS,Ra Qs,R)' (644)

The same statement holds when the roles of J5 and Zp are reversed. Combin-

ing (6.40) with the bounds of (6.38) and (6.39)), the right-hand side tends to zero.
Consequently, the statement of Theorem [6.4] follows now by Theorem

If
sup mA(Ps g, Qs.r) — 0,

se[smin 7sxnax]

(6.44)) implies that
inf sup  Ro, ,(HS® T)> inf sup Rp, o(HSE T) + o(1).
Tey@se[sminysmax] . ’ Tegpse[sminasmaX] YR a

Since ((6.44)) also holds with the roles of J5 and Zp are reversed, the above statement
holds with the reverse inequality also, from which we can conclude that

inf  sup  Ro, (HT)= inf sup Rp, (HZT)+o(1).

Tetggse[smmﬁmax] TegpSE[SmimSmax]

Consequently, the Le Cam bounds (6.38)-(6.39) combined with (6.43) and Theo-
rems [5.2] and [5.3] yield the statement of Theorem

Through the same steps, Theorem [6.6] follows from the results of Chapter [5 in par-
ticular the local differential privacy minimax rates as given in (6.34) and (6.35). O

6.3.2 Nonparametric density testing

Through a similar strategy, rates can be obtained for nonparametric density testing,
which is closely related to the multinomial model discussed in Section Consider a
distribution on [0, 1] with Lebesgue density q. Let (g denote the product distribution.
Each machine j = 1,...,m observes

X0 = (x9 . x0)), with X9 Mg, (6.45)
Consider for some k > 2 the set

1
Qur = {q OO0 4> 0, [ ait =1, lale <. [1/al < n},
0

where C*%[0,1] is the set of s-smooth Hélder functions with Hélder-norm bounded
by R > 0, see Section for a definition. In a slight abuse of notation, we let Q, g
also denote the model generated by the observations of (6.45) with the Lebesgue
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densities ¢ € Q, g, i.e. the set consisting of the probability measures on [0, 1]™ given
by A= §,(®1)(s)ds with q € Q; .

For the above model, the minimax rates in the nondistributed case are known for
both estimation and testing, see e.g. [89, [95]. In the distributed case, the rates are
derived under bandwidth constraints in the case of a large number of observations
locally in [30L 226] or for the case of each machine having just one observation locally
(n = 1) in [I4]. Under differential privacy constraints, only the case where each
machine has just one observation (n = 1) has been studied in the context of estimation
in [79], 1776, 134] 43] and testing in [I36]. Below, we derive the local differential privacy
rate for multiple draws of the density per machine (i.e. n » 1).

Let go denote the Lebesgue density of the uniform distribution on [0, 1] and consider
the testing problem of the hypotheses

Hy:q=qo versus q € HS;R ={qe Qsrn HOR[0,1] ¢ g — qolly = p}.  (6.46)

Let Po denote the model corresponding to observations generated by the observation
L)

=+/q(t)dt + —dW,”’. 6.47

Theorem 2 in [I72] gives the following bound on the Le Cam distance between this
signal-in-white-noise model and the model generated by ((6.45));

A(PS,R7 QS,R) < CS,I*{R’n’%y (648)

for a constant C; , depending only on & > 0 and s, with s — (. bounded on
1/2 < s < 1. Leveraging Lemma [6.3] E we can use the above bound to obtain that the
rates governing goodness-of-fit testing in the signal-in-white-noise model as studied
in Chapter [5| also govern density testing. We summarize the minimax rate results
for distributed density testing under either bandwidth or local differential privacy
constraints, known and unknown regularity, in a single theorem below.

Theorem 6.7. Let 1/2 < $pmin < Smax < 1, Kk, R > 0 be given and consider a sequence
m=mp, n:= N/m such that

1-2smip
mn 2 min — (. (6.49)
Let Zg denote either shared or local randomness distributed protocols under either
a b = by-bandwidth constraint or (e 6) differential privacy constraint and let ps the
minimaz rate of Theorem |6 m or - for each type of protocol, respectively.
Assume in addition that e = ey and (5 = 0y satisfy mY*n=1* « € < 1 and log(1/8) =
log N.

For each of the choices of Zqo described above there exists a positive sequence My,
at most of poly-logarithmic order in N, such that

1 if pl< My'ps,

su inf Ro(HSE,T)—
b, RelnT) {0 if p.» Myps.

S€[Smin,Smax]
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Remark 15. The restriction to C*f[0,1] n H*[0,1] instead of just C*¥[0,1] in
the alternative hypothesis of is made for simplicity, aligning the alternative
hypothesis with the results in Chapter [5] for the signal-in-white-noise model that are
only derived for Sobolev spaces. As remarked in the aforementioned chapter, the
minimax rates derived for the signal-in-white-noise model are the same for C*%[0, 1]
alternatives as for H*%[0,1] alternatives, up to a logarithmic factor.

In the unconstrained case, the theorem recovers the minimax goodness-of-fit density
testing rate for the hypothesis as derived in [120] (up to logarithmic factors).
Furthermore, under the restricted setting of the theorem, distributed density testing
is shown to be approximately equally difficult as the signal-in-white-noise detection
problem considered in Chapter [5 for both bandwidth and local differentially privacy
constraints.

The proof is less straightforward than that of the theorems concerning nonparametric
regression, as the null- and alternative hypotheses of do not immediately trans-
late to the hypotheses studied for the signal-in-white-noise model. To that extent,
the proof has similarities with the proof of Theorem [6.1]

Proof. The Le Cam distance bound of (6.48)) and Corollary together imply that
for every sequence of distributed protocols T' = Ty in _Zg there exists 7" = T in
Fp such that

s,R s,R
)RQ(HP,S T) — Rp(HZ®T)| < mA(P r, Qs r)- (6.50)

The same statement is true with the roles of #o and _#Zp reversed. The condi-
tions (6.49) and (6.48) give an upper bound on the right-hand side of the above
display, uniformly in s € [Smin, Smax]. Consequently,

inf sup RQ(H;;R,T) = inf sup RP(H;}R,T) +0o(1). (6.51)

T€. 2 selsmin,Smax] ° TE P selsmin,Smax)

Since XU) — /gy is a sufficient statistic in the model Ps.r, we can (by another appli-
cation of Corollary , consider the model P, g to be generated by

G) _ _ 1 ()
X! —(«/q(t) 1)dt+ = (6.52)

We split the remainder of the proof into showing “ps is an upper bound” and “p; is
a lower bound” for the minimax rate.

The rate ps is an upper bound for the minimaz rate (up to logarithmic factors): We
start by noting that the Li-norm is bounded above by a multiple of the Hellinger
distance (Lemma [6.10]in the appendix). That is,

g0 —qlh <2 \/ f Jao(s) — va(s)? ds,
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which implies that the function /go — /¢ has Ly-norm bounded from below by p/2
whenever ¢ € H ;;R. The function = — 4/z has a bounded derivative on the domain
(1/L,0) and can be smoothly extended to a function on R that vanishes at 0 and has
a bounded derivative on R. Since ¢ is assumed to be in C*%[0,1] n H*%[0,1] and
1/k < |q| < K, by e.g. Theorem 2.87 in [26] we obtain that

Iv/all3s10,1) < CxR

for a constant C,, > 0 depending only on x and clearly a similar bound holds for
/4 — +/q0- Consequently, it holds that

inf sup Rp HSE ,,T)—0
TGJ’P Se[smin75n\ax] ( MNps )

by Theorems and for each of the classes considered for #p, corresponding
minimax rates ps and appropriate (at most) poly-logarithmic in N factor My. As
a consequence of , the adaptive testing risk vanishes for the adaptive density
testing risk.

The rate ps is a lower bound for the minimaz rate (up to logarithmic factors): Fix an
arbitrary s € [Smin, Smax]- We consider a similar prior on Ls[0,1] as the one used in
the proofs of Theorem [5.1]and Theorem [5.4] That is, for L € N let the linear operator
Wy, i R2 - L,[0,1] be defined by

2l 1

i ft =) frs,
i=0

for f¥ = (fo,..., for_1) € R2" and {Yr; 2 1 = 1o, i = 0,...,2" — 1} forming an
orthonormal S-smooth wavelet basis such that Sé P1i(s)ds = 0 for all | > Ly for some
fixed Lo > ly, S > Smax and compactly supported (see Section for a definition).

As U is measurable, w0 \Ilzl defines a probability measure on the Borel sigma alge-
bra of L3[0, 1] for any probability distribution 77, on the Borel sigma-algebra of R2".
To that extent, let 7, = N(0,T), with T' = C27 L p2 M T € R2"%2" for a symmetric,
idempotent matrix T € R2"*2" with rank(T') = 2L and C' > 0 a constant. Taking
L=L,=[1v Llog(1/ps)], it follows by the proof of Theorem 5.1 (or Theorem [5.4)
that

o Ut (H*F[0,1]) = 1 —o(1).

Furthermore, for a fixed constant R’ > 0,

oWt (CS’R/ [0, 1]) >1—"Pr <M§1p1+1/(25)2“+1/2 max |Z;| = \@R’) ,

1<i<g2l

for Z1,..., 290 i.i.d. standard Gaussian. By Lemma [3.27] the probability on the
right-hand side tends to zero for My » \/log(N), meaning that f is in the s-smooth
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Holder ball of radius R’ with probability tending to one. Similarly, by Lemma [3.27]
mL oW (Ifle < ps) =1 —o(1),

Setting ¢ = 1+ f we can conclude that for f ~ w00, !, gy is in C*%[0, 1]07—[5’R[0, 1]
with probability tending to 1. Furthermore, gy is a probability density,

and So s)ds = 0. To see the latter, note that L — o as p — 0, for which we have

2l 1

ff )ds = Z kaJ Yrr(s)ds =0 VYL > Lg. (6.53)

So, | f|l1 = ps/Mn implies that ¢ € H]S\/’Iglps. The latter condition holds with 77,0 '

probability 14+ 0(1/C). To see this, note that the wavelets are compactly supported,
So [Yrk(s)|ds = 275/2 so it follows that

JHlede oW (f) 2 ps My 27 E|ITZ|1 2 ps My,

where Z ~ N (0, I,.) and the last step follows from the fact that T is idempotent and
has rank of the order 2. By the fact that

[ Urigans 0w () < [111am 0 w1 () < o2,

we obtain that, for a large enough choice of C' > 0,

_ M
700U ([f1y < po/My) < 705 (pN

[1shtme 002> cp2)
which by Chebyshev’s inequality and the abound on the second moment is of the
order 1/C.

The rest of the proof follows along a similar argument as the one used in the proof of
Theorem Consider the model P, p to be generated by

ax = @dt + \/dem (6.54)

By Pinsker’s inequality,

m m mn vm
| PF™ = Py oy < \/ Dk (Pyi Py) = Y201 — gl
V2
for any f, g € Lo[0, 1] and with PJ%/"Q denoting the distribution of (6.54)). Consequently,

the probability distribution corresponding to j = 1,...,m ii.d. draws of (6.54)) is at

most
Dy :=vmn|\q—1-f/2],



256 6. STATISTICAL EQUIVALENCE UNDER COMMUNICATION CONSTRAINTS

far away in total variation distance from the probability distribution of the j =
1,. m ii.d. draws of (6 - Via the Taylor approximation /T + y—1 = y/2—y2/8+

W for some 1 € [0,y], the display above with ¢ = 1 + f is further bounded

by /mn | f?|, /2, where it is used that |f| < 1/2 for all N large enough. The latter
quantity is less than y/mnp? /4 with probability tending to one under 77, 0¥, '. Let P
denote the joint distribution of the transcripts Y = (Y1, ..., Y (™) corresponding
to the distributed protocol T' and the data X = (XM, ... X(™)) with XU) governed
by . Combining the above with Lemma it follows that

inf su R HS}R,T >
Te 7p se[sm,ngm] P( Ps )
f s PLT(Y +J’ 1—T(Y))dny oWt
s BT [Py T oV ()

San, 0 U (g H UL < )~/
It was established earlier in the proof that for C' > 0 large enough, the second term

on the right-hand side can be made arbitrarily small. In case of ps corresponding to
the minimax rate under bandwidth constraints, we have that

it < () <0 o

where it is used that s > 1/2 and m/n — 0 by (6.49). Under differential privacy
constraints, we similarly have that

28?’751/2 m1/6
n1/6€2/3

Fps$r(\ﬁm

whenever ¢ » m'/4n~1/4. By combining the above with (6.51)), we conclude that
s,R _ 1 _
inf sup RQ(HMZGIPs’T) =1-o0(1),

T€.22 se[smin,Smax]

by (the proofs of) Theorems for bandwidth and local differential privacy
constraints for appropriately large but at most poly-logarithmic factors My, finishing
the proof. O

Chapter acknowledgements: The quote at the start of the chapter is from [220].

6.4 Appendix

The lemmas in this section are well known in the literature, but we provide proofs for
completeness. The first lemma below is used in the comparison of the multinomial
model to the many-normal-means model.
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Lemma 6.4. Let d € 2N, F < R¥2 and consider for i = 1,...,d independent
random variables X; = h; + 0Z; with o > 0 and Z; ~ N(0,1) satisfying

B — a; fi if i < d/27
' —aifi—qpp ifi>d/2,

for some f e F and a = (a;)ie[q) € R?. Let P denote the model generated by the
observations X = (X1,...,Xq) ~ Py, f € F and let Q denote the model generated

by

Xi = (ai + agjosi) fi + V20Z;,  fori=1,... ,d/2,
with Z; "&* N(0,1) and f € F.

Then, A(P,Q) = 0.

Proof. We shall show that the statistic S = (a; X; — a; Xg4/241)ie[q) is sufficient for the
model P by using Neyman-Fisher (Lemma . We have

de _ d -1 15
ap, X) = e (" Xihi =5 5hi
d/2 1 —1oT 1 2
= AL exp (a1(aiXi—aiXd/2+1)fi—UJE) =7 Sl

In distribution, X = (f(,»)ie[d] is equal to S, which implies A(P, Q) = 0 per Lemma
L

The following lemmas are well known but included for completeness.

Lemma 6.5. Let Py denote the distribution of a N(f,0ly) distributed random vector
for f e R* and let Py denote the distribution of n i.i.d. draws (i.e. P} = X, Pr).

It holds that n
1P} = Pl < o f .

Proof. By Pinsker’s inequality,
n n n .
|1Pf = Py rv < §DKL(Pf’Pg)~
A straightforward calculation gives that the latter is bounded by % If—gl,- O

The following lemma relates the total variation distance between P, to the Li-
distance between corresponding densities.
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Lemma 6.6. Let P,Q be probability measures dominated by a sigma-finite measure

w with corresponding probability densities p = ‘fi—i and q = %. It holds that

IP = Qlrv = 5 [ Ip(o) ~ a(o)ld(a).

Proof. See e.g. Section 2.4 in [204]. O

The next lemma gives a useful characterization of the total variation distance between
two probability measures.

Lemma 6.7. Let P be a signed, bounded measure defined on measurable space (X, Z")
and suppose that P < v for a sigma-finite measure v. It holds that

1
|P|Tv = 5 Sup {ffdP: |fl <1 and f: X > R is measurable } (6.55)

Proof. Consider the Jordan measure decomposition P = Pt — P~ where P*, P~
are both positive, bounded measures such that P™ L P~. For any measurable f,
{f=0},{f <0} e Z,so|fl <1 means that

dep < Jf]l{f;o}dp+ — ffﬂ{fso}dp_
< J‘]l{fgo}dPJr + J]l{fgo}dpi
<[Py + [P vy < 2[P|Tv-

For the other direction, note that f = sign(p — ¢) is measurable and bounded by 1,
which gives

1 1
5 dep =5 f lp — qldv = ||P — Q| v,

where the last equality follows from Lemma
O

Lemma 6.8. Let P = @;11 P; and Q = ®;n:1 Qj for probability measures Pj,Q;
defined on a common measurable space (X, Z"), with probability densities p;,q; for
j=1,...m. It holds that

|P = Qlrv < Y]IP; — Qjfrv-
j=1
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Proof. The measures P; and @); admit densities with respect to P; 4+ @;, which we
shall denote by p; and g;, respectively, with

m d 711 P m d Tri ;
pim 1:[ p; m@_yfl J and g: 1:[ g = m®J71 o .
j=1 d®]—1(P]+Q]) J=1 d@jzl(PjJer)

Writing p = ®T:1(Pj + @;) and applying Lemma . we obtain

1 m m
IP=Qlrv =3 f | () — ILg5(2j)ldp(n, - . o). (6.56)
By the telescoping product identity
m -1
Ay Gy —by by by = Y (a; — b)Hak H Kz (6.57)
, =j+

1

J

and Fubini’s Theorem, the right-hand side of (6.56|) is bounded by

Z j 19 (25) — a5 () d(P; + Q) () EHP Qilrv.

O

The following lemma can be seen as a data processing inequality for the total variation
distance.

Lemma 6.9. Let (X, 2") and (Y, %) be two measurable spaces and let K : ¥ x X —
[0,1] be a Markov kernel. For any probability measures P,Q defined on Z it holds
that

IPK = QK|lrv < [P = Q|rv.

Proof. This follows immediately from the representation in Lemma[6.7|combined with
the fact that, for |f| < 1, 2 — § f(y)dK (y|z) is a measurable function bounded by 1
since K is Markov kernel. Hence,

supl P (4) = QK ()| = goup [ | F) K wlo)d(P - Q)(x)
A !
< g [ (P - Q).
U

The next lemma bounds the Lq-distance |p — g1 between densities with a multiple
of the Hellinger distance 2_1/2\\\/13 — /dll2-
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Lemma 6.10. For two probability densities p,q with respect to p, it holds that

5 [ 1) = a@) duta) < ¢ | (Vo) = V@) duta).

Proof. The result follow from the Cauchy-Schwarz inequality and the fact that S pdy =
§qdu = 1. See e.g. [204] for details. O



Discussion

The results of this thesis mathematically characterize and quantify the impact of vari-
ous communication constraints in distributed hypothesis testing, where we have inves-
tigated bandwidth constraints, differential privacy constraints, and a meta-analysis
setting.

The specific statistical task that is central to the thesis is that of “signal detection” or
“goodness-of-fit” testing, where we wish to decide between a null hypothesis that the
data is generated by a particular specified “null” probability distribution, versus the
alternative hypothesis that the data is generated by another probability distribution
belonging to a family of alternatives.

The results provide insight into how the statistical problem of testing gets more diffi-
cult depending on the severity of the bandwidth or privacy constraint. The theory is
derived in an abstract distributed setting, in which we have m machines (e.g. locations;
hospitals, sensors, servers, etc.). Each of the j = 1,...,m machines communicates
a transcript on the basis of a local independent sample of n data points drawn from
an unknown distribution. Each transcript has to satisfy a certain communication
constraint. In case of a bandwidth constraint, the transcript is considered to contain
at most b-bits of information. In case of privacy constraint, the transcript ¥) must
satisfy a differential privacy constraint governed by two parameters ¢ and §, where
smaller values for € and § give stronger privacy guarantees. Chapter [d] concerns a
meta-analysis setting, where the constraint comes in the form of restricting the type
of test statistics communicated by each of the machines to those that are “typical”
when only the outcome of studies are published (e.g. a test outcome or p-value).

Within the minimax paradigm, the theory in this thesis captures the difficulty of the
various distributed and constraint testing problems, in terms of the characteristics of
the underlying model and statistical setting. That is to say, it describes the difficulty
in terms of the minimax separation rate as a function of b in the bandwidth constraint
setting and e and ¢ in the differential privacy constraint setting, as well as m, n and
d (or in terms of the regularity hyperparameter “s” in the case of a nonparametric
model formulation).

261
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Chapter [2] and [3] together establish the minimax rate for the canonical many-normal-
means model for both bandwidth and privacy constraints. The first of these two
chapters focusses on proving impossibility theorems for these settings. Where typical
proof techniques in the literature used for e.g. estimation minimax rates fall short, the
chapter exhibits a novel framework which proves fruitful in deriving distributed testing
minimax separation rates. Chapter [3] establishes that the rates of the impossibility
theorems are indeed sharp, by exhibiting methods that attain these rates. Hence, the
methods derived in the former chapter are optimal in terms of the minimax separation
rate.

The results of Chapter [2] and [3| fully establish the bandwidth constraint rates in a
testing setting, where previously rigorous study of performance of distributed band-
width constraint problems has been mostly conducted for estimation. In terms of the
privacy results, the findings of these two chapters contribute to the existing literature
by establishing the minimax testing (and estimation) rates under differential privacy
a fully general distributed setting, where earlier literature derived optimality results
only in the case of local differential privacy (i.e. n = 1) or central differential privacy
(i.e. m =1).

The results of Chapter [2| and [3] testing are contrasted with known results for esti-
mation under bandwidth constraints and differential privacy constraints, where the
latter optimality results are novel and derived in Chapter [2] also. Here, multiple fun-
damental differences between estimation and testing which occur under the presence
of communication constraints are uncovered. Where classically the high-dimensional
testing problem is already fundamentally different from estimation, it is revealed that
these differences persist and are in many ways exacerbated under bandwidth and
privacy constraints.

In the presence of bandwidth or differential privacy constraints, it turns out that
there are more possibilities in terms of testing than for its natural estimation coun-
terparts. In the presence of these constraints, consistent testing is possible in regimes
where consistent estimation is not. Furthermore, testing is subject to many phase
transitions, in which different testing strategies need to be adopted for optimal per-
formance, whereas estimation under these constraints typically be performed by a
single procedure. That consistent testing is ‘easier’ than estimation and has more op-
tions in terms of different consistent testing strategies, conversely means that showing
impossibility results turns out to be much more involved, as is exhibited in Chapter

In Chapter[d the theory derived in Chapter [2]and [3]is extended to the setting of meta-
analysis, by establishing a connection between meta-analysis and distributed learning
under bandwidth constraints. This chapter provides a unified, theoretical framework
for evaluating the behavior of standard meta-analysis techniques, such as Fisher’s
and Bonferroni’s method. In the normal means model, it is shown that by combining
the locally optimal chi-square statistics at a meta-level one can gain a factor of 1/m
compared to using just a single trial. Nevertheless, regardless of the choice of the
combination method, a factor of y/m A V/d is lost compared to the scenario when all



6.4. APPENDIX 263

data from all trials are at our disposal. This loss in efficiency, as captured by the
minimax separation rate, is the same as the one suffered under a 1-bit bandwidth
constraint in the many-normal-means model, as exemplified by the theory derived in
the earlier Chapters [2 and

In Chapter [5] the minimax rate for goodness-of-fit testing in the nonparametric dis-
tributed signal-in-white noise model is derived, for both bandwidth- and privacy con-
straints settings. The nonparametric signal-in-white-noise model is a natural exten-
sion of the finite dimensional many-normal-means model considered in the previ-
ous chapters. This nonparametric model serves as a benchmark for nonparametric
goodness-of-fit testing, and the results here follow from the theory established in
Chapter [2| and As an added difficulty, we consider the setting where the true
smoothness s of the underlying signal parameter is unknown. When the smooth-
ness s is unknown, the results and methods of the earlier chapters do not transfer as
straightforwardly to the nonparametric problem. It is shown that rate optimal meth-
ods can adapt to the unknown regularity s of the underlying function with a cost of
at most additional logarithmic factors in both the bandwidth and differential privacy
constraint settings, where we characterize the cost of adaptation exactly under the
former constraints.

In Chapter [ some bandwidth and privacy results of the earlier chapters are shown to
extend to other models as well, such as the multinomial model, nonparametric densi-
ties and nonparametric regression. The focus of this chapter is distributed goodness-
of-fit testing under communication constraints, and the minimax rates for the afore-
mentioned models are derived by leveraging existing model comparisons from the
literature in the distributed setting. The chapter also exemplifies a scenario in which
the distributed bandwidth constraint testing problem with n observations from the d
dimensional multinomial model behaves drastically different from its many-normal-
means model counterpart. The latter fact is used to show that these models are
asymptotically nonequivalent when d/n is large.

A remarkable finding that is consistent across each of the constraint types and models
considered, is that there is fundamentally a benefit of having access to shared random-
ness in the distributed setting. For certain constraint budgets, the improvement over
protocols that rely solely on local sources of randomness is strict. In real applications
without interaction, one should always use shared randomness if at all possible.

The theory in this thesis can be extended in many directions. In Chapter [6] we
learn that depending on a relation between d and n, the multinomial model and
many-normal-means model do not always exhibit the same behavior under band-
width or privacy constraints. Understanding these differences well can give insights
into the impact of the model on the cost of communication constraints. Further-
more, this provides a lens to understand differences between models outside of the
distributed context. To understand these problems better, one might require to adapt
the Brascamp-Lieb inequality type of argument to a non-Gaussian setting or use a
different technique altogether.
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Other extensions apply to the many-normal-means and signal-in-white-noise settings
as well. To list a few, one could consider different alternative hypotheses, alternatives
that are sparse in an appropriate sense or a multiple testing setting. Another extension
is to consider settings in which variances of the noise are unknown. In principle, since
variances can be estimated at an n~'/2-rate locally in each machine (see e.g. [I83]), one
could conjecture that this leaves the established rates unchanged (up to logarithmic
factors as observed in [47]), but this has not been verified by the author beyond the
back of an envelope. Furthermore, whilst our analysis supports differing budgets to
the extent that €¢; = €, 0; = 0k, b; = b and n; = nyg, it would be interesting
to consider settings in which the machines are heterogeneous in their constraints and
number of observations, such as considered in the estimation results of [I89, [51]. Since
differential privacy is not the only formal notion of privacy, other notions of privacy
could be considered. Lastly, the distributed setting considered here is a federated
setting where data is observed and shared “at once” to a single “central server”.
Architectures in which machines share transcripts, for example, sequentially, do not
fall under this scope and merit their own study.
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