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A Metric Spaces
A.1 Metrics

Definition A.1 (Metric). Let X be a set. A metric on X is a function d : X ˆX Ñ R
such that for all x, y, z P X:

(i) dpx, yq ě 0 (non-negativity);

(ii) dpx, yq “ 0 if and only if x “ y (identity of indiscernibles);

(iii) dpx, yq “ dpy, xq (symmetry);

(iv) dpx, zq ď dpx, yq ` dpy, zq (triangle inequality).

Definition A.2 (Metric Space). A metric space is a pair pX, dq, where X is a set and
d is a metric on X.

Example A.3 (Euclidean Space). Let X “ Rn. The Euclidean metric is defined by

dpx, yq “ }x ´ y}2 “

d

n
ÿ

i“1
pxi ´ yiq

2.

Then pRn, dq is a metric space. ♢

Example A.4 (Function Space). Let X “ Cr0, 1s, the set of continuous real-valued
functions on the interval r0, 1s. The supremum metric (or uniform metric) is defined by

dpf, gq “ sup
tPr0,1s

|fptq ´ gptq|.

Then pCr0, 1s, dq is a metric space. ♢

A.2 Topology

Definition A.5 (Open Ball). Let pX, dq be a metric space. The open ball of radius
r ą 0 centered at x P X is the set

Brpxq “ ty P X : dpx, yq ă ru.

Definition A.6 (Open Set in Metric Spaces). A subset U Ď X is called open if for
every x P U , there exists an ϵ ą 0 such that Bϵpxq Ď U .
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Definition A.7 (Neighborhood). A subset N Ď X is called a neighborhood of a point
x P X if there exists an open set U such that x P U Ď N . Equivalently, N is a
neighborhood of x if there exists an ϵ ą 0 such that Bϵpxq Ď N .

Proposition A.8. Let pX, dq be a metric space. The collection T of open sets in X

(as defined in Definition A.6) satisfies the following properties:

(i) H P T and X P T ;

(ii) The union of any collection of open sets is open;

(iii) The intersection of any finite collection of open sets is open.

Definition A.9 (Continuous Function). Let pX, dXq and pY, dY q be metric spaces. A
function f : X Ñ Y is continuous at a point x P X if for every ϵ ą 0, there exists a
δ ą 0 such that dXpx, yq ă δ implies dY pfpxq, fpyqq ă ϵ. The function f is continuous
if it is continuous at every point in X.

Proposition A.10. Let pX, dXq and pY, dY q be metric spaces. A function f : X Ñ Y

is continuous if and only if for every open set V Ď Y , the preimage f´1pV q is open in
X.

Proposition A.10 reveals that continuity can be characterized entirely in terms of
open sets, without explicit reference to the underlying metric.

Definition A.11 (Topology Generated by a Metric). The collection of all open sets in
a metric space pX, dq forms a topology on X, called the topology induced by the metric
d.

This motivates the generalization of continuity in metric spaces to spaces where
only the notion of “openness” is defined, which leads to the definition of a topological
space. It turns out that the properties of Proposition A.8 are precisely the properties
needed to have things function the way they do for metrics.

Definition A.12 (Topology). A topology on a set X is a collection T of subsets of X
satisfying:

(i) H P T and X P T ;

(ii) The union of any collection of sets in T is in T ;

(iii) The intersection of any finite collection of sets in T is in T .

The pair pX, T q is called a topological space. The elements of T are called open sets.

Remark A.13. Every metric induces a topology, but not every topology arises from a
metric. A topological space whose topology is induced by a metric is called metrizable.

v2025.0 – This is a draft – use at your own risk



A.3. Compactness 105

Definition A.14 (Separable Space). A topological space X is called separable if it
contains a countable dense subset. That is, there exists a countable set D Ď X such
that D “ X.

Definition A.15 (Polish Space). A topological space X is called a Polish space if it
is separable and completely metrizable. That is, there exists a metric d on X which
induces the topology of X such that pX, dq is a complete metric space.

A.3 Compactness

Definition A.16 (Closed Set). A subset F Ď X is closed if its complement XzF is
open.

Definition A.17 (Closure). The closure of a subset A Ď X, denoted A, is the
intersection of all closed sets containing A. It is the smallest closed set containing A.

Definition A.18 (Bounded Set). A subset A of a metric space pX, dq is bounded if
there exists x P X and R ą 0 such that A Ď BRpxq.

Definition A.19 (Compactness). A subset K of a topological space X is compact if
every open cover of K has a finite subcover. That is, if K Ď

Ť

iPI Ui where each Ui is
open, then there exists a finite subset J Ď I such that K Ď

Ť

jPJ Uj.

Definition A.20 (Sequential Compactness). A subset K of a metric space is sequen-
tially compact if every sequence in K has a convergent subsequence whose limit belongs
to K.

In metric spaces, compactness and sequential compactness are equivalent.

Definition A.21 (Limit Point). A point x P X is a limit point (or accumulation point)
of a set A if every open neighborhood of x contains a point of A distinct from x.

Definition A.22 (Generated Topology). Let X be a set and S be a collection of
subsets of X. The topology generated by S is the smallest topology on X containing S.
It consists of all arbitrary unions of finite intersections of elements of S. The elements
of S are called a subbasis for the topology.

Example A.23 (Standard Topology on R). Let X “ R. The standard topology on R
is the topology generated by the collection of all open intervals pa, bq. In fact, this is
the same as the topology induced by the Euclidean metric dpx, yq “ |x ´ y|. ♢

Example A.24 (Topology of Pointwise Convergence). Let X be the set of all functions
f : r0, 1s Ñ R. The topology of pointwise convergence is the topology generated by
sets of the form

St,pa,bq “ tf P X : a ă fptq ă bu
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where t P r0, 1s and a ă b are real numbers. Convergence in this topology corresponds
exactly to pointwise convergence: a sequence fn Ñ f if and only if fnptq Ñ fptq for all
t P r0, 1s. ♢
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