

Part III

Appendix

A Metric Spaces

A.1 Metrics

Definition A.1 (Metric). Let X be a set. A *metric* on X is a function $d : X \times X \rightarrow \mathbb{R}$ such that for all $x, y, z \in X$:

- (i) $d(x, y) \geq 0$ (non-negativity);
- (ii) $d(x, y) = 0$ if and only if $x = y$ (identity of indiscernibles);
- (iii) $d(x, y) = d(y, x)$ (symmetry);
- (iv) $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality).

Definition A.2 (Metric Space). A *metric space* is a pair (X, d) , where X is a set and d is a metric on X .

Example A.3 (Euclidean Space). Let $X = \mathbb{R}^n$. The Euclidean metric is defined by

$$d(x, y) = \|x - y\|_2 = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.$$

Then (\mathbb{R}^n, d) is a metric space. \diamond

Example A.4 (Function Space). Let $X = C[0, 1]$, the set of continuous real-valued functions on the interval $[0, 1]$. The supremum metric (or uniform metric) is defined by

$$d(f, g) = \sup_{t \in [0, 1]} |f(t) - g(t)|.$$

Then $(C[0, 1], d)$ is a metric space. \diamond

A.2 Topology

Definition A.5 (Open Ball). Let (X, d) be a metric space. The *open ball* of radius $r > 0$ centered at $x \in X$ is the set

$$B_r(x) = \{y \in X : d(x, y) < r\}.$$

Definition A.6 (Open Set in Metric Spaces). A subset $U \subseteq X$ is called *open* if for every $x \in U$, there exists an $\epsilon > 0$ such that $B_\epsilon(x) \subseteq U$.

Definition A.7 (Neighborhood). A subset $N \subseteq X$ is called a *neighborhood* of a point $x \in X$ if there exists an open set U such that $x \in U \subseteq N$. Equivalently, N is a neighborhood of x if there exists an $\epsilon > 0$ such that $B_\epsilon(x) \subseteq N$.

Proposition A.8. *Let (X, d) be a metric space. The collection \mathcal{T} of open sets in X (as defined in Definition A.6) satisfies the following properties:*

- (i) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$;
- (ii) The union of any collection of open sets is open;
- (iii) The intersection of any finite collection of open sets is open.

Definition A.9 (Continuous Function). Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f : X \rightarrow Y$ is *continuous* at a point $x \in X$ if for every $\epsilon > 0$, there exists a $\delta > 0$ such that $d_X(x, y) < \delta$ implies $d_Y(f(x), f(y)) < \epsilon$. The function f is *continuous* if it is continuous at every point in X .

Proposition A.10. *Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f : X \rightarrow Y$ is continuous if and only if for every open set $V \subseteq Y$, the preimage $f^{-1}(V)$ is open in X .*

Proposition A.10 reveals that continuity can be characterized entirely in terms of open sets, without explicit reference to the underlying metric.

Definition A.11 (Topology Generated by a Metric). The collection of all open sets in a metric space (X, d) forms a topology on X , called the *topology induced by the metric* d .

This motivates the generalization of continuity in metric spaces to spaces where only the notion of “openness” is defined, which leads to the definition of a topological space. It turns out that the properties of Proposition A.8 are precisely the properties needed to have things function the way they do for metrics.

Definition A.12 (Topology). A *topology* on a set X is a collection \mathcal{T} of subsets of X satisfying:

- (i) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$;
- (ii) The union of any collection of sets in \mathcal{T} is in \mathcal{T} ;
- (iii) The intersection of any finite collection of sets in \mathcal{T} is in \mathcal{T} .

The pair (X, \mathcal{T}) is called a *topological space*. The elements of \mathcal{T} are called *open sets*.

Remark A.13. Every metric induces a topology, but not every topology arises from a metric. A topological space whose topology is induced by a metric is called *metrizable*.

Definition A.14 (Separable Space). A topological space X is called *separable* if it contains a countable dense subset. That is, there exists a countable set $D \subseteq X$ such that $\overline{D} = X$.

Definition A.15 (Polish Space). A topological space X is called a *Polish space* if it is separable and completely metrizable. That is, there exists a metric d on X which induces the topology of X such that (X, d) is a complete metric space.

A.3 Compactness

Definition A.16 (Closed Set). A subset $F \subseteq X$ is *closed* if its complement $X \setminus F$ is open.

Definition A.17 (Closure). The *closure* of a subset $A \subseteq X$, denoted \overline{A} , is the intersection of all closed sets containing A . It is the smallest closed set containing A .

Definition A.18 (Bounded Set). A subset A of a metric space (X, d) is *bounded* if there exists $x \in X$ and $R > 0$ such that $A \subseteq B_R(x)$.

Definition A.19 (Compactness). A subset K of a topological space X is *compact* if every open cover of K has a finite subcover. That is, if $K \subseteq \bigcup_{i \in I} U_i$ where each U_i is open, then there exists a finite subset $J \subseteq I$ such that $K \subseteq \bigcup_{j \in J} U_j$.

Definition A.20 (Sequential Compactness). A subset K of a metric space is *sequentially compact* if every sequence in K has a convergent subsequence whose limit belongs to K .

In metric spaces, compactness and sequential compactness are equivalent.

Definition A.21 (Limit Point). A point $x \in X$ is a *limit point* (or accumulation point) of a set A if every open neighborhood of x contains a point of A distinct from x .

Definition A.22 (Generated Topology). Let X be a set and \mathcal{S} be a collection of subsets of X . The *topology generated by \mathcal{S}* is the smallest topology on X containing \mathcal{S} . It consists of all arbitrary unions of finite intersections of elements of \mathcal{S} . The elements of \mathcal{S} are called a *subbasis* for the topology.

Example A.23 (Standard Topology on \mathbb{R}). Let $X = \mathbb{R}$. The standard topology on \mathbb{R} is the topology generated by the collection of all open intervals (a, b) . In fact, this is the same as the topology induced by the Euclidean metric $d(x, y) = |x - y|$. \diamond

Example A.24 (Topology of Pointwise Convergence). Let X be the set of all functions $f : [0, 1] \rightarrow \mathbb{R}$. The topology of pointwise convergence is the topology generated by sets of the form

$$S_{t,(a,b)} = \{f \in X : a < f(t) < b\}$$

where $t \in [0, 1]$ and $a < b$ are real numbers. Convergence in this topology corresponds exactly to pointwise convergence: a sequence $f_n \rightarrow f$ if and only if $f_n(t) \rightarrow f(t)$ for all $t \in [0, 1]$. \diamond