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B Measure Theory
B.1 Measure and Probability

The foundational concept in measure theory is the sigma-algebra, which defines the
collection of subsets to which we can assign a measure.

Definition B.1. A σ-algebra F on a set Ω is a collection of subsets of Ω that satisfies
the following properties:

(i) H P F

(ii) If A P F , then Ac P F

(iii) If A1, A2, . . . P F , then
Ť8

i“1 Ai P F

Once we have a σ-algebra, we can define a measure, which generalizes the concepts
of length, area, and probability.

Definition B.2. Consider a measurable space pΩ,Fq. A measure µ on a σ-algebra F
is a function that assigns a non-negative real number to each set in F and satisfies the
following properties:

1. µpHq “ 0

2. If A1, A2, . . . P F are disjoint, then µp
Ť8

i“1 Aiq “
ř8

i“1 µpAiq

If µpΩq ă 8, then µ is called a finite measure. If in addition µpΩq “ 1, then µ is a
probability measure.

These components form the standard objects of study in measure theory.

Definition B.3. A pair pΩ,Fq consisting of a set Ω and a σ-algebra F is called a
measurable space. A triple pΩ,F , µq consisting of a measurable space and a measure µ
is called a measure space. If µ is a probability measure, the triple is called a probability
space.

Many important measures are not finite, but satisfy a weaker condition called
σ-finiteness.

Definition B.4. A measure µ on pΩ,Fq is called σ-finite if there exists a sequence of
sets A1, A2, . . . P F such that

Ť8

i“1 Ai “ Ω and µpAiq ă 8 for all i.

A simple example of a measure that can be finite or σ-finite is the counting measure.

107



B.1. Measure and Probability 108

Example B.5 (Counting Measure). Let Ω be a countable set and F “ 2Ω. The
counting measure µ is defined by µpAq “ |A| (the number of elements in A) for any
A Ď Ω. This measure is σ-finite since Ω is countable (take Ai “ tωiu). ♢

Measures are often defined on a smaller class of sets (like intervals in R) and then
extended to the full σ-algebra. Carathéodory’s Extension Theorem guarantees that
this extension is unique for σ-finite measures.

Theorem B.6 (Uniqueness of Measure Extension). Let A be a collection of subsets
of Ω that is closed under finite intersections (a π-system) and generates the σ-algebra
F “ σpAq. If two measures µ and ν on pΩ,Fq agree on A (i.e., µpAq “ νpAq for all
A P A), and they are σ-finite on A, then µ “ ν on F .

Measures also behave continuously with respect to increasing or decreasing sequences
of sets.

Proposition B.7. Let µ be a measure on pΩ,Fq.

1. (Continuity from below) If A1 Ď A2 Ď ¨ ¨ ¨ is an increasing sequence of sets
in F and A “

Ť8

n“1 An, then

µpAq “ lim
nÑ8

µpAnq.

2. (Continuity from above) If A1 Ě A2 Ě ¨ ¨ ¨ is a decreasing sequence of sets in
F with µpA1q ă 8 and A “

Ş8

n“1 An, then

µpAq “ lim
nÑ8

µpAnq.

We now turn to the functions between measurable spaces, which must preserve the
measurable structure.

Definition B.8. Let pΩ,Fq and pS,Gq be measurable spaces. A function f : Ω Ñ S is
measurable (or F{G-measurable) if for every B P G, the preimage f´1pBq P F .

That is, f is measurable if

f´1
pBq “ tω P Ω : fpωq P Bu P F for all B P G.

Conversely, any function induces a σ-algebra on its domain.

Definition B.9. Let pΩ,Fq and pS,Gq be measurable spaces, and let f : Ω Ñ S be a
measurable function. The σ-algebra generated by f , denoted by σpfq, is the collection
of all preimages of sets in G:

σpfq “ tf´1
pBq : B P Gu.
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B.1. Measure and Probability 109

This is the smallest σ-algebra on Ω with respect to which f is measurable. Note that
σpfq Ď F since f is measurable.

Definition B.10. The Borel σ-algebra on a topological space pX, T q, denoted by
BpXq, is the σ-algebra generated by the open sets T . In particular, if pX, dq is a metric
space, BpXq is generated by the open balls.

For X “ R, BpRq is the σ-algebra generated by the collection of all open intervals
in R. Sets in BpRq are called Borel sets. This is the standard σ-algebra used when the
sample space is R (or Rd).

On the real line, the most important measure is the one that assigns lengths to
intervals.

Definition B.11 (Lebesgue Measure). The Lebesgue measure λ on pR,BpRqq is the
unique measure satisfying λppa, bsq “ b ´ a for all intervals pa, bs.

The Lebesgue measure is σ-finite since R “
Ť8

n“1p´n, ns.
Measurable functions are closed under various operations.

Proposition B.12. Let pΩ,Fq, pS,Gq, and pT,Hq be measurable spaces.

1. (Composition) If f : Ω Ñ S is F{G-measurable and g : S Ñ T is G{H-
measurable, then the composition g ˝ f : Ω Ñ T is F{H-measurable.

A measurable function can be used to transport a measure from its domain to its
codomain.

Definition B.13 (Push-forward Measure). Let pΩ,F , µq be a measure space, pS,Gq a
measurable space, and T : Ω Ñ S a measurable function. The push-forward measure of
µ by T , denoted µT (or sometimes T#µ or µ ˝T´1), is the measure on pS,Gq defined by

µT
pBq “ µpT´1

pBqq for all B P G.

Intuitively, µT describes the distribution of the random element T pωq when ω is
distributed according to µ.

The relationship between integrals under the original and push-forward measures is
given by the change of variables formula.

Theorem B.14 (Change of Variables Formula). Let T : pΩ,F , µq Ñ pS,Gq be measur-
able. For any measurable function g : S Ñ R, g is integrable with respect to µT if and
only if g ˝ T is integrable with respect to µ, and

ż

S

gpyq dµT
pyq “

ż

Ω
gpT pωqq dµpωq.
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Definition B.15 (Equivalence Relation). An equivalence relation „ on a set X is a
binary relation that satisfies three properties for all a, b, c P X:

1. Reflexivity: a „ a.

2. Symmetry: If a „ b, then b „ a.

3. Transitivity: If a „ b and b „ c, then a „ c.

Given an equivalence relation „ on a set X, the equivalence class of an element x P X,
denoted rxs, is the set of all elements in X equivalent to x:

rxs “ ty P X : y „ xu.

The set of all equivalence classes is called the quotient set and denoted by X{ „.

Equivalence relations allow us to define measurable structures on quotient spaces.

Definition B.16 (Quotient σ-algebra). Let pX,Σq be a measurable space and „ an
equivalence relation on X. The quotient σ-algebra on the quotient space X{ „, denoted
by Σ{ „, is defined as

Σ{ „“
␣

B Ď X{ „
ˇ

ˇ π´1
pBq P Σ

(

,

where π : X Ñ X{ „ is the canonical projection map πpxq “ rxs.

This is the largest σ-algebra on X{ „ making the projection π measurable.

B.2 Integration

B.2.1 The Standard Machinery

A common strategy in measure theory to prove a property p for all measurable functions
is the so-called “standard machine” or “approximation by simple functions”. The steps
are typically:

1. Indicator Functions: Prove that p holds for indicator functions 1A for all
measurable sets A.

2. Simple Functions: Extend the result to non-negative simple functions s “
řn

i“1 ci1Ai
by linearity.

3. Non-negative Measurable Functions: Use the fact that any non-negative
measurable function f is the limit of an increasing sequence of non-negative
simple functions sn Ò f . Prove that p is preserved under this limit (often using
the Monotone Convergence Theorem).
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4. General Measurable Functions: For a general measurable function f , write
f “ f` ´ f´ where f` “ maxpf, 0q and f´ “ maxp´f, 0q. Extend the result by
linearity, provided integrability conditions are met.

Key theorems supporting this machinery include:

Theorem B.17 (Monotone Class Theorem). Let A be an algebra of sets generating
a σ-algebra F . Let M be a collection of subsets of Ω that is a monotone class (i.e.,
closed under countable increasing unions and countable decreasing intersections). If
A Ď M, then F Ď M.

Theorem B.18 (Monotone Convergence Theorem). If tfnu is a sequence of non-
negative measurable functions such that fn Ò f pointwise, then

lim
nÑ8

ż

fn dµ “

ż

f dµ.

Lemma B.19 (Fatou’s Lemma). If tfnu is a sequence of non-negative measurable
functions, then

ż

lim inf
nÑ8

fn dµ ď lim inf
nÑ8

ż

fn dµ.

Theorem B.20 (Dominated Convergence Theorem). Let tfnu be a sequence of mea-
surable functions converging pointwise to f . If there exists an integrable function g

such that |fn| ď g for all n, then f is integrable and

lim
nÑ8

ż

fn dµ “

ż

f dµ.

B.2.2 Function spaces

Definition B.21 (Lp spaces). Let pΩ,F , µq be a measure space. For 1 ď p ă 8, let
LppΩ,F , µq denote the set of all measurable functions f : Ω Ñ R such that

}f}p :“
ˆ
ż

Ω
|f |

p dµ

˙1{p

ă 8.

Similarly, L8pΩ,F , µq consists of all essentially bounded measurable functions, i.e.,
those for which there exists a constant C such that |fpωq| ď C for almost all ω. The
essential supremum is defined as:

}f}8 :“ inftC ě 0 : |fpωq| ď C for µ-almost all ωu.

The quantity } ¨ }p satisfies most properties of a norm (non-negativity, homogeneity,
triangle inequality), but it is only a semi-norm on Lp, because }f}p “ 0 implies f “ 0
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only almost everywhere (not everywhere). To obtain a Banach space, we must identify
functions that are equal almost everywhere.

Definition B.22 (Lp spaces). We define an equivalence relation „ on Lp by f „ g

if and only if f “ g µ-almost everywhere. The Lp space is the quotient space of
equivalence classes:

Lp
pΩ,F , µq :“ Lp

pΩ,F , µq{ „ .

Elements of Lp are equivalence classes rf s, but it is standard practice to abuse notation
and refer to them as functions f .

Equipped with the norm }rf s}p :“ }f}p, the space Lp becomes a Banach space (a
complete normed vector space).

Important special cases include:

• LppRdq: When Ω “ Rd equipped with the Lebesgue measure.

• Lppr0, 1sq: The space of functions on the unit interval square-integrable with
respect to Lebesgue measure. This is a standard setting for functional analysis.

• ℓp: When µ is the counting measure on N, the space is the set of sequences pxnq

with
ř

|xn|p ă 8.

• L2pµq: For p “ 2, the space is a Hilbert space with inner product xf, gy “
ş

fg dµ.

B.2.3 Change of measure

Let µ be a measure on pΩ,Fq and let f : Ω Ñ r0,8s be a non-negative measurable
function. We can define a new measure ν on pΩ,Fq by setting

νpAq “

ż

A

f dµ for all A P F .

It is a standard exercise in measure theory to verify that ν indeed satisfies the properties
of a measure.

Definition B.23 (Probability Density). If the function f is non-negative and the
induced measure ν satisfies νpΩq “ 1 (i.e., ν is a probability measure), then f is called
a probability density of ν with respect to the reference measure µ.

The relationship between ν and µ constructed above implies a specific property
called absolute continuity.

Definition B.24 (Absolute Continuity). Let ν and µ be two measures on a measurable
space pΩ,Fq. We say ν is absolutely continuous with respect to µ (denoted ν ! µ) if
for all A P F ,

µpAq “ 0 ùñ νpAq “ 0.
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The fundamental result connecting these concepts is the Radon-Nikodym theorem,
which states that under mild conditions, absolute continuity is sufficient to guarantee
the existence of a density.

Theorem B.25 (Radon-Nikodym Theorem). Let ν and µ be two measures on a
measurable space pΩ,Fq, and assume that µ is σ-finite. If ν ! µ, then there exists a
non-negative measurable function f : Ω Ñ r0,8q such that for all A P F ,

νpAq “

ż

A

f dµ.

The function f is unique up to a set of µ-measure zero. We call f the Radon-Nikodym
derivative or density of ν with respect to µ, and denote it by f “ dν

dµ
.

The next theorem provides a characterization of sufficient statistics (Definition 1.9).
The theorem provides the measure-theoretic foundation for the Factorization Theorem
(Theorem 1.12) encountered in the main text. Its proof is quite involved and is omitted
here, but one can find it in Halmos and Savage 1949.

Theorem B.26 (Halmos–Savage). Let P be a family of probability measures dominated
by a σ-finite measure. A statistic T is sufficient for P if and only if for all P,Q P P,
the likelihood ratio dP {dQ admits a σpT q-measurable version.

B.3 Joint distributions

B.3.1 Product measures and independence

Given two measurable spaces pΩ1,F1q and pΩ2,F2q, the product σ-algebra, denoted
F1 bF2, is the σ-algebra on Ω1 ˆΩ2 generated by the collection of measurable rectangles
tA ˆ B : A P F1, B P F2u.

If µ1 and µ2 are σ-finite measures on pΩ1,F1q and pΩ2,F2q respectively, there exists
a unique measure µ “ µ1 b µ2 on the product space such that

µpA ˆ Bq “ µ1pAqµ2pBq for all A P F1, B P F2.

Definition B.27 (Independence). Let pΩ,F , P q be a probability space. Two events
A,B P F are independent if P pAXBq “ P pAqP pBq. Two random variables X : Ω Ñ X
and Y : Ω Ñ Y are independent if for all A P X and B P Y , the events tX P Au and
tY P Bu are independent.

In terms of joint distributions, independence means the joint distribution is the
product measure of the marginals. That is, the joint law of pX, Y q is PpX,Y q “ PX bPY .
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Definition B.28 (i.i.d.). A sequence of random variables X1, X2, . . . , Xn is independent
and identically distributed (i.i.d.) if they are mutually independent and all have the
same marginal distribution.

If X1, . . . , Xn
iid
„ P , their joint distribution on the product space pX n,X bnq is the

product measure Pbn, defined inductively by Pb1 “ P and Pbpn`1q “ Pbn b P .

B.3.2 Conditional probability and expectation

The definition of conditional probability is based on the concept of conditional expec-
tation.

Definition B.29 (Conditional Expectation). Let pΩ,F , P q be a probability space,
G Ď F a sub-σ-algebra, and X an integrable random variable (i.e., E|X| ă 8). The
conditional expectation of X given G, denoted ErX | Gs, is the equivalence class of
G-measurable random variables Z such that

ż

G

Z dP “

ż

G

X dP for all G P G.

The existence and uniqueness (up to almost sure equivalence) of Z are guaranteed
by the Radon-Nikodym theorem.

Theorem B.30 (Existence and Uniqueness of Conditional Expectation). Let pΩ,F , P q

be a probability space, G Ď F a sub-σ-algebra, and X an integrable random variable.
Then there exists a unique (up to almost sure equivalence) G-measurable random variable
Z such that

ż

G

Z dP “

ż

G

X dP for all G P G.

With this tool, we can rigorously define the probability of an event given partial
information.

Definition B.31 (Conditional Probability). The conditional probability of an event
A P F given a sub-σ-algebra G, denoted P pA | Gq, is defined as the conditional
expectation of the indicator function of A:

P pA | Gq :“ Er1A | Gs.

When conditioning on a random variable Y , we mean conditioning on the σ-algebra
generated by Y , i.e., ErX | Y s :“ ErX | σpY qs.

Conditional expectations satisfy a generalized version of Bayes’ theorem.
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Theorem B.32 (Abstract Bayes Formula). Let P and Q be probability measures on
pΩ,Fq such that P ! Q, and let L “ dP {dQ be the Radon-Nikodym derivative. For
any sub-σ-algebra G Ď F and any P -integrable random variable f ,

EP rf | Gs “
EQrfL | Gs

EQrL | Gs
P -a.s.

Often, we want to view the conditional probability P p¨ | Gqpωq as a probability
measure on pΩ,Fq for each fixed ω. This is not guaranteed by the general definition
(due to null sets for each A). However, it is possible in sufficiently “nice” spaces.

A crucial property relating measurability with respect to a random variable and
functions of that random variable is given by the Doob-Dynkin Lemma.

Lemma B.33 (Doob-Dynkin Lemma). Let X : Ω Ñ S be a measurable map into a
measurable space pS,Sq. A function Y : Ω Ñ R is σpXq-measurable if and only if there
exists a measurable function g : S Ñ R such that Y “ gpXq.

This lemma implies that ErZ | Xs “ gpXq for some measurable function g. Specifi-
cally, if Y is σpXq-measurable, it is a function of X.

Under certain conditions, conditional probabilities can be realized as a kernel that
is a measure for each fixed ω.

Definition B.34 (Regular Conditional Probability). Let pΩ,F , P q be a probability
space and G Ď F a sub-σ-algebra. A regular conditional probability is a function
κ : Ω ˆ F Ñ r0, 1s such that:

1. For each ω P Ω, κpω, ¨q is a probability measure on pΩ,Fq.

2. For each A P F , ω ÞÑ κpω,Aq is a version of P pA | Gq.

Regular conditional probabilities are guaranteed to exist when Ω is a standard Borel
space (e.g. a Polish space (see Definition A.15 in Appendix A) equipped with its Borel
σ-algebra).

Theorem B.35 (Existence of Regular Conditional Probabilities). Let pΩ,F , P q be a
probability space where Ω is a Polish space and F “ BpΩq is its Borel σ-algebra. For
any sub-σ-algebra G Ď F , there exists a regular conditional probability given G.

A related concept is the Markov kernel, which generalizes the idea of a transition
matrix.

Definition B.36 (Markov Kernel). Let pX,X q and pY,Y q be measurable spaces.
A Markov kernel (or probability kernel) from pX,X q to pY,Y q is a function K :
X ˆ Y Ñ r0, 1s such that:
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B.4. Concentration of measure 116

1. For each x P X, the map B ÞÑ Kpx,Bq is a probability measure on pY,Y q.

2. For each B P Y , the map x ÞÑ Kpx,Bq is X -measurable.

Markov kernels are used to model random mappings where the output distribution
depends on the input, such as in conditional distributions P pY P B | X “ xq.

Finally, we state the version of Bayes’ rule for densities, which is the most common
form used in statistical inference.

Theorem B.37 (Bayes’ Rule for Densities). Let Θ and X be random variables taking
values in measurable spaces pΩΘ,FΘq and pΩX ,FX q, respectively. Suppose the joint
distribution of pΘ,X q is dominated by a product measure ν b µ, with joint density
ppθ, xq. Then the conditional distribution of Θ given X “ x has density (with respect
to ν):

ppθ | xq “
ppθ, xq

ş

ΩΘ
ppϑ, xq dνpϑq

,

provided the denominator is positive and finite. In the common case where ppθ, xq “

ppx | θqπpθq (likelihood ˆ prior), this becomes the familiar form:

ppθ | xq “
ppx | θqπpθq

ş

ppx | ϑqπpϑq dνpϑq
.

B.4 Concentration of measure

Lemma B.38 (Jensen’s Inequality). Let pΩ,F , P q be a probability space, X an inte-
grable real-valued random variable, and φ : R Ñ R a convex function. Then

φpErXsq ď ErφpXqs.

If φ is strictly convex, then equality holds if and only if X is constant almost surely.

Lemma B.39 (Markov’s inequality). If X ě 0, then for any a ą 0,

PpX ě aq ď
ErXs

a
.

Proof. Note that a ¨1X ě a ď X. Taking expectations gives a ¨PpX ě aq ď ErXs.

The following concentration inequalities are immediate consequences.

Lemma B.40 (Chebyshev’s inequality). If VarpXq ă 8, then for any k ą 0,

Pp|X ´ ErXs| ě kq ď
VarpXq

k2 .
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Proof. Apply Markov’s inequality to pX ´ ErXsq2 with threshold k2.

Lemma B.41 (Chernoff’s bound). For any random variable X and any a P R,

PpX ě aq ď inf
tą0

e´taEretX
s.

Proof. For any t ą 0, the event tX ě au implies tetX ě etau. Apply Markov’s inequality
to etX and take the infimum over t ą 0.

B.5 Transforms

Definition B.42 (Laplace Transform). Let µ be a finite measure on pRk,BpRkqq. The
Laplace transform of µ is the function ψ : Rk Ñ R defined by

ψptq “

ż

Rk

ext,xy dµpxq,

provided the integral exists.

The Laplace transform is a powerful tool for characterizing measures. A key property
is its uniqueness:

Theorem B.43 (Uniqueness of Laplace Transform). Let µ and ν be two finite measures
on Rk. If their Laplace transforms agree on an open set containing the origin, then
µ “ ν.

Proof Sketch. We sketch the argument for k “ 1 and compact support. Suppose µ and
ν are supported on a compact interval ra, bs. The Laplace transform condition implies

ż b

a

etx dµpxq “

ż b

a

etx dνpxq

for all t in a neighborhood of 0. By analyticity, this equality extends to all t P R. By
linearity,

ż b

a

P pex
q dµpxq “

ż b

a

P pex
q dνpxq

for any polynomial P . The algebra of functions of the form x ÞÑ P pexq separates points
on ra, bs and vanishes at no point. By the Stone-Weierstrass theorem, such functions
are dense in the space of continuous functions Cpra, bsq with respect to the uniform
norm.

Thus, for any continuous function f ,
ş

f dµ “
ş

f dν. Since measures on Borel
σ-algebras are determined by their integrals against continuous functions (Riesz Rep-
resentation Theorem), we conclude µ “ ν. The extension to non-compact support
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requires more careful analysis involving truncation or compactification, but the core
idea remains the density of exponential families in function spaces.

This uniqueness property extends to signed measures. If µ is a signed measure with
ş

ext,xy dµpxq “ 0 for all t in an open set, then µ is the zero measure. This fact is crucial
for proving completeness of exponential families.

Another important transform is the characteristic function, which similarly provides
a powerful tool for characterizing measures.

Definition B.44 (Characteristic Function). Let µ be a finite measure on pRk,BpRkqq.
The characteristic function of µ is the function ϕ : Rk Ñ C defined by

ϕptq “

ż

Rk

eixt,xy dµpxq,

where i “
?

´1.

Unlike the Laplace transform, the characteristic function is always defined for any
finite measure (since |eixt,xy| “ 1 is bounded). It also uniquely determines the measure.

Theorem B.45 (Uniqueness of Characteristic Functions). Let µ and ν be two finite
measures on Rk. If their characteristic functions agree, i.e., ϕµptq “ ϕνptq for all t P Rk,
then µ “ ν.

This theorem is a direct consequence of the Fourier Inversion Theorem. Since the
characteristic function is essentially the Fourier transform of the measure, and the
Fourier transform is injective, the measure is uniquely determined.
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