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Foreword
These lecture notes accompany the course STA 732 - Statistical Theory at Duke
University. They provide an exposition of a mathematical theory of statistics. Sections
and exercises with ♠ are more advanced and optional course material. This is a work
in progress.

The text assumes students have a background in real analysis, measure theory, and
linear algebra. Appendices A, B, and C provide condensed refreshers on the most
important concepts. Some of the proofs (marked ♠) rely on techniques from functional
analysis. To keep the notes self-contained, Appendix C introduces these techniques.
For those familiar with the subject, it may be interesting to see how these tools are
applied; for those who are not, it provides a helicopter overview but is not required for
the course.

Literature and Acknowledgments

Several sources have been used, but some so extensively that they deserve upfront
acknowledgment. I am grateful for the course material shared by Peter Hoff, Surya
Tokdar, Yuansi Chen, and Li Ma. These notes are largely based on their material and
the source material from which they draw:

• Keener, Theoretical Statistics: Topics for a Core Course (2010).

• E.L. Lehmann and G. Casella, Theory of Point Estimation (1998).

• G. Casella and R.L. Berger, Statistical Inference (2002).

• J.H. van Zanten, Statistics for High- and Infinite-Dimensional Models (unpub-
lished).

Part two of the notes draws significantly from A.W. van der Vaart, Asymptotic Statistics
(1998). Harry van Zanten’s lecture notes have been a stylistic model, which, for me
personally, set a standard for how to write a brief but rigorous exposition that I have
tried to emulate.
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Notation

• N “ t1, 2, . . .u denotes the set of natural numbers, and N0 “ t0, 1, 2, . . .u.

• For a set A, its power set is denoted as 2A “ tS : S Ď Au, the set of all subsets
of A.

• The indicator function of a set A is denoted as 1A or x ÞÑ 1tx P Au, which takes
value 1 if x P A and 0 otherwise.

• Given measurable spaces pX ,X q and pY ,Y q, a measurable map f : X Ñ Y is
to be understood as being measurable with respect to the σ-algebras X and Y .
If f is measurable and real valued, but no sigma-algebra is specified, the Borel
σ-algebra BpRq is what is meant.

• For probability measures, we will sometimes forego the set notation whenever
no ambiguity arises: both P pX P Aq and P px : Xpxq P Aq are shorthand for
P ptx : Xpxq P Auq.

• We use X „ P to denote that the random variable X has distribution P .

• The n-fold product measure of a probability measure P is denoted by Pbn.

• We use the notation an À bn to indicate that an ď Cbn for some constant C ą 0
independent of n. We write an — bn if both an À bn and bn À an.
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Part I

Statistical Decision Theory
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1 Models, Statistics and Decisions
Inference is the process of drawing conclusions from evidence. In deductive inference,
the conclusions follow with certainty by reasoning from the premises. In inductive
inference, the conclusions are uncertain; they are at best probable.

Statistical inference is inductive inference in which the evidence consists of data
generated by some unknown data-generating process involving randomness. This
randomness can arise from several sources: we may be randomly sampling a subset
from a larger population, our measurements may contain error, or the phenomenon
itself may be governed by inherently stochastic mechanisms.

To describe the data-generating process, we need to describe the randomness
that underlies it. Probability theory provides a mathematical language for describing
randomness. It allows us to formally reason about the question: given a data-generating
process, what is the distribution of the observable data? In statistics, however, we wish
to formally reason about probable cause based on observed effects. This concerns ‘the
inverse’ of the previous question: what does the observed data tell us about certain
unknown features of the data-generating process?

We pursue statistical inference about unknown features of a data-generating process
because they govern the real-world consequences of our actions. Whether a treatment
saves lives, whether an investment succeeds, or a policy achieves its intended effect – all
depend on the true nature of that process. Statistical decision theory is a mathematical
framework for reasoning about optimal actions when consequences depend on an
uncertain process we can only observe indirectly.

1.1 Statistical Models

The central object of statistical decision theory is a statistical model, which is a
collection of probability distributions. Each of these probability distributions is a
possible description of the data-generating process.

Definition 1.1. A statistical model is a collection of probability measures P defined
on a measurable space pX ,X q:

for all P P P , P : X Ñ r0, 1s is a measure that satisfies P pX q “ 1.

The objects accompanying the statistical model typically carry the special names
and interpretations in statistical literature.
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1.1. Statistical Models 3

• The space pX ,X q is the sample space. It represents the set of all possible data.

• The accompanying sigma-algebra X are the events. The collections of outcomes
to which the model can assign probabilities.

• The collection P specifies the possible ‘theories’ that could have generated the
data.

• The triple pX ,X ,Pq can be referred to as the statistical experiment (or simply
the experiment), we revisit this terminology in Definition 1.6 below.

• The outcome of the experiment is represented by an element x P X . Equivalently
(and more informatively), it is the list of all A P X for which x P A. In other
words, the outcome tells us exactly which events have occurred and which have
not.

Measure theory provides a rigorous framework ensuring the intuitive properties
we expect from probabilities hold without exception. Some of these properties follow
almost immediately from the definition of a probability measure and a sigma-algebra
(see Definitions B.1 and B.2):

• If the event A implies the event B (i.e. A Ď B), then P pAq ď P pBq for every
P P P .

• If we can assign probability to the event A, we can assign it to its complement
Ac and we have P pAcq “ 1 ´ P pAq.

Less intuitive1 but highly desirable mathematically, is the ability to assign probabilities
to countable unions of events. Without it, paradoxes and inconsistencies can arise in
uncountable sample spaces.

Besides its desirable properties in terms of formalizing probabilities, the sigma-
algebra formalizes the information that can be extracted from the data. This allows us
to compare models with the same underlying sample space but where different events
are observable.

Example 1.2. Consider an experiment of rolling two six-sided dice and observing the
eyes on top each die. Formally, we could model this as pX ,X ,Pq where the sample
space is given by

X “ t1, 2, 3, 4, 5, 6u ˆ t1, 2, 3, 4, 5, 6u,

and its powerset X “ 2X are the observable events, and P should consist of a subset
of the probability measures on pX ,X q. The sum of the eyes on each die is observable:
S : X Ñ R given by Spx, yq “ x ` y for px, yq P X , and so is whether the first die is
larger than the second die: Lpx, yq “ 1txąyu.

1and in the eyes of some, controversial Regazzini 2013.
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1.1. Statistical Models 4

Consider another statistical model which models the case where we only observe
the sum of the eyes on each die:

pX , σpSq,Qq ,

where σpSq is the sigma-algebra generated by S (see Definition B.9) and the collection
Q consists of the probability measures P P P restricted to σpSq. The sample space is
the same as in the first experiment, but the sigma-algebra is strictly smaller.

In the first experiment, we can determine the value of the first die, the second die,
whether they are equal, whether the first is larger, etc. In the second experiment, the
observables are a subset of the observables in the first experiment. That is, certain
events that we could assign probabilities to in the first experiment, we cannot assign
probabilities to in the second experiment, such as the event that the first die is larger
than the second die. ♢

The two experiments in Example 1.2 model different observational scenarios of the
same underlying random phenomenon. The first experiment provides more information:
knowing the individual outcomes of each die, we can reconstruct their sum. Conversely,
knowing only the sum, we cannot recover the individual outcomes. Whether the first
experiment is more suitable of the inference problem at hand depends on the question
we are interested in. For certain inferential goals, knowing the sum of the individual
dice is all we need. We will formalize this idea in Section 1.2, where we will discuss the
concept of sufficient statistics. For now, let us note that the sigma-algebra captures
precisely which features of the outcome are observable, making it possible to formalize
such comparisons. The definition of the sample space allows for a lot of freedom: it
need not match the minimal description of the data; in principle, it could be the whole
universe, provided the sigma-algebra correctly captures the information available in
the experiment.

To close this section, we will discuss the idea of a parameter space. It is common
that we are only interested in particular characteristics of the data-generating process,
such as its mean, certain quantiles, and so on. These are typically functionals on P:
they map each P to some value, for example its mean

ş

xdP pxq. We will call these
characteristics parameters. Consider a set Θ of possible values of those parameters for
our statistical model. We call this set the parameter space.

Definition 1.3. A parameter space for the model P is a set Θ together with a map
P ÞÑ θpP q from P onto Θ.

Example 1.4. Let pX ,X q “ pR,BpRqq, where BpRq is the Borel σ-algebra on R (see
Definition B.10). Consider the collection of probability measures P “ tNpθ, 1q : θ P Ru,
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1.1. Statistical Models 5

where Npθ, σ2q denotes the normal distribution with mean θ and variance σ2:

Npθ, σ2
qpAq :“

ż

A

1
?

2πσ2
e´

px´θq2

2σ2 dx.

Further, consider the collection

Q “ tall probability measures on pR,BpRqq with finite meanu.

Both pX ,X ,Pq and pX ,X ,Qq are valid statistical models. The set Θ “ R is a valid
parameter space for P and Q under the map Q ÞÑ

ş

xdQpxq. The set Θ “ r´1, 1s is
not a valid parameter space for either P or Q under the same map (why?). ♢

There is an important distinction between the models P and Q in Example 1.4.
In the first model, the mean uniquely identifies its distribution: there is a one-to-one
correspondence between the parameter space and the collection of probability measures.
In the second model, the mean does not uniquely identify its distribution: many
different probability measures have the same mean. The same parameter (here the
mean) can identify the entire distribution in one model but fail to do so in another.

Definition 1.5. A statistical model P is identifiable by a parameter space Θ if for all
P, P 1 P P , it holds that if θpP q “ θpP 1q, then P “ P 1.

The identifiability condition θpP q “ θpP 1q ùñ P “ P 1 means that the parameter
space Θ forms a ‘coordinate system’ for the collection of probability measures P . Since
the map P ÞÑ θpP q is surjective, it means that every probability measure in P is
uniquely determined by its parameter value in Θ.

Every statistical model P admits a trivial identifiable parameterization: simply
take Θ “ P and θpP q “ P . Whilst always possible, this parametrization is not always
the most useful. Typically, the introduced parameter space brings along useful extra
structure on the model that the bare set P does not ‘directly’ possess. In the vast
majority of examples in this course we choose Θ to be a open, convex subset of Rd.
This endows the model with the rich Euclidean structure: vector-space operations, a
natural notion of a distance metric, an inner product, differentiability, and so on.

When a model is identifiable, we may (and usually do) identify the parameter
value θ with the distribution Pθ itself, so that “knowing θ” is equivalent to “knowing
which distribution generated the data”. That is, we can index the distributions by the
parameter value:

P “ tPθ : θ P Θu.

where the subscript θ uniquely labels the distribution Pθ.
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1.1. Statistical Models 6

This type of parametrization is what we will mostly be concerned with in this
course, leading us to the definition of a statistical experiment.

Definition 1.6. A statistical experiment is a tuple pX ,X ,P ,Θq where the parameter
space Θ indexes the collection of probability measures P “ tPθ : θ P Θu on the sample
space pX ,X q.

There is often an intricate interplay between the parametrization of the model and
the formulation of the sample space, leading to multiple ways to write down what is
effectively the same model. Sufficiency is one concept that allows us to formalize this
idea, which we will discuss next.

Remark 1.7 (But wait... isn’t my data supposed to be a random variable?). In the
current framework, there is no random variable explicitly representing ‘the data’ in the
experiment. This may appear to differ from the typical introductory setting; where a
statistical setting is defined by a random variable with a given distribution depending
on some parameter: “let X „ Npθ, 1q for θ P r´1, 1s”. Alternatively, one may be used
to the following formal setting from probability courses, in which one considers an
(implicit) probability space pΩ,F ,Pq and defines a random variable (or rather a random
element) X : Ω Ñ X representing ‘the data before it is observed’. The law of X is then
defined as P pAq “ Ppω : Xpωq P Aq for some unknown probability measure P P P on
pX ,X q.

In our framework, we work directly with pX ,X ,Pq without introducing any under-
lying probability space. We can always recover the setup in which ‘the data is a random
variable’ (and it is often linguistically and pedagogically useful to do so). Simply take
the target space pX ,X q of the random variable that is supposed to represent the data
and consider the identity map X : X Ñ X , Xpxq “ x for all x P X . It is easy to see
that this map is measurable with respect to X . Further, the collection P describes
the possible laws of this ‘random element’: P pAq “ P px : Xpxq P Aq for all A P X in
P P P .

With this understanding in place, we will frequently use the familiar language of
random variables—for instance, “let X „ Npθ, 1q for θ P r´1, 1s” should be understood
as shorthand for the statistical model pR,BpRq, tNpθ, 1q : θ P r´1, 1suq. In this context,
there can be little to no ambiguity which sigma-algebra we are referring to (recall
the definition of the normal distribution in Example 1.4). Similarly — recalling that
independent random variables are distributed according to the product measure (see
Definition B.30 in Appendix B) — X1, . . . , Xn

iid
„ Npθ, 1q with θ P Θ is to be understood

as shorthand for the statistical model pRn,BpRnq, tNpθ, 1qbn : θ P Θuq.
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1.2. Statistics, Sufficiency and Likelihoods 7

1.2 Statistics, Sufficiency and Likelihoods

In Example 1.2, we noted that knowing the sum of two dice provides less information
than knowing each die individually: from the sum alone, we cannot recover the
individual outcomes. Yet for certain inferential goals, the sum may contain all the
information we need. This section makes precise the notion of a statistic that captures
“all the information about the parameter.” This will allow us to compare different
formulations of models and judge when they are effectively the same for all intents and
purposes. We start by defining what a statistic is.

Definition 1.8. A statistic is a measurable map T from the sample space pX ,X q to
some measurable space pT ,T q.

Given a statistical model P “ tPθ : θ P Θu defined on a measurable space pX ,X q,
a statistic is a measurable map T : X Ñ T into another measurable space pT ,T q. The
statistic T induces a new statistical model on pT ,T q, which we denote PT “ tP T

θ :
θ P Θu, where each P T

θ is the push-forward measure of Pθ under T :

P T
θ pBq “ PθpT´1

pBqq for all B P T .

The map T : X Ñ T sends each possible outcome of an experiment to a ‘summary’ of
the data. Ideally, the summary T pXq is more ‘compressed’ than the original data X,
while retaining all relevant information about the parameter θ.

This brings us to the idea of sufficiency. The key idea is that a statistic T pXq is
sufficient if, once we know T pXq, the remaining randomness in X tells us nothing
further about which Pθ generated the data. Formally, the conditional distribution of
X given T pXq should not depend on θ.

Definition 1.9 (Sufficiency). Consider an identifiable model P “ tPθ : θ P Θu on a
sample space pX ,X q. A statistic T : X Ñ T is sufficient for P if for every A P X ,
the conditional probability PθpA | T q admits a version that does not depend on θ.

Recall that the conditional probability PθpA | T q is formally defined as a conditional
expectation Eθr1A | T s (see Definition B.32 in Appendix B). This expectation is a
random variable, measurable with respect to the σ-algebra generated by T , satisfying
the condition

ż

B

Eθr1A | T spxq dPθpxq “ Pθpx : x P A, x P Bq

for all B P σpT q.
Because conditional expectations are only unique up to Pθ-null sets, saying that

“PθpA | T q admits a version that does not depend on θ” means: for each A P X there

v2025.0.3 – This is a draft – use at your own risk



1.2. Statistics, Sufficiency and Likelihoods 8

exists a measurable function hA : X Ñ r0, 1s, independent of θ, such that

Eθr1A | T spxq “ hApxq Pθ-a.s. for all θ P Θ.

For ‘nice’ σ-algebras (for example, the Borel σ-algebra), we can go a step further and
find a measurable function hA : T Ñ r0, 1s, independent of θ, such that for all C P T ,

ż

C

hAptq dP T
θ ptq “ Pθ

`

A X T´1
pCq

˘

“ Pθ

`

x : x P A, T pxq P C
˘

, @ θ P Θ.

That is, Eθr1A | T s can be represented as a function of T (a so called ‘regular’
conditional probability), not depending on θ: Eθr1A | T spxq “ hApT pxqq. Regardless of
the representation, the key point is that hA does not depend on θ: after conditioning
on the ‘information of T ’ (the σpT q-algebra), whatever we know about the event A does
not depend on θ (up to sets of zero measure).

Sufficiency is a property of how the parameter enters the distribution of the data.
The same statistic may be sufficient for one model but not another, and crucially
depends on how the model is parametrized (we will see an illustration of this in
Example 1.13).

Before studying interesting cases, we note that sufficiency is trivially achieved when
no information is discarded. A statistic that is appropriately invertible is sufficient: by
inverting the map, we can recover the data from the statistic.

Proposition 1.10. Consider a statistic T : X Ñ T that is bijective, and assume its
inverse is also measurable. Then, T is sufficient.

Proof. Consider the σ-algebra generated by T , σpT q. This is the smallest σ-algebra
containing all the preimages T´1pBq of the sets in B P T , so

σpT q Ď X .

As the inverse of T is measurable, T pAq P T for all A P X . Hence, for any event
A P X , measurability of T and its inverse implies that A “ T´1pT pAqq P σpT q, so 1A

is σpT q-measurable. Conclude that σpT q “ X .
Hence, we have that for all A P X ,

PθpA | T q “ Eθr1A | T s “ 1A,

where the second equality holds because conditioning a σpT q-measurable random
variable on T returns itself. Since 1A does not depend on θ, T is sufficient.

The interesting cases of sufficiency are when the statistic is not invertible: A non-
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1.2. Statistics, Sufficiency and Likelihoods 9

invertible statistics compresses the data in a strict sense, without losing information
about the parameter.

If models have densities with respect to a common measure, we have a very useful
characterization of sufficiency that allows us to check sufficiency by looking at the form
of their probability density functions. We need these densities to be well-defined with
respect to a common measure.

Definition 1.11. A statistical model P on a measurable space pX ,X q is dominated
by a σ-finite measure µ on pX ,X q if every P P P is absolutely continuous with respect
to µ (denoted P ! µ). That is, for every A P X , if µpAq “ 0, then P pAq “ 0 for all
P P P .

If a model is dominated by µ, the Radon–Nikodym theorem (see Theorem B.28 in
Appendix B) guarantees the existence of a non-negative measurable function p “ dP {dµ,
called the Radon–Nikodym derivative of P with respect to µ, such that for all A P X ,

P pAq “

ż

A

ppxq dµpxq.

When the model is parameterized as P “ tPθ : θ P Θu, we denote the density of Pθ by
pp¨ | θq or pθp¨q. The choice of dominating measure is not unique; if µ dominates P,
then any measure equivalent to µ also dominates P .

For a fixed parameter value θ, the map x ÞÑ ppx | θq is the probability density
function (with respect to µ). If we instead fix the observation x, the map θ ÞÑ ppx | θq

is called the likelihood function. Note that since the density is defined only up to a
set of µ-measure zero, the likelihood function is also only defined up to a µ-null set
of x’s. For a fixed x, different versions of the density may yield different likelihood
functions, but they will agree for µ-almost all x. In practice, we usually work with
a specific, canonical version of the density (e.g., one that is continuous in x), which
makes the likelihood unique.

The following theorem says that a statistic is sufficient if and only if the likelihood
function can be factorized into a function of the statistic and a function of the data.

Theorem 1.12 (Fisher–Neyman Factorization). Let P “ tPθ : θ P Θu be dominated
by a σ-finite measure µ, with densities ppx | θq “ dPθ{dµ. A statistic T is sufficient
for P if and only if

ppx | θq “ gpT pxq, θqhpxq µ-a.e., for all θ P Θ

for some non-negative measurable functions g : T Ñ r0,8q and h : X Ñ r0,8q.
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(♠)Proof. (ðù) If ppx | θq “ gpT pxq, θq ¨ hpxq for all θ P Θ, then on the support of any
Pθ1 (i.e. where h ą 0),

dPθ

dPθ1

“
gpT, θq

gpT, θ1q

is σpT q-measurable. Hence, by Bayes formula (Theorem B.35 in Appendix B),

PθpA | T q “ Eθr1A | T s “
Eθ1r1A

dPθ

dPθ1
| T s

Eθ1r
dPθ

dPθ1
| T s

“ Eθ1r1A | T s.

Since this is true all θ1 P Θ, we find that PθpA | T q admits a version that does is
constant in θ. Hence, T is sufficient.

(ùñ) Fix any θ0 P Θ. By the Halmos–Savage theorem, T being sufficient implies
that dPθ{dPθ0 is σpT q-measurable. Setting gpT pxq, θq :“ dPθ{dPθ0pxq and h :“ dPθ0{dµ

gives the factorization:

dPθ

dµ
pxq “

dPθ

dPθ0

pxq ¨
dPθ0

dµ
pxq “ gpT pxq, θq ¨ hpxq, µ ´ a.e.

The factorization says: the likelihood splits into a part g that depends on θ but
only through T pxq, and a part h that depends on x directly but not on θ. All the
θ-dependence is mediated by T .

Equipped with the Fisher–Neyman factorization theorem, we can revisit the example
of two dice from Example 1.2.

Example 1.13. Consider again rolling two dice as in Example 1.2. We will discover
that whether the sum Spx, yq “ x ` y is sufficient depends critically on the assumed
model.

Model 1 (Nonparametric): Suppose both dice are i.i.d. with unknown probability
density2 p on t1, . . . , 6u, so the model is

P “ tPp : Ppptpx, yquq “ ppxqppyq, p a probability density on t1, . . . , 6uu .

The sum is not sufficient for the above model (no matter which parameterization is
used). Consider the conditional probability of p1, 6q given S “ 7:

Pp

`

p1, 6q | S “ 7
˘

“
pp1qpp6q

ř6
k“1 ppkqpp7 ´ kq

.

This depends on p. If p is uniform, this equals 1{6. If the die is loaded toward extreme
2A Radon-Nikodym derivative with respect to the counting measure.
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faces, it is larger. Knowing the sum is 7 does not pin down the conditional distribution
of the outcome; the particular realization p1, 6q versus p3, 4q carries information about
p.

Model 2 (A scalar family): Suppose each die follows a tilted distribution

pθpxq “
eθx

ř6
k“1 e

θk
, x P t1, . . . , 6u, θ P R. (1.1)

Here θ “ 0 gives fair dice, θ ą 0 biases toward higher faces, and θ ă 0 biases toward
lower faces. The joint density is

pθpx, yq “
eθpx`yq

`
ř6

k“1 e
θk
˘2 “

eθpx`yq

`
ř6

k“1 e
θk
˘2

loooooomoooooon

gpx`y, θq

¨ 1
loomoon

hpx,yq

,

which factors through the sum. By the Fisher–Neyman factorization theorem, S is
sufficient for θ.

The contrast is instructive. Model 2 is indexed by a scalar parameter. Model 1 is
nonparametric—a vastly larger model in which no reduction beyond the full data (the
pair of eyes) is possible. Both models are identifiable (see Exercise 1.5), yet the sum is
only sufficient in Model 2. Sufficiency is determined by the choice of the model. ♢

The example illustrates that sufficiency depends on the model P : the same statistic
can be sufficient for one family of distributions and insufficient for another.

Sometimes, two models may have sample spaces that look different, but they can
be mapped to the same common sample space via sufficient statistics. This is called
observational equivalence.

Definition 1.14. Two statistical models pX ,X , tPθ : θ P Θuq and pY ,Y , tQθ : θ P Θuq

with a common parameter space Θ are observationally equivalent if there exist sufficient
statistics T : X Ñ T and S : Y Ñ T such that P T

θ “ QS
θ for all θ P Θ.

Models being observationally equivalent means we can transform them to a common
sample space, without losing information about the parameter. In particular, when
one model can be mapped to the other, they are observationally equivalent.

Example 1.15. Let P “ tNpµ, σ2qbn : µ P Ru on Rn and Q “ tNpµ, σ2{nq : µ P Ru

on pR,BpRqq for a fixed σ2 ą 0. Then X̄ “ n´1 řn
i“1 Xi is sufficient for P , the identity

is sufficient for Q, and both have distribution Npµ, σ2{nq. Thus, the two models are
observationally equivalent. ♢

Intuitively, if two experiments are observationally equivalent, we should be able
to simulate the outcome of one experiment using the outcome of the other (possibly
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with some independent randomization), without knowing the true parameter value.
However, under the notion of observational equivalence introduced in Definition 1.14,
this is not always possible: it does not allow for randomization. Later, in Chapter
5, we will introduce a slightly more general notion of equivalence called simulation
equivalence (sometimes called Blackwell sufficiency). This notion is more general than
observational equivalence: it says that the two models are simulation equivalent if given
the data of one model, we can simulate data as if it were generated by the other model.
For most models (those defined on ‘nice’ sigma-algebras), observational equivalence
implies simulation equivalence. For now, we will just illustrate this idea using the
following example.

Example 1.16 (Simulation Equivalence of Normal Models). Let P “ tNpµ, σ2qbn :
µ P Ru on Rn and Q “ tNpµ, σ2{nq : µ P Ru on R. These models are simulation
equivalent:

• From P to Q: Given pX1, . . . , Xnq „ Pµ, output X̄ “ n´1 řn
i“1 Xi.

• From Q to P : Given Y „ Qµ, generate Z1, . . . , Zn
iid
„ Np0, σ2q and output

Xi “ Y ` Zi ´ Z̄.

It can be shown that PµpX̄ P Aq “ QµpAq for all A P BpRq and µ P R, and similarly,
for Y „ Qµ, Y ` Zi ´ Z̄ can be shown to be distributed as i “ 1, . . . , n i.i.d. Npµ, σ2q

random variables (see Exercise 1.6). ♢

A sufficient statistic always exists: the identity map Xpxq “ x itself is trivially
sufficient by Proposition 1.10. We typically seek a sufficient statistic that achieves
maximal reduction of the data. This brings us to the notion of minimal sufficiency.

Definition 1.17. A sufficient statistic T is minimal sufficient for an experiment
pX ,X , tPθ : θ P Θuq if for any other sufficient statistic S, it satisfies σpT q Ď σpSq

modulo Pθ-null sets:

σpT q Ď σpσpSq Y N q, N :“ tN P X : PθpNq “ 0 @θ P Θu.

Minimal sufficient statistics partition the sample space into the coarsest equivalence
classes that preserve all information about θ. Any other sufficient statistic S generates
a larger σ-algebra than T , except for sets which have probability zero under all Pθ.

Another way to think about minimal sufficiency is that a sufficient statistic T is
minimal sufficient if it is a function of every other sufficient statistic. We can formalize
this idea if T takes values in a measure space with a nice σ-algebra, like the Borel
σ-algebra. For such nice σ-algebras, Definition 1.17 is equivalent to the following: for
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1.2. Statistics, Sufficiency and Likelihoods 13

any sufficient statistic S, there exists a measurable function f such that T “ fpSq

almost surely under all Pθ, θ P Θ (Doob-Dynkin, Lemma B.36 in Appendix B).
Just as with sufficiency, minimal sufficiency can be difficult to verify. Luckily, we

have the following useful tool to check minimal sufficiency.

Proposition 1.18. Let pX ,X , tPθ : θ P Θuq be a dominated model. A statistic
T is minimal sufficient if and only if T pxq “ T px1q whenever the likelihood ratio
ppx | θq{ppx1 | θq is constant in θ (except for a µ-null set).

♠ Proof. (ùñ) Define an equivalence relation „ on X by x „ x1 if and only if
ppx | θq{ppx1 | θq is constant in θ, and let Spxq denote the equivalence class of x. We
claim S is sufficient (it is measurable with respect to the quotient σ-algebra X { „,
see Definition B.16 in Appendix B). For each equivalence class s, fix a representative
xs. For any x with Spxq “ s, we have ppx | θq{ppxs | θq “ hpxq for some function h not
depending on θ. Thus,

ppx | θq “ ppxs | θqhpxq “ gpSpxq, θqhpxq.

By the factorization theorem, S is sufficient. Since T is minimal sufficient, T is a
function of S, so Spxq “ Spx1q implies T pxq “ T px1q. The equality Spxq “ Spx1q is
precisely the condition that the likelihood ratio is constant in θ.

(ðù) Suppose T pxq “ T px1q whenever the likelihood ratio is constant in θ. Let S
be any sufficient statistic. By the factorization theorem, ppx | θq “ g̃pSpxq, θqh̃pxq. If
Spxq “ Spx1q, then

ppx | θq

ppx1 | θq
“
h̃pxq

h̃px1q
,

which is constant in θ. We have found that Spxq “ Spx1q implies that T pxq “ T px1q.
This aforementioned fact is sufficient to construct a function f : SpX q Ñ T such

that f ˝ S “ T . For each s P SpX q, choose any xs P S´1ptsuq and define fpsq :“ T pxsq.
This is well-defined: if x1 P S´1ptsuq is another choice, then Spx1q “ s “ Spxsq, so
by assumption T px1q “ T pxsq. For any x P X , we have x P S´1ptSpxquq, hence
fpSpxqq “ T pxq. Moreover, f is measurable: we have S´1pf´1pAqq “ T´1pAq P X .

Thus, T is a measurable function of S. Since S was arbitrary, T is minimal
sufficient.

To illustrate minimal sufficiency, we consider the following examples.

Example 1.19 (Minimal Sufficiency for Uniform). Let Uniformp0, θq be the uniform
distribution on the interval r0, θs with θ ą 0, that is, probability measure on pR,BpRqq

defined through the Lebesgue density ppx | θq “ 1
θ
1t0 ď x ď θu.
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1.2. Statistics, Sufficiency and Likelihoods 14

Consider the statistical model corresponding to X1, . . . , Xn
iid
„ Uniformp0, θq with

θ ą 0. The likelihood is
ppx | θq “

1
θn

1txpnq ď θu,

where xpnq is the n-th order statistic. By Theorem 1.12, the n-th order statistic Xpnq is
sufficient. The likelihood ratio is

ppx | θq

ppy | θq
“

1txpnq ď θu

1typnq ď θu
.

This is constant in θ if and only if xpnq “ ypnq (check this!). Thus, Xpnq is minimal
sufficient. ♢

Example 1.20 (Minimal Sufficiency via Likelihood Ratios). LetX1, . . . , Xn
iid
„ Npµ, σ2q.

Case 1: σ2 known. The likelihood ratio is

ppx | µq

ppy | µq
“ exp

˜

´
1

2σ2

˜

ÿ

i

x2
i ´

ÿ

i

y2
i ´ 2µnpx̄ ´ ȳq

¸¸

.

This is constant in µ if and only if x̄ “ ȳ. Thus X̄ is minimal sufficient.
Case 2: Both µ and σ2 unknown. The likelihood ratio is

ppx | µ, σ2q

ppy | µ, σ2q
“ exp

˜

´
1

2σ2

˜

ÿ

i

x2
i ´

ÿ

i

y2
i

¸

`
µ

σ2npx̄ ´ ȳq

¸

.

This is constant in pµ, σ2q if and only if x̄ “ ȳ and
ř

i x
2
i “

ř

i y
2
i . Thus pX̄,

ř

i X
2
i q is

minimal sufficient. ♢

Next, we introduce an additional type of sufficiency called completeness. A property
that rules out redundancy in a statistic completely.

Definition 1.21. A statistic T is complete for P if for every σpT q-measurable integrable
random variable U ,

EP rU s “ 0 for all P P P ùñ U “ 0 P -a.s. for all P P P .

The definition of completeness is of a technical nature: if T is complete, there is
no non-trivial function of T whose expectation is constant across all P P P . Given an
identified model tPθ : θ P Θu, the idea is this: T contains no component that varies
with the data but carries zero information about θ on average.

Completeness and sufficiency are logically independent properties: neither implies
the other. Completeness is not in and of itself useful; the trivial statistic T : x ÞÑ c for
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1.2. Statistics, Sufficiency and Likelihoods 15

a constant c is complete for any model (check). However, when combined, they yield a
powerful result: a complete sufficient statistic is automatically minimal sufficient.

Theorem 1.22 (Bahadur). If T is complete and sufficient for P “ tPθ : θ P Θu, then
T is minimal sufficient.

Proof. Let S be any sufficient statistic. Fix B P σpT q. By sufficiency of S, there exists
HB : X Ñ R such that

HB :“ Eθr1B | σpSqs Pθ-a.s. for all θ P Θ.

Fix such a version HB, so HB is σpSq-measurable and note that 0 ď HB ď 1.
The random variable

U :“ EθrHB | σpT qs ´ 1B

is σpT q-measurable (for each θ), integrable, and satisfies EθrU s “ 0 for all θ. By
completeness of T (Definition 1.21), we conclude that U “ 0 Pθ-a.s. for all θ, i.e.

EθrHB | σpT qs “ 1B Pθ-a.s. for all θ.

Since 0 ď HB ď 1, this identity forces HB “ 1B Pθ-a.s. (indeed, on B we have
Eθr1 ´ H | σpT qs “ 0, and on Bc we have EθrH | σpT qs “ 0). Since HB is σpSq-
measurable, HB “ 1B Pθ-a.s. implies that 1B is σpSq-measurable modulo Pθ-null sets.
As B P σpT q was arbitrary, σpT q Ď σpSq modulo Pθ-null sets for every θ.

The previous theorem shows that the notion of completeness is stronger than
minimal sufficiency: every complete sufficient statistic is minimal sufficient. The
converse is not true: the following example shows that minimal sufficiency does not
imply completeness.

Example 1.23. Let X1, . . . , Xn „ Uniformpθ, θ` 1q for θ P R. The likelihood function
is

Lpθq “

n
ź

i“1
1tθďxiďθ`1u “ 1txpnq´1ďθďxp1qu.

The likelihood is non-zero if and only if the interval rxpnq ´ 1, xp1qs is non-empty and
contains θ. The pair T “ pXp1q, Xpnqq determines the likelihood function (as a function
of θ) and is therefore minimal sufficient.

However, T is not complete.
Consider the statistic R “ Xpnq ´ Xp1q. The expectation of R is

EθrRs “ EθrXpnqs ´ EθrXp1qs “ pθ `
n

n ` 1q ´ pθ `
1

n ` 1q “
n ´ 1
n ` 1 (check).
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1.2. Statistics, Sufficiency and Likelihoods 16

Pick arbitrary θ0 P R. Since R is not a constant, gpT q “ R ´ Eθ0rRs is a non-zero
function of T . However, R has zero expectation for all θ. Thus, T is not complete. ♢

Next, we introduce the concept of ancillarity. This is a property of a statistic that
is independent of the parameter.

Definition 1.24. Consider statistic V mapping pX ,X q to pV ,V q. V is ancillary for
P “ tPθ : θ P Θu if Pθpx : V pxq P Aq does not depend on θ for all A P V . That is, if
the distribution of V pXq does not depend on θ.

While a sufficient statistic carries all the information about θ, an ancillary statistic
carries none—its distribution is the same regardless of which Pθ generated the data.

Example 1.25 (Ancillary in Scale Families). Let X1, . . . , Xn
iid
„ Uniformp0, θq for

unknown θ ą 0. The maximum Xpnq is sufficient for θ (Example 1.19). The ratios
ˆ

X1

Xpnq

, . . . ,
Xn´1

Xpnq

˙

are ancillary: their joint distribution does not depend on θ. To see this, write Xi “ θUi

where Ui
iid
„ Uniformp0, 1q. Then Xi{Xpnq “ Ui{Upnq, which involves only the Ui. ♢

A sufficient statistic captures all information about θ; an ancillary statistic carries
none. One might hope these two types of statistics are “orthogonal” in some sense —-
the sufficient part and the ancillary part of the data do not interact. This is not true
in general: a minimal sufficient statistic can be dependent on an ancillary statistic.
However, when the sufficient statistic is also complete, this independence is guaranteed.
This is the content of Basu’s theorem.

Theorem 1.26 (Basu). Consider a statistical model pX ,X ,Pq with P “ tPθ : θ P Θu.
Let T be complete and sufficient for P, and let V be ancillary for P. Then T and V
are independent under every Pθ P P.

Proof. Fix B P V and set A :“ tV P Bu. By sufficiency of T , the conditional
expectation

HB :“ Eθr1A | σpT qs

admits a version that is the same for all θ (i.e. HB is σpT q-measurable and does not
depend on θ up to Pθ-a.s. equality). By ancillarity, cB :“ PθpAq is constant in θ. Hence
for every θ,

EθrHBs “ Eθr1As “ cB,

so with GB :“ HB ´ cB we have GB σpT q-measurable and EθrGBs “ 0 for all θ. By
completeness of T (equivalently, of σpT q), GB “ 0 Pθ-a.s. for all θ, i.e.

Eθr1tV PBu | σpT qs “ PθpV P Bq Pθ-a.s.
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1.2. Statistics, Sufficiency and Likelihoods 17

for all B P V . This is exactly the independence of V and σpT q, hence of V and T .

Basu’s theorem is very useful for showing independence between statistics without
deriving their joint distribution directly.

Example 1.27. Revisiting Example 1.25, where X1, . . . , Xn
iid
„ Uniformp0, θq, we

identified that Xpnq is sufficient and the ratios V “ pX1{Xpnq, . . . , Xn´1{Xpnqq are
ancillary.

It turns out that Xpnq is complete. Hence, by Basu’s theorem, Xpnq and V are –
perhaps surprisingly – independent.

To check completeness of T :“ Xpnq, note that its density is fT ptq “ ntn´1{θn for
0 ă t ă θ. Suppose EθrgpT qs “ 0 for all θ ą 0. Then

ż θ

0
gptqtn´1 dt “ 0 for all θ ą 0.

Differentiating with respect to θ gives gpθqθn´1 “ 0, which implies gpθq “ 0 for almost
all θ. Thus, Xpnq is complete. ♢

There is a particular class of models for which it is easy to check completeness of
sufficient statistics: the class of exponential families, which we will introduce in the
next section.

Exponential Families

Many common statistical models share a structure that leads to elegant sufficiency and
completeness results.

Definition 1.28. A family of distributions P “ tPθ : θ P Θu on pX ,X q dominated by
a σ-finite measure µ is an exponential family if the densities can be written as

ppx | θq “ exp
␣

ηpθq
JT pxq ´ Bpθq

(

hpxq, (1.2)

where T : X Ñ Rk and h : X Ñ r0,8q are measurable functions, and η : Θ Ñ Rk.

The map T : X Ñ Rk is the natural sufficient statistic: by the Fisher–Neyman
factorization theorem, T is sufficient for θ in any exponential family – the density (1.2)
factors as gpT pxq, θq ¨ hpxq. For i.i.d. observations X1, . . . , Xn from a distribution in an
exponential family, the sufficient statistic is the sum

řn
i“1 T pXiq.

Proposition 1.29. If P “ tPθ : θ P Θu is an exponential family with natural sufficient
statistic T , then the model tPbn

θ : θ P Θu is also an exponential family, with natural
sufficient statistic px1, . . . , xnq ÞÑ

řn
i“1 T pxiq.
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Proof. The joint density is

n
ź

i“1
ppxi | θq “ exp

!

ηpθq
J

n
ÿ

i“1
T pxiq ´ nBpθq

)
n
ź

i“1
hpxiq,

which is of the form (1.2) with T̃ px1, . . . , xnq “
řn

i“1 T pxiq, B̃pθq “ nBpθq, and
h̃px1, . . . , xnq “

śn
i“1 hpxiq.

The exponential family is in natural (or canonical) parameterization if Θ Ď Rk and
ηpθq “ θ is the identity map. The natural parameter space is

H “

!

η P Rk :
ż

X
exp

␣

ηJT pxq
(

hpxq dµpxq ă 8

)

.

The set H is convex (verify this). A naturally parameterized exponential family with
H is called full-rank if H contains an open subset of Rk. For full-rank exponential
families, there is a convenient route to minimal sufficiency: we show that T is complete
using the proposition below, after which minimality is implied by Theorem 1.22.

Proposition 1.30. Let P “ tPη : η P Hu be an exponential family in natural parame-
terization with natural sufficient statistic T . If H contains an open subset of Rk, then
T is complete.

♠Proof. The density of T (note T takes values in a regular Borel space) with respect
to some base measure ν is

pT pt | ηq “ exppηJt ´ Bpηqq.

Suppose EηrgpT qs “ 0 for all η P H. Then
ż

gptq exppηJt ´ Bpηqq dνptq “ 0

for all η P H. Since e´Bpηq ‰ 0, this implies
ż

gptq exppηJtq dνptq “ 0

for all η in an open subset of H. The left side is the Laplace transform of the (signed)
measure g dν. Since Laplace transforms are analytic and this one vanishes on an open
set, it vanishes on its entire domain. By uniqueness of the Laplace transform, g dν “ 0,
so gpT q “ 0 ν-a.s., hence Pη-a.s. for all η P H.

What if tPθ : θ P Θu is not a family in natural parameterization? If η is injective,
we may re-index the family as follows. Set Ξ :“ ηpΘq and define a re-parameterized
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family
Qξ :“ Pη´1pξq, ξ P Ξ.

Then, by injectivity of η, we have

tQξ : ξ P Ξu “ tPθ : θ P Θu

as sets of probability measures. Given this re-indexing, if ηpΘq has nonempty interior
in Rk (equivalently; contains an open set), Proposition 1.30 implies that the natural
sufficient statistic T is complete for this family, hence also complete under the original
parameterization. Indeed, completeness is a property of the family of distributions,
not of the parameterization: if two parameterizations define the same collection of
probability measures and T is complete for one, it is complete for the other as well.

The exponential family encompasses a wide range of models. Many of the models
we will see in this course belong to this class.

Example 1.31 (Common exponential families). Most identifiably-parameterized
commonly-used exponential families are full rank.

• Poisson model: Consider the Poissonpθq distribution for θ ą 0, defined by its
density with respect to the counting measure:

ppx | θq “
θxe´θ

x! “
1
x! exp

`

x log θ ´ θ
˘

, x P t0, 1, . . . u.

This constitutes an exponential family with sufficient statistic T pxq “ x and
natural parameter η “ log θ. Since θ ą 0, the natural parameter η ranges over
all of R, which is an open set, so Proposition 1.30 yields that T is complete.

Similarly, for a sample X1, . . . , Xn
iid
„ Poissonpθq, the sum T “

řn
i“1 Xi is a

complete sufficient statistic.

• Binomial model: The Bernoullippq distribution for p P p0, 1q has counting
measure density

ppx | pq “ px
p1 ´ pq

1´x, x P t0, 1u.

This is an exponential family with T pxq “ x and natural parameter ηppq “

logpp{p1 ´pqq. Since ηppq ranges over all of R for p P p0, 1q, the family is full-rank.
For the n i.i.d. draws model – X1, . . . , Xn

iid
„ Bernoullippq – the sum

řn
i“1 Xi

is complete and sufficient. Since the map p ÞÑ ηppq is a bijection between the
parameter space p0, 1q and the natural parameter space R, the statistic is also
complete and sufficient for the original parameterization.

• Multinomial model: Consider a categorical distribution on k categories with

v2025.0.3 – This is a draft – use at your own risk



1.2. Statistics, Sufficiency and Likelihoods 20

probabilities p “ pp1, . . . , pkq satisfying pj ą 0 and
řk

j“1 pj “ 1. A single
observation is a basis vector x “ ej indicating category j, equivalently represented
as x P t0, 1uk with

řk
j“1 xj “ 1. The density with respect to counting measure is

ppx | pq “

k
ź

j“1
p

xj

j .

Using the constraint pk “ 1 ´
řk´1

j“1 pj and xk “ 1 ´
řk´1

j“1 xj:

log ppx | pq “

k´1
ÿ

j“1
xj log pj `

´

1 ´

k´1
ÿ

j“1
xj

¯

log pk “

k´1
ÿ

j“1
xj log pj

pk

` log pk.

This is an exponential family with sufficient statistic T pxq “ px1, . . . , xk´1q P Rk´1

and natural parameter ηj “ logppj{pkq for j “ 1, . . . , k ´ 1. Since pj ą 0 for all j,
the ratios pj{pk can take any positive value, so η P Rk´1. The natural parameter
space is all of Rk´1, which is open, so the family is full-rank.

ForX1, . . . , Xn
iid
„ Categoricalppq, the sufficient statistic is

řn
i“1 T pXiq “ pN1, . . . , Nk´1q,

where Nj “
řn

i“1 Xij counts observations in category j. This statistic is complete.

• Gamma model: Consider the Gammapa, bq distribution with shape parameter
a ą 0 and rate parameter b ą 0: its density (with respect to Lebesgue measure
on p0,8q) is

ppx | a, bq “
ba

Γpaq
xa´1e´bx

“ exp
`

pa ´ 1q log x ´ bx ` a log b ´ log Γpaq
˘

.

This constitutes an exponential family with sufficient statistic T pxq “ plog x, xq

and natural parameter η “ pa´ 1,´bq. The natural parameter space is p´1,8q ˆ

p´8, 0q, which is an open subset of R2.

For a sample X1, . . . , Xn
iid
„ Gammapa, bq, the statistic T “ p

řn
i“1 logXi,

řn
i“1 Xiq

is sufficient and complete.

• Multivariate normal model: Consider the Ndpµ,Σq distribution for µ P Rd

and Σ positive definite. The density with respect to Lebesgue measure on Rd is

ppx | µ,Σq “ p2πq
´d{2

|Σ|
´1{2 exp

´

´
1
2px ´ µq

JΣ´1
px ´ µq

¯

.

Expanding the quadratic form gives

ppx | µ,Σq “ p2πq
´d{2

|Σ|
´1{2 exp

´

pΣ´1µq
Jx ´

1
2x

JΣ´1x ´
1
2µ

JΣ´1µ
¯

.
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This is an exponential family with sufficient statistic T pxq “ px, xxJq and natural
parameters η1 “ Σ´1µ P Rd and η2 “ ´1

2Σ´1, a negative definite d ˆ d matrix.
The natural parameter space is Rd ˆ tM P Rdˆd

sym : M ă 0u, which is open in
Rd`dpd`1q{2.

For i.i.d. observations X1, . . . , Xn, the sufficient statistic is p
řn

i“1 Xi,
řn

i“1 XiX
J
i q.

Since
řn

i“1 XiX
J
i “ S ` nX̄X̄J where S “

řn
i“1pXi ´ X̄qpXi ´ X̄qJ, the pair

pX̄, Sq is an equivalent (and complete) sufficient statistic.

The map pµ,Σq ÞÑ pΣ´1µ,´1
2Σ´1q is a bijection between the original parameter

space Rd ˆ tM P Rdˆd
sym : M ą 0u and the natural parameter space, so pX̄, Sq is

also complete for the original parameterization µ P Rd and Σ ą 0.

A non-example (a curved exponential family): An exponential family model
can fail to have a complete sufficient statistic if the parameter space has a different
dimension than the minimal sufficient statistic. For example, suppose X1, . . . , Xn „

i.i.d. Npθ, θ2q. Then the density can be expressed as

ppx1, . . . , xn|θq “ cpθqhpx1, . . . , xnq expt´
ÿ

x2
i {r2θ2

s `
ÿ

xi{θu.

In this case, T pxq “ p
ř

xi,
ř

x2
i q is a minimal sufficient statistic (why?), but ηpΘq

equals tp´1{r2θ2s, 1{θq : θ P Θu, which is a curve in R2 – it does not contain an open
set.

♢

We have so far discussed sufficiency and completeness as properties of the statistical
model, allowing us to identify when different mathematical formulations of models
are the same ‘for all intents and purposes’. This development, however, has been
independent of any specific statistical task. To proceed, we must define what we aim to
achieve with the data—whether to estimate a parameter, test a hypothesis, or predict
a future value—and how to evaluate our success. In the next section, we introduce the
framework of decision theory, which allows us to formalize these goals and rigorously
compare statistical procedures.

1.3 Decision Problems

Given all the possiblities in terms of writing down models, which one is the ‘correct’
one? One might be tempted to adopt a very large model on the grounds that it is “most
likely to contain the true data-generating process”. We will see that this reasoning is
flawed. Larger models typically come with costs: more parameters to estimate, higher
variance, etc. To compare models meaningfully, we must first specify what we intend
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to do with the data: what decision or action we will take, and how we quantify the
consequences of making that decision under different possible states of nature. Only
once the decision problem (and an associated utility or loss function) has been fixed can
we meaningfully compare statistical procedures, models, or parameterizations according
to their expected performance.

Given observed data x and a statistical model P, we want to determine which
decision to take. For example, we may want to infer which probability distribution in
the collection P is ‘most likely’ to have generated the data. Perhaps we are interested
in testing whether a particular P0 P P gave rise to the observed data versus it is
more likely that the data was generated by distribution P1 P PztP0u. Perhaps we are
interested in predicting a future observed data from the data-generating process, and
we want to make sure that our prediction is ‘good’ in the sense that if given that the
true data-generating process is P0 P P, then the prediction is ‘close’ to future data
drawn from P0. We will develop the formal framework that encapsulates these different
inferential goals in a unified way.

To formalize this, we first need to specify the ingredients of a decision problem.
Besides a statistical experiment pX ,X ,Pq, a decision problem consists of set of possible
actions (decisions), and a way to quantify the consequences of each action under each
possible data-generating process. The set of possible actions forms the decision space D,
equipped with a σ-algebra D to ensure measurability when we later define expectations
and integrals over decisions.

Definition 1.32. A decision space is a measurable space pD,Dq.

A (deterministic) decision rule is a measurable function that assigns an action to
each possible data outcome.

Definition 1.33. A (deterministic) decision rule is a measurable function δ mapping
the sample space pX ,X q into pD,Dq.

Later on, we will also consider randomized decision rules, which allow for proba-
bilistic mixing of different deterministic decision rules.

To evaluate the quality of decisions, we need a loss function that measures the
penalty for choosing action d P D when the true data-generating process is Pθ.

Definition 1.34. A loss function is a function L : ΘˆD Ñ r0,8q such that d ÞÑ Lpθ, dq

is measurable for each θ P Θ.

The loss function Lpθ, dq quantifies the penalty incurred by taking decision d when
the ‘true state of nature’ is θ. The choice of decision space D and loss function L

depends on the inferential goal and the consequences of errors in the application at
hand.
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Two of the most common types of problems which we will study extensively with
corresponding loss functions are estimation and hypothesis testing.

Example 1.35 (Estimation). Suppose we wish to estimate an unknown parameter
θ P Θ Ď Rk. A natural choice is to take the decision space D “ Θ and to equip it with
the Borel sigma-algebra D “ BpΘq.

Examples of loss functions for estimation:

• Euclidean distance; Lpθ, dq “ }θ ´ d}.

• Squared Euclidean distance; Lpθ, dq “ }θ ´ d}2.

• Sup-norm loss; Lpθ, dq “ }θ ´ d}8 “ maxi |θi ´ di|.

• Zero-one loss; Lpθ, dq “ 1tθ‰du.

♢

Example 1.36 (Hypothesis Testing). Suppose we wish to test between two hypotheses:
H0 : θ P Θ0 versus H1 : θ P Θ1, where Θ “ Θ0 Y Θ1 and Θ0 X Θ1 “ H. The decision
space is D “ t0, 1u, where d “ 0 means “accept H0” and d “ 1 means “accept H1”. A
simple loss function is:

Lpθ, dq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if d “ 0 and θ P Θ0,

0 if d “ 1 and θ P Θ1,

a if d “ 0 and θ P Θ1,

b if d “ 1 and θ P Θ0,

where a, b ą 0 are the costs of Type II and Type I errors, respectively. When a “ b “ 1,
this is the zero-one loss. When a ‰ b, we reflect asymmetric consequences—for instance,
in medical testing, falsely declaring a patient healthy (Type II error) might be far more
costly than falsely declaring them sick (Type I error). ♢

Combining all the ingredients, we can now define a decision problem.

Definition 1.37. A (statistical) decision problem is a tuple pX ,X ,P ,Θ, pD,Dq, Lq

where pX ,X ,P ,Θq is a statistical experiment and pD,Dq is a decision space and L is
a loss function.

For decision problems with identifiable models, the expected loss (under Pθ) of the
decision rule δ given the ‘true state of nature θ’ is called its risk.

Definition 1.38 (Risk Function). Given an identifiable statistical model P “ tPθ :
θ P Θu on a measurable space pX ,X q, a decision space pD,Dq and a loss function
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L : Θ ˆ D Ñ R, the risk of a decision rule δ : X Ñ D is defined as

Rpθ, δq :“
ż

X
Lpθ, δpxqqdPθpxq, (1.3)

whenever this integral exists in r´8,8s.

Instead of the integral in Equation (1.3), we will frequently write

Rpθ, δq “ EPθ
rLpθ, δpXqqs ” EθrLpθ, δpXqqs,

where the expectation is to be understood as the expectation under the probability
distribution Pθ and the random element X is simply the identity map on X (see Remark
1.7).

Throughout this course, we evaluate decision rules based on their risk, the expected
loss. One might object that focusing on the first moment of the loss is a limiting choice
made for mathematical convenience. However, there is considerable flexibility in the
choice of loss function itself. For instance, if our goal is for an estimator to be ϵ-close to
the true parameter with high probability, the loss function Lpθ, dq “ 1t}θ´d}ąϵu captures
exactly this objective.

Beyond flexibility in L, there are deeper reasons to focus on expected loss. One
appeals to frequency under (hypothetical) repetitions and betting interpretations: if we
use a decision rule δ repeatedly under the same conditions, the average loss converges
to the risk Rpθ, δq by the law of large numbers. A more philosophical justification,
grounded in rational preferences over random outcomes, is given in Section 1.3.3.

So far, our decision rules δ : X Ñ D have been deterministic: given data x, the
action δpxq is fully determined. Just as mixed strategies in game theory allow players to
randomize over actions, we can allow decision rules to incorporate auxiliary randomness
independent of the data.

Definition 1.39. A randomized decision rule is a measurable function δ : X ˆr0, 1s Ñ D.
Given data x P X and an independent random variable U „ Uniformp0, 1q, the decision
is δpx, Uq.

The risk of a randomized rule averages over both the data and the auxiliary
randomness:

Rpθ, δq “

ż

X

ż 1

0
Lpθ, δpX, uqqdudPθpxq “

ż 1

0

ż

X
Lpθ, δpX, uqqdPθpxqdu. (1.4)

Often, we will simply write this as Eθ

“

Lpθ, δpX,Uqq
‰

, but it is important to remember
that U is ancillary to the model.
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Why allow randomization? In most estimation problems, deterministic rules suf-
fice—randomization cannot improve expected performance when the loss is convex (as
we will see in Section 1.3.1 below). However, randomization becomes important in two
settings we will study later:

• Hypothesis testing (Chapter 3): To achieve exactly a prescribed significance level
α, we may need to randomize when the test statistic falls on the boundary of the
rejection region (see Exercise 1.14).

• Bayesian decision theory (Chapter 4).

Furthermore, for general (non-convex) loss functions, randomization can strictly
reduce the worst-case risk, as shown in the following example.

Example 1.40 (Matching pennies). Let X P t0, 1u be a single observation from a
model with Θ “ t0, 1u and

PθpX “ 1q “

$

&

%

0.3 if θ “ 0,

0.6 if θ “ 1.

The decision space is D “ t0, 1u with 0-1 loss Lpθ, dq “ 1tθ ‰ du. Consider the
deterministic rule δpxq “ x. Its risk is

Rp0, δq “ P0pX “ 1q “ 0.3, Rp1, δq “ P1pX “ 0q “ 0.4.

The worst-case risk is maxθ Rpθ, δq “ 0.4.
Now consider a randomized rule that follows δpxq “ x except when X “ 0, where it

randomizes:

δpx, uq “

$

&

%

1tu ď γu if x “ 0,

1 if x “ 1.

The risks are Rp0, δq “ 0.3 ` 0.7γ and Rp1, δq “ 0.4p1 ´ γq. Setting these equal gives
γ “ 1{11, yielding

max
θ
Rpθ, δq “

4
11 « 0.364 ă 0.4.

Randomization strictly improves the risk for the worst-case θ. ♢

The example above shows that randomization allows us to ‘hedge’ against the
worst-case scenario. We will return to such worst-case analyses in later chapters.

For convex loss functions, however, randomized decision rules do not outperform
deterministic decision rules. The theorem below makes this precise: for any randomized
decision rule, there exists a deterministic decision rule with at most the same risk if
the loss is convex.
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Theorem 1.41. If d ÞÑ Lpθ, dq is convex for all θ P Θ, then for any randomized
decision rule δ, there exists a deterministic decision rule δ˚ with Rpθ, δ˚q ď Rpθ, δq for
all θ P Θ.

Proof. Let δ : X ˆ r0, 1s Ñ D be a randomized decision rule. Define the deterministic
decision rule δ˚pxq “ EU rδpx, Uqs. By convexity of d ÞÑ Lpθ, dq and Jensen’s inequality,

Lpθ, δ˚
pxqq “ L

`

θ,EU
rδpx, Uqs

˘

ď EU
rLpθ, δpx, Uqqs.

Taking expectations over X „ Pθ yields

Rpθ, δ˚
q “ EθrLpθ, δ˚

pXqqs ď Eθ

“

EU
rLpθ, δpX,Uqqs

‰

“ Rpθ, δq.

Remark 1.42 (Why a uniform random variable?). The choice of U „ Uniformp0, 1q as
the source of randomness may seem restrictive. Does a single uniform provide enough
randomness? For decision spaces with standard measurability properties (e.g., D Ď Rk

with the Borel σ-algebra), the answer is yes: any conditional distribution on D can be
generated from a uniform random variable. We revisit this in Section 4.2.

1.3.1 Sufficiency and loss

Intuitively, a sufficient statistic T contains all the information about the parameter θ
that is relevant to making decisions. So, if we are able to attain a certain level of risk
in one model, we should be able to attain the same level of risk in the forward model
induced by sufficient statistic T .

The Rao-Blackwell theorem formalizes this intuition. It states that for any convex
loss function, we can improve (or at least match) the performance of any decision rule
by conditioning on a sufficient statistic.

Theorem 1.43 (Rao-Blackwell, convex loss). Let T be a pT ,T q-valued sufficient
statistic for P “ tPθ : θ P Θu, and let L : Θ ˆ D Ñ r0,8q be a loss function.

If d ÞÑ Lpθ, dq is convex for each θ and D Ď Rm is convex, closed and equipped with
the Borel σ-algebra, then for any decision rule δ : X Ñ D with Eθr}δpXq}s ă 8, there
exists a decision rule δ˚ satisfying δ˚pXq “ EθrδpXq | T s Pθ-a.s. for all θ P Θ and

Rpθ, δ˚
q ď Rpθ, δq for all θ P Θ.

If L is strictly convex, the inequality is strict unless δ is already a function of T .

Proof. Fix any θ P Θ. The random vector δ˚pXq “ EθrδpXq | T s is σpT q-measurable
(and hence X -measurable) and admits a version not depending on θ; meaning that
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there exists a version of the conditional expectation that does not depend on θ (through
similar arguments as in Exercise 1.13) and is D-valued. Hence, δ˚pXq is a valid decision
rule.

By Jensen’s inequality (see Lemma B.41 in Appendix B),

Lpθ, δ˚
pXqq “ Lpθ,EθrδpXq | T sq ď EθrLpθ, δpXqq | T s

as d ÞÑ Lpθ, dq is convex. Taking expectations gives Rpθ, δ˚q ď Rpθ, δq. If Lpθ, ¨q is
strictly convex and δ is not σpT q-measurable, then δpXq is non-constant conditional
on T with positive probability, and Jensen’s inequality is strict on that event, giving
Rpθ, δ˚q ă Rpθ, δq.

This theorem is powerful because it gives us a constructive way to improve estimators.
If you have an estimator δ and a sufficient statistic T , you should consider δ˚ “ Erδ | T s.
For example, if T is minimal sufficient, this often leads to the “best” possible reduction.
If T is complete and sufficient, and we restrict ourselves to unbiased estimators, the
Lehman-Scheffé theorem (which we will cover later) tells us δ˚ is the unique best
unbiased estimator.

For general loss functions, we have a randomized version of the Rao-Blackwell
theorem. The theorem says: we lose nothing by restricting to decision rules based on T

alone.

Theorem 1.44 (Rao-Blackwell, general loss). Let T be a pT ,T q-valued sufficient
statistic for P “ tPθ : θ P Θu, and let L : Θ ˆ D Ñ r0,8q be a loss function.
Consider pD,Dq a standard Borel measurable space. For general loss functions, let
δ : X Ñ D be any decision rule. There exists a randomized decision rule δ˚ of the form
δ˚pX,Uq “ fpT pXq, Uq for some measurable function f : T ˆ r0, 1s Ñ D such that

Rpθ, δ˚
q “ Rpθ, δq for all θ P Θ.

Proof. By sufficiency, the conditional distribution of X given T pXq admits a version
not depending on θ: we denote its conditional expectation by ErhpXq | T s for functions
h : X Ñ R. Since pD,Dq is standard Borel, the conditional distribution of δpXq given
T pXq “ t can be represented via a measurable function (see Theorem B.38 in Appendix
B). By sufficiency, this function does not depend on θ: there exists f : T ˆ r0, 1s Ñ D
such that for each t P T , the random variable fpt, Uq with U „ Uniformp0, 1q has the
same distribution as δpXq given T pXq “ t. Define δ˚px, uq “ fpT pxq, uq.

For each t P T , by construction,
ż 1

0
Lpθ, fpt, uqqdu “ ErLpθ, δpXqq | T “ ts.
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Therefore,

Rpθ, δ˚
q “ Eθ

“

ż 1

0
Lpθ, fpT pXq, uqqdu

‰

“ Eθ

“

ErLpθ, δpXqq | T s
‰

“ EθrLpθ, δpXqqs “ Rpθ, δq.

Together, the Rao-Blackwell theorems can be summarized as follows. For convex
losses, deterministic conditioning on a sufficient statistic improves performance. For gen-
eral losses, a sufficient statistic combined with randomization based on the conditional
distribution attains equally good performance. Sufficiency means all decision-relevant
information is contained in T .

1.3.2 Comparing decision problems

Now that the key infrastructure of statistical decision theory is in place, we are able to
formalize several fundamental questions.

1. Comparing decision rules: Given a model P and loss function L, which
decision rule δ has the ‘best’ risk function Rpθ, δq?

2. Comparing loss functions: For a given model P , how does the choice of loss
function L affect which decision rules are optimal?

3. Comparing models: Given models P “ tPθ : θ P Θu and Q “ tQθ : θ P Θu, a
decision space pD,Dq and loss function L : Θ ˆ D Ñ R, how does the choice of
model P (or Q) affect inference?

We will do an in-depth study of each of these questions in this course in the order
of the list above. To give a flavor, we now preview each of these questions in turn.

Comparing decision rules

Given a statistical model P and a loss function L, we seek to identify decision rules
with small risk. Ideally, we would find a rule δ˚ with uniformly minimum risk:

Rpθ, δ˚
q ď Rpθ, δq for all θ P Θ and all decision rules δ.

It turns out that uniformly optimal rules rarely exist (see Exercise 1.15). Given that
a uniformly optimal rules does not exist, the question “which rule has the best risk
function?” is ill-posed. We must refine our criterion for comparing decision rules. In
these notes, we will consider two main strategies:
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1. Global risk comparisons. Compare rules based on summaries of their entire
risk function:

• Admissibility: Eliminate rules that are uniformly dominated by another rule.

• Bayes risk: Average the risk over θ P Θ with respect to a prior distribution
(‘weighing’ the risk accross the parameter space).

• Minimax risk: Find the best rule with respect to the worst-case risk; i.e. δ˚

such that
sup
θPΘ

Rpθ, δ˚
q “ inf

δPC
sup
θPΘ

Rpθ, δq. (1.5)

where C is the class of all decision rules.

2. Restricted decision rules. Impose additional structure or constraints:

• Unbiasedness: Require for example that EPθ
rδpXqs “ θ for estimation

problems.

• Invariance: Require decision rules to respect symmetries in the problem (e.g.
translation invariance for location parameters, or invariant to scale: unit of
measurement does not matter).

• Level constraints: For testing, consider tests with Type I error rate at most
α and find the most powerful test within this class.

These approaches are not mutually exclusive. In some problems, the best unbiased
estimator coincides with a Bayes rule, or the minimax rule can be found within the
class of invariant procedures. In other cases, we will see that we have to choose between
being e.g. minimax or unbiased. There is a deep connection between admissibility and
Bayes’ risk which we will explore in Chapter 4. In many problems, the best unbiased
estimator coincides with a Bayes rule, or the minimax rule can be found within the
class of invariant procedures. Understanding these connections is a central goal of this
course.

Comparing loss functions

Once we have a deepened understanding of optimal decision rules given statistical
model, a decision space and a loss function, we can start to compare different loss
functions and see how they affect the optimal decision rules. Different loss functions
encode different priorities: squared error loss heavily penalizes large errors and leads to
estimators sensitive to outliers; absolute error loss treats all errors more equally and
yields more robust estimators; zero-one loss distinguishes only between correct and
incorrect decisions, ignoring the magnitude of errors entirely.
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We will see that the quality of an inference depends fundamentally on the chosen
loss function; what constitutes an optimal decision rule changes as the loss function
changes. A decision rule that is optimal for one loss function may not be optimal for
another. Understanding the interplay between loss function and model allows us to
reflect on the consequences of errors in specific applications. A medical diagnostic test,
a financial trading algorithm, and a scientific hypothesis test may all involve the same
statistical model but call for different loss functions.

In some cases, it makes sense to study a model for a collection of loss functions.
These considerations will not be the main focus of this course, but we will touch upon
them here and there.

Comparing models

After we have a deepened understanding of performance ‘within’ the context of a given
statistical model, a decision space and loss function(s), we can revisit the question
posed at the end of Section 1.1 (see Example 1.4): which model is the right one?
The concept of sufficiency introduced in Section 1.2 allows us to say when models are
effectively the same for all intents and purposes. However, in many cases of practical
interest, we are interested in comparing models that are fastly different, and knowing
which is better for a particular task at hand.

Given a parameter space Θ, a decision space D and a loss function L : Θ ˆ D Ñ R,
consider two models

P “ tPθ : θ P Θu with each Pθ defined on sample space pX ,X q

and Q “ tQθ : θ P Θu with each Qθ defined on sample space pY ,Y q.

The parameter space Θ, which represents the phenomenon of interest, is the same for
both models. The distributions Pθ and Qθ could be different. Their sample spaces
pX ,X q and pY ,Y q could be vastly different. When the two models are observationally
equivalent, we expect there not to be any difference in terms of inference. But when
they are not, how do we decide which model is “better”? Or more generally, how do
we quantify how much information is lost by choosing one model over the other?

Le Cam and Yang 1986 gives the following example:

Example 1.45 (Estimating the half-life of Carbon 14). A physicist wants to estimate
the half-life of Carbon 14, assuming the lifetime of a C14 atom follows an exponential
distribution with rate parameter θ ą 0. To do so, the physicist considers two possible
experimental designs.

In the first setup, the physicist takes a sample of n atoms and observes the number
of disintegrations x P N0 over a fixed time period of 2 hours. Under this model,
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Pθ “ Poissonp2np1 ´ e´2θqq: the distribution of the count in fixed time. This defines
the statistical experiment P “ tPθ : θ P p0,8qu, where Pθ is defined on the sample
space of non-negative integers.

In the second setup, the physicist observes the waiting time y ě 0 until a fixed
number of disintegrations, say m “ 106, occurs. Here, Qθ “ Gammapm, θq, defining
another experiment Q “ tQθ : θ P p0,8qu, with Qθ on the positive real line. Which
setup is more informative? Explore this further in Exercise 1.9. ♢

Given a loss function L : Θ ˆ D Ñ R, we could compare best possible performance
of the two models. We could find for example that one model has a strictly better
performance in terms of minimax risk:

inf
δ

sup
θPΘ

EPθ
rLpθ, δpXqqs “ inf

δ
sup
θPΘ

EQθ
rLpθ, δpY qqs ` ϵ

for some ϵ ą 0, which is means that the model P is ‘ϵ-deficient’ for the loss function L
compared to the model Q in terms of its best worst-case performance. We could even
go a step further and compare the best worst-case performance of the two models with
respect to a large collection of loss functions, to see if the one model is deficient across
loss functions compared to the other. In other cases, we might find that two models
with different sample spaces and distributions lead to exactly the same best possible
performance. Sometimes, we might find that this to be true for all loss functions.

The above notion of deficiency allows us to think about situations where models
are not observationally equivalent: given that a statistic is not sufficient for a model,
how much information is lost? Note that being ‘ϵ-deficient’ might not mean that the
model P is ‘bad’; it might be the better model to work with for practical purposes.
Finding its deficiency with respect to another model is a way to quantify how much
information is lost when approximating one model by something that is perhaps more
tractable, or more affordable in terms of experimental design.

This line of thinking extends to perhaps the most powerful theoretical tool developed
in Part II: The ability to compare models asymptotically. Under certain regularity
conditions, complicated models can be shown to ‘tend asymptotically’ —in various
precise senses—to much simpler experiments whose performance is well understood.
This allows us to reason about performance in complicated models by reasoning about
performance in simpler models, enabling meaningful analysis of performance that would
otherwise be intractable.

Lastly, another reason to compare models is misspecification. We might want to
know how robust decision procedure is if in reality, the model Q is the correct one, but
we are using the model P to make decisions.
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1.3.3 ♠ Why (Expected) Loss?

One might reasonably ask: why focus on expected loss rather than, say, the median
loss, or some quantile of the loss distribution, or the maximum loss? And why consider
loss functions at all?

Suppose that if θ were known, you could provide a preference ordering over possible
decisions in D. We write d1 ĺ d2 if we prefer decision d1 to decision d2 (or are indifferent
between them) when the true parameter is θ. For instance, in hypothesis testing with
θ P Θ0, we would prefer deciding H0 over deciding H1. In estimation, we typically
prefer decisions closer to the true value of the estimand gpθq.

These preferences naturally extend to randomized decisions. Consider now a
comparison between two randomized decision rules: We write δ1 ĺ δ2 if we prefer (or
are indifferent to) the randomized decision rule δ1 over δ2.

A1 (Transitivity): If δ1 ĺ δ2 and δ2 ĺ δ3, then δ1 ĺ δ3.

A2 (Independence): If δ1 ĺ δ2, then

λδ1 ` p1 ´ λqδ3 ĺ λδ2 ` p1 ´ λqδ3 for all λ P p0, 1s, δ3.

A3 (Continuity): If δ1 ă δ2 ă δ3, then there exist λa, λb P p0, 1q such that

λaδ1 ` p1 ´ λaqδ3 ĺ δ2 ĺ λbδ1 ` p1 ´ λbqδ3.

The first axiom says that if we prefer δ2 over δ1 and δ3 over δ2, then we should also
prefer δ3 over δ1. This makes the comparison ĺ a partial order on the space of decision
rules. The second axiom says that mixing between decision rules in an irrelevant
alternative should not reverse preferences. The third axiom says there is no decision
rule that is infinitely preferable to another; every decision rule can be made comparable
through appropriate randomization. We will skip the philosophical discussion of why
these axioms could be considered ‘rational’.

These axioms are enough to guarantee that our preferences over the decision space
can be represented by risk in the sense of Definition 1.38: there exists a loss function
such that the corresponding risk function captures our preferences.

Theorem 1.46 (Representation Theorem). If the space of decision rules equipped
with the comparison ĺ satisfies axioms A1, A2 and A3, then there exists a measurable
function L : Θ ˆ D Ñ r´8,8s such that

δ1 ĺ δ2 ðñ Rpθ, δ1q ď Rpθ, δ2q.
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See Ferguson 1967 for a proof. In words, if our preferences over the decision space
are rational in this sense, then they can be represented by minimizing expected loss for
some loss function L.
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Exercises

Exercise 1.1. Consider an experiment in which we observe Y “ µ ` ϵ, where µ P Rd is
an unknown vector and ϵ „ Ndp0, σ2Idq is independent noise with unknown σ ą 0.

1. Write down a corresponding statistical model and verify that the set Θ :“
Rd ˆ p0,8q is identifiable under an appropriate parameterization.

2. Suppose we instead believe µ lies on a ray through the origin: µ “ αv for
some unknown α P R and direction v P Sd´1 in the unit sphere. Consider
the statistical model tNdpαv, σ2Idq : α P R, v P Sd´1, σ ą 0u and the set
Θray :“ R ˆ Sd´1 ˆ p0,8q.

Is there a parameterization ϑ : Pray Ñ Θray such that for every P P Pray with
ϑpP q “ pα, v, σq we have P “ Ndpαv, σ2Idq? If not, give a subset Θ1

ray Ď Θray for
which such a parameterization exists and is identifiable.

Exercise 1.2. In Example 1.2, show that the observable L (whether the first die is
larger than the second) is not σpSq-measurable. What is the smallest sigma-algebra
containing σpSq that makes L measurable?

Exercise 1.3. Consider X “ R, X “ BpRq, and the model

P “

!

1
2Npθ1, 1q ` 1

2Npθ2, 1q : pθ1, θ2q P R2
)

.

(a) Can we take the inverse of the indexing map pθ1, θ2q ÞÑ Pθ1,θ2 (as a well defined
map) onto R2 to obtain a valid parameter space for P?

(b) Show that Θď :“ tpθ1, θ2q P R2 : θ1 ď θ2u is a valid parameter space under the
map 1

2Npθ1, 1q ` 1
2Npθ2, 1q ÞÑ pθ1, θ2q and that the induced parameterization is

identifiable in the sense of Definition 1.5.

Exercise 1.4. Let x, z P Rn and consider statistical model pRn,BpRnq,Pq where P “

tPα,β : α, β P Ru and Pα,β is the multivariate normal distribution with mean αx ` βz

and variance In. Find a sufficient condition on x and z and an explicit parameterization
(a map from P to R2) that makes the model P identifiable with Θ “ R2.

Exercise 1.5. Revisiting Example 1.13, prove that the sum S is not sufficient in Model
1 but is sufficient in Model 2. Specifically:

(a) In Model 1 (nonparametric), show that the conditional distribution of the outcome
given S “ 7 depends on the unknown distribution p.
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(b) In Model 2, use the definition of sufficiency (or the Factorization Theorem) to
prove that S is sufficient for pθ.

Exercise 1.6. Verify the claims in Example 1.16.

(a) Show that if X1, . . . , Xn
iid
„ Npµ, σ2q, then X̄ „ Npµ, σ2{nq.

(b) Show that if Y „ Npµ, σ2{nq and Z1, . . . , Zn
iid
„ Np0, σ2q independent of Y , then

the variables Xi “ Y ` Zi ´ Z̄ are i.i.d. Npµ, σ2q.

Exercise 1.7. Verify the claims in Example 1.23. Let X1, . . . , Xn
iid
„ Uniformpθ, θ ` 1q

for θ P R.

1. Show that T “ pXp1q, Xpnqq is minimal sufficient.

2. Show that T is not complete.

Exercise 1.8. Let tPη : η P Θu, Θ Ď Rk be an exponential family with density
ppx | ηq “ exptηJT pxq ´ Apηquhpxq with respect to a σ-finite measure µ.

1. Show that Pη1 “ Pη2 if and only if pη1 ´ η2qJT pxq is constant µ-a.e.

2. Conclude that Pη “ Pη1 ðñ η “ η1 if and only if there do not exist distinct
η1, η2 P Θ with pη1 ´ η2qJT pxq constant µ-a.e.

Exercise 1.9. Revisiting Example 1.45, suppose we are interested in estimating the
mean lifetime τ “ 1{θ.

(a) In the first setup, let X be the number of disintegrations in time t “ 2. Show
that the maximum likelihood estimator for τ is τ̂1 “ ´2

logp1´X{p2nqq
.

(b) In the second setup, let Y be the time until m disintegrations. Show that the
maximum likelihood estimator for τ is τ̂2 “ Y {m.

(c) Compare the variances of these two estimators (you may use a heuristic argument,
considering what happens for m, n and τ). Which experiment seems more
informative if we want to estimate τ , particularly for large τ (long lifetimes)?

Exercise 1.10. The empirical distribution of a sample X1, . . . , Xn is given by P̂ satisfying

P̂ pAq “
ÿ

i

1pXi P Aq{n

for all measurable sets A Ď X . Suppose X “ R.

v2025.0.3 – This is a draft – use at your own risk



1.3. Decision Problems 36

(a) Show that observing the empirical distribution P̂ is observationally equivalent to
observing the sample cumulative distribution function

F̂ pxq “
ÿ

i

1pXi ď xq{n.

(b) Show that observing the empirical distribution is observationally equivalent to
observing the order statistics pXp1q, . . . , Xpnqq.

Exercise 1.11. Consider the following definition: A model Pn on a product space
pX n,Anq is exchangeable if for all Pn P Pn, sets A1 P A, . . . , An P A, and permutation
π of t1, . . . , nu,

PnpA1 ˆ ¨ ¨ ¨ ˆ Anq “ PnpAπ1 ˆ ¨ ¨ ¨ ˆ Aπnq.

Let Pn be an exchangeable model on pX n,Anq, where X is a finite set. Prove
that the empirical distribution P̂n, defined by P̂npAq “ 1

n

řn
i“1 1ApXiq, is a sufficient

statistic.

Exercise 1.12. Consider the statistical model pRn,BpRnq,Pq where P “ tPf : f P Θu

and Θ Ď L2r0, 1s (see Definition B.24) is such that Y “ pY1, . . . , Ynq „ Pf satisfies

Yi “ fpi{nq ` ϵi, i “ 1, . . . , n,

for f P Θ and ϵ1, . . . , ϵn
iid
„ Np0, 1q.

(a) Is the map ϑ : Θ Ñ P , f ÞÑ Pf injective?

(b) Consider instead Θ equal to the space L2pr0, 1s,Br0, 1s,Pnq where the measure
Pn : Br0, 1s Ñ r0, 1s is to be understood as

PnpAq “
|ti P t1, . . . , nu : i{n P Au|

n
.

Show that this makes the previous map injective and provide a map from P to Θ
that makes the parameterization identifiable.

Exercise 1.13. Let T be a sufficient statistic for the model P “ tPθ : θ P Θu. Show
that if hpXq is any bounded measurable function that does not depend on θ, then the
conditional expectation EθrhpXq | T s admits a version that does not depend on θ.

Hint: Use the definition of conditional expectation and the fact that T is sufficient
and use the standard machine of measure theory (Appendix B Section B.2.1).
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Exercise 1.14 (Deterministic and randomized tests). Let X1, . . . , Xn
iid
„ Poissonpθq with

θ ą 0 unknown, and consider testing H0 : θ ď θ0 versus H1 : θ ą θ0. The decision
space is D “ t0, 1u, where d “ 1 means “reject H0”. A deterministic test is

δpxq “ 1t
řn

i“1 xi ą cu

for some threshold c P N.

1. Show that there may be no c such that Pθ0p
řn

i“1 Xi ą cq “ α for a given
significance level α.

2. Consider the randomized test

δpx, uq “

$

’

’

’

&

’

’

’

%

1 if
řn

i“1 xi ą c,

1tu ď γu if
řn

i“1 xi “ c,

0 if
řn

i“1 xi ă c.

Show that c P N and γ P r0, 1s can be chosen such that Eθ0rδpX,Uqs “ α.

Exercise 1.15 (Nonexistence of uniformly optimal rules). Consider the statistical model
corresponding to X „ Pθ where Pθ0 “ Np0, 1q and Pθ1 “ Np1, 1q and let ∆ denote the
set of all (possibly randomized) decision rules. Define the risk set

R “
␣

pRpθ0, δq, Rpθ1, δqq : δ P ∆
(

Ď R2.

1. Consider estimating θ under squared error loss. Compute the risk pair for:

(a) the estimator δ0pXq “ 0,

(b) the estimator δ1pXq “ 1,

(c) the estimator δ1{2pXq “ 1{2.

(d) the estimator δpXq “ X.

Which of these decision rules do you prefer? Can you think of a rule that is better
than all of them?

2. A decision rule δ˚ is uniformly optimal if pRpθ0, δ
˚q, Rpθ1, δ

˚qq is componentwise
smaller than or equal to pRpθ0, δq, Rpθ1, δqq for all δ P ∆. Using the risk pairs
(specifically, δ0 and δ1), argue that no uniformly optimal rule exists.

Exercise 1.16 (♠). Consider an experiment of flipping a coin infinitely many times.

(a) What should the sample space X be? What is its cardinality?
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(b) What sigma-algebra X would naturally represent the observable events (e.g.,
"the n-th flip is heads")?

(c) Explain why it is impossible to define a countably additive probability measure
on pX , 2X q that consistently assigns probabilities to cylinder sets Cn “ tx P X :
xn “ 1u as if the coin flips were independent.

Hint: Consider what happens if all singleton sets have probability zero versus positive
probability.

Exercise 1.17 (♠ Empirical distribution equivalence). Let pX ,X q “ pRn,BpRnqq and
consider the i.i.d. model

P “ tPbn : P P Θu, Θ :“ M1pRq,

where M1pRq denotes the set of all probability measures on pR,BpRqq. Equip M1pRq

with the Borel σ-algebra generated by the total variation distance (see Definitions 2.2
and B.10 in the appendix).

For x “ px1, . . . , xnq P Rn define the empirical measure P̂x P M1pRq by

P̂xpAq :“ 1
n

n
ÿ

i“1
1txi P Au, A P BpRq.

Let C denote the set of all cumulative distribution functions (c.d.f.’s), and equip C with
the Borel σ-algebra generated by the sup-norm on C, and define the empirical c.d.f.
F̂x P C by

F̂xptq :“ P̂xpp´8, tsq “
1
n

n
ÿ

i“1
1txi ď tu, t P R.

Lastly, consider the order statistics T pXq “ pXp1q, . . . , Xpnqq as a pRn,BpRnqq valued
statistic.

(a) Show that σpP̂ q “ σpF̂ q “ σpT q.

(b) Show that the order statistics are complete.

(c) Conclude that P̂ and F̂ are complete sufficient statistics for P .
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2 Point Estimation
In this chapter, we study the problem of estimation: constructing a decision rule
that approximates an unknown parameter or functional of the parameter based on
observed data. Recall from Chapter 1 that a statistical model is a family of probability
distributions P “ tPθ : θ P Θu indexed by a parameter θ in a parameter space Θ.
Often, we wish to estimate either the parameter θ itself or a functional of it, θ ÞÑ ϕpθq.
An estimator is a decision rule δ : X Ñ ϕpΘq that maps the observed data X to an
estimate δpXq of the target quantity. This means our decision space is the same as our
parameter space (or a function thereof, ϕpΘq).

The central questions of this chapter are: what makes an estimator good, and
how do we construct estimators with desirable properties? And how do we compare
estimators? Intuitively, good performance means that when we observe data X „ Pθ,
the estimator δpXq is “close” to the true value ϕpθq. To formalize this, we could equip
the target space ϕpΘq with a metric distance d and define the loss as a function in terms
of this distance, for example LpδpXq, θq “ dpδpXq, ϕpθqq2. In this sense, specifying the
functional ϕ is part of specifying the loss and the decision space: it fixes what quantity
the estimator is judged against, and hence what counts as estimation error. Taking
the Borel σ-algebra on ϕpΘq induced by d ensures that loss functions and estimators
can be defined as measurable functions. In the common setting where ϕpΘq Ď Rk, the
Euclidean metric is a natural choice.

Example 2.1 (Estimation (and prediction) in a linear model). Suppose we observe a
random vector Y in Rn generated from the linear model

P “ tNdpXβ, σ2Inq : pβ, σ2
q P Θu,

with fixed design X P Rnˆp (with XJX invertible) and parameter space Θ “ Rpˆp0,8q.
If we wish to estimate ϕpθq “ β, an estimator is any decision rule δ : Rn Ñ Rp, e.g.

δpY q :“ pXJXq
´1XJY.

A sensible loss function is the squared Euclidean distance:

Lppβ, σ2
q, δq “ }δ ´ β}

2.

If instead we wish to predict the mean response at a known new covariate xnew P Rp,
the target is the functional ϕpθq “ xJ

newβ P R. That means that our decision space is

39
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R, and as a loss function, we could consider

Lppβ, σ2
q, δq “ |δ ´ xJ

newβ|.

♢

However, estimation problems sometimes involve more abstract target spaces. For
example, the target of estimation could be itself the probability distribution generating
the data — i.e. when ϕpθq “ Pθ. In this case, the loss function could be a metric on the
space of probability measures. A possible choice for such a metric is the total variation
distance.

Definition 2.2. The total variation distance between two probability measures P and
Q on a measurable space pX ,X q is defined as

dT V pP,Qq “ sup
APX

|P pAq ´ QpAq|.

The total variation metric allows us to study the parameter space where Θ is (a
subset of) the space of probability measures, equipped with the Borel sigma-algebra of
the total variation metric. Given a statistical model P “ tPθ : θ P Θu, we could take ϕ
to be the map θ ÞÑ Pθ and the loss function to be the total variation distance:

LpδpXq, θq “ dT V pδpXq, Pθq.

For some models, various losses can be related to each other in a simple way. In
other cases, they do not. For example, when Pθ ÞÑ ϕpθq does not identify the model,
we cannot generally hope that estimating the functional ϕpθq allows for an estimate of
Pθ. The example below illustrates that in estimation problems, we are often not trying
to estimate the entire distribution Pθ, but rather a lower-dimensional summary such
as the mean, variance, or quantile, depending on what we are interested in. Only in
special cases, these lower-dimensional summaries translate back to the data generating
process.

Example 2.3 (Estimating a functional vs. the distribution). We revisit Example 1.4
from Chapter 1. Consider two statistical models on pR,BpRqq:

(i) P “ tPθ :“ Npθ, 1q : θ P Ru.

(ii) Q “ tall probability measures on pR,BpRqq with variance at most 1u.

For the model P, it can be shown (see Exercise 2.18) that the total variation
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distance is bounded by the distance between the means for θ, θ1 P R:

dT V pPθ, Pθ1q ď
1
2 |θ ´ θ1

|.

This implies that estimating the parameter θ well (in Euclidean distance) automatically
ensures that we estimate the distribution Pθ well (in total variation distance).

For the model Q, the mean parameter ϕ : Q ÞÑ
ş

xdQpxq does not identify the
distribution in the sense of Definition 1.5. Estimating the mean ϕpQq “

ş

xdQpxq is still
almost equally ‘doable’ as in the case of normals (see Exercise ??). However, estimating
the distribution Q P Q itself turns out to be much more difficult: it is impossible to find
a ‘good’ estimate of the distribution in total variation distance uniformly over Q, even
under repeated sampling (see Exercise 2.17). That is, for the model Q, estimating the
distribution Q P Q itself is a very different estimation problem compared to estimating
ş

xdQpxq. ♢

This example also motivates a useful (informal) taxonomy of estimation problems.
The labels parametric, semiparametric, and nonparametric are best thought of as
describing the complexity of the model in relation to the estimand: the same model
can lead to different types of problems depending on whether we aim to estimate a
low-dimensional functional (like a mean) or a high/infinite-dimensional object (like an
entire distribution).

• Parametric estimation: the model is indexed by a finite-dimensional parameter,
typically Θ Ď Rd with fixed d, and the data-generating distribution is fully
determined (up to θ). In Example 2.3(i), P “ tNpθ, 1q : θ P Ru is a one-
dimensional parametric model. In such settings, estimating θ is often closely
related to estimating Pθ itself because the parameter identifies the distribution
(and here even controls it in total variation).

• Semiparametric estimation: the model is infinite-dimensional, but the target
ϕpθq is finite-dimensional (typically in Rk for fixed k). The remaining aspects of
the distribution act as an infinite-dimensional nuisance. In Example 2.3(ii), if
the goal is only to estimate the mean functional gpQq “

ş

x dQpxq P R, then we
are in this regime: many different Q P Q share the same mean, yet the target
itself is one-dimensional.

• Nonparametric estimation: the model is infinite-dimensional (e.g. a large class
of distributions, densities, regression functions, etc.), and the target is typically
itself an infinite-dimensional object such as the distribution P , its CDF, or its
density. In Example 2.3(ii), if the goal is to estimate Q P Q (as a distribution),
then this is a nonparametric estimation problem.
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The example above illustrates that the labels parametric, semiparametric, and
nonparametric are best understood as describing an estimation problem—in particular,
the target gpθq and the loss function—and not only the “size” or complexity of the
model class. Moreover, these labels are only loose distinctions: different statistics books
(and different subfields) use them in slightly different and sometimes inconsistent ways.

There is also a fourth, even less sharply defined regime that we will encounter
throughout the chapter: high-dimensional estimation problems, where the parameter
is technically finite-dimensional (e.g. Θ Ď Rd), but the dimension d is large relative to
the other relevant aspects of the problem (such as the sample size n) in a way that
drastically changes which decision rules are reasonable. In this sense, high-dimensional
problems often behave more like nonparametric problems than classical parametric
ones, despite having a finite-dimensional parameter space. We return to this theme in
Section 2.3.

Returning to the central question of this chapter: given a statistical model P, a
target quantity ϕpθq and a loss function L, what is a good estimator for ϕpθq? For
typical loss functions (e.g. if L is related to some distance metric) and a fixed θ, we
might observe that if we knew Pθ, the “best estimator” would simply be the constant
function δpxq “ ϕpθq for all x. This estimator is measurable and achieves zero loss if θ
is the parameter underlying the data-generating process. However, since inference of θ
is the whole point, this is not a sensible estimator. The challenge of formulating what
is ‘a good estimator’ is to construct a data-dependent rule that ‘performs well across
the parameter space’. There are multiple criteria for measuring what ‘performance
across the parameter space’ means, which we explore throughout this chapter.

2.1 Unbiasedness

Throughout this section, we consider a statistical model P “ tPθ : θ P Θu and a
target quantity ϕ : Θ Ñ Rk. We will study estimators of ϕpθq satisfying the following
property.

Definition 2.4 (Unbiasedness). An estimator δ : X Ñ Rk is an unbiased estimator of
ϕpθq if for all θ P Θ,

EθrδpXqs “ ϕpθq.

Unbiasedness is an appealing property: on average, the estimator produces the
correct value. If we, or others, were to repeat the experiment many times, the average
of the estimates would converge to the true parameter value.

Example 2.5 (Averaging i.i.d. estimators). Suppose we have m independent replica-
tions of a study, yielding estimators δ1, . . . , δm of a parameter θ P R. Assume these
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are independent and identically distributed with unit variance (i.e., Varpδjq “ 1). A
natural estimator is the average:

δpXq “
1
m

m
ÿ

j“1
δj.

If the individual estimators are unbiased, then δpXq converges to θ over repeat repli-
cations. However, if there is systematic bias (Erδjs ‰ θ), the convergence fails. See
Exercise 2.5. ♢

However, it does not guarantee that any single estimate is close to the true parameter.
A large variance implies that the estimator fluctuates significantly, making individual
estimates unreliable. By minimizing variance, we maximize the probability that the
estimator is close to the target ϕpθq.

Definition 2.6. Let X and Y be random vectors in Rk and Rm, respectively, with
means µX “ ErXs and µY “ ErY s. The covariance matrix of X and Y is the k ˆ m

matrix defined by
CovpX, Y q “ ErpX ´ µXqpY ´ µY q

J
s.

The variance matrix (or simply variance) of a random vector X P Rk is the k ˆ k

covariance matrix of X with itself:

VarpXq “ CovpX,Xq “ ErpX ´ µXqpX ´ µXq
J

s.

For the Euclidean metric, it turns out that minimizing the variance across all
unbiased estimators is equivalent to minimizing the expected squared error of the
estimator.

Lemma 2.7 (Bias-Variance Decomposition). Let δpXq be an estimator of ϕpθq with
finite second moments. Then,

Eθ}δpXq ´ ϕpθq}
2

“ }EθrδpXqs ´ ϕpθq}
2

` TracepVarθpδpXqqq. (2.1)

Proof. See Exercise 2.4.

The first term in (2.1) is called the (squared) bias of the estimator, and the second
term is the ‘variance term’. The lemma states that the expected squared error of any
estimator is the sum of the squared bias and the variance. For unbiased estimators, (the
trace of) the variance effectively measures the average squared Euclidean distance from
the true parameter value. This is one of the reasons to compare unbiased estimators
based on their variance. This leads us to the concept of a UMVUE.
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Definition 2.8. An estimator δ is a uniformly minimum variance unbiased estimator
(UMVUE) of ϕpθq if it is unbiased, i.e., EθrδpXqs “ ϕpθq for all θ P Θ, and if for any
other unbiased estimator δ1,

VarθpδpXqq ď Varθpδ1
pXqq for all θ P Θ.

For a formal definition of the matrix ordering ď (the Loewner order), see Defini-
tion C.10 in Appendix C. The notation Varθ denotes the variance operator with respect
to the expectation operator Eθ.

Finding a UMVUE is a challenging problem in general. However, for certain models,
those where complete sufficient statistics exist, the UMVUE can be found using the
following theorem.

Theorem 2.9 (Lehmann-Scheffé). Let T be a complete sufficient statistic for P “

tPθ : θ P Θu. If δ0 is any unbiased estimator of ϕpθq with finite variance, then
δpXq “ Erδ0pXq | T pXqs is the a.s. unique UMVUE of ϕpθq.

Proof. By sufficiency, δpXq “ Erδ0pXq | T s admits a version not depending on θ, so
it is a valid estimator. By the tower property, EθrδpXqs “ Eθrδ0pXqs “ ϕpθq, so δ is
unbiased. For any v P Rk, the loss function Lvpδ, θq “ pvJpδ ´ ϕpθqqq2 is convex in δ.
By Rao-Blackwell (Theorem 1.43),

EθrpvJ
pδpXq ´ ϕpθqqq

2
s ď EθrpvJ

pδ0pXq ´ ϕpθqqq
2
s.

Since both estimators are unbiased, this gives

vJ Varθpδq v ď vJ Varθpδ0q v for all v P Rk,

i.e., Varθpδq ď Varθpδ0q in the positive semidefinite ordering.
Now suppose δ1 is any other unbiased estimator of ϕpθq. Define ψpT q “ Erδ1pXq |

T s ´ δpXq. Then

EθrψpT qs “ ϕpθq ´ ϕpθq “ 0 for all θ P Θ.

By completeness, ψpT q “ 0 almost surely, so Erδ1pXq | T s “ δpXq almost surely. By
Rao-Blackwell, Varθpδq ď Varθpδ1q. Since δ1 was arbitrary, δ is UMVUE.

The Lehmann-Scheffé theorem provides a strategy for finding a unique, best unbiased
estimator:

1. Start with an arbitrary unbiased estimator δ0;

2. Find a complete sufficient statistic T ;
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3. Apply the Rao-Blackwell theorem to obtain the UMVUE δpXq “ Erδ0pXq | T s.
This is sometimes called “Rao-Blackwellization”.

We illustrate the use of the Lehmann-Scheffé theorem with two examples below:
estimating the CDF of a distribution at a fixed point in a parametric setting and in a
semiparametric setting.

Example 2.10 (Normal mean with known variance). Consider the model P “

tNpθ, σ2qbn : θ P Ru, corresponding to observing X1, . . . , Xn
iid
„ Npθ, σ2q “: Pθ, where

σ2 ą 0 is known. The sample mean X̄ is a complete sufficient statistic for θ (see Exam-
ple 1.16 combined with Proposition 1.29). Suppose we want to estimate the CDF at a
point t P R, i.e., ϕpθq “ Pθpp´8, tsq. Consider the unbiased estimator δ0pXq “ 1tX1ďcu.
Since X̄ is complete sufficient, the UMVUE is given by δpXq “ Erδ0pXq | X̄s by the
Lehmann-Scheffé theorem.

We can compute the UMVUE explicitly (Exercise 2.2):

δpXq “ Φ
ˆc

n

n ´ 1
t ´ X̄

σ

˙

.

♢

Example 2.11 (Estimating the cumulative distribution function). Consider observing
X1, . . . , Xn

iid
„ P , where P is any probability distribution on R. The corresponding

statistical experiment is pRn,BpRqn,P ,Pq where

P “ tP : P is a probability distribution on Ru.

Given P P P , let FP be the cumulative distribution function of P : FP ptq “ P pp´8, tsq.
To estimate ϕpP q “ FP ptq at a fixed point t P R, a natural estimator is the empirical
distribution function:

δpXq “
1
n

n
ÿ

i“1
1tXiďtu.

For a fixed t, the random variable Yi “ 1tXiďtu is Bernoulli distributed with parameter
p “ P pXi ď tq “ FP ptq. Thus,

EP rδpXqs “
1
n

n
ÿ

i“1
EP rYis “

1
n

¨ nFP ptq “ FP ptq,

showing that δpXq is an unbiased estimator for FP ptq. Its variance is given by

VarP pδpXqq “
1
n2

n
ÿ

i“1
VarP pYiq “

1
n
FP ptqp1 ´ FP ptqq.
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By Exercise 1.17, the order statistics T pXq “ pXp1q, . . . , Xpnqq are a complete sufficient
statistic for this model. Furthermore,

EP

«

1
n

n
ÿ

i“1
1tXiďtu | T pXq

ff

“
1
n

n
ÿ

i“1
1tXiďtu.

Hence, δpXq is the UMVUE for ϕpP q “ FP ptq by the Lehmann-Scheffé theorem. ♢

Returning briefly to our earlier discussion concerning parametric vs semiparametric
estimation problems, a further investigation the above examples reveal an important
phenomenon: in both problems, it can be shown that the accuracy of the estimator is
of the order 1{

?
n: the rate as a function of the sample size at which we can expect the

estimator to be accurate is the same. However, the (in both cases optimal!) variances
differ between the two models (see Exercise 2.2). This is expected: the parametric
model is more informative and allows us to estimate the parameter with more precision.
In the semiparametric model, we are paying a price for the flexibility of the model; its
infinite dimensional nature.

2.1.1 The Cramér-Rao lower bound

In some statistical models, a differentiable relationship between Θ and P allows us
to derive fundamental limits on estimation accuracy for smooth functionals of the
parameter. The key idea is that if the distribution Pθ changes smoothly with θ, we can
quantify how much information the data carries about the parameter.

Consider a model P “ tPθ : θ P Θu dominated by a measure µ with densities
pθ “ dPθ{dµ, where Θ is an open subset of Rd. If the map θ ÞÑ pθpxq is differentiable
for each x, we can define the score function

Sθpxq “ ∇θ log pθpxq.

Under regularity conditions that permit interchanging differentiation and integration,
the expected score is zero: EθrSθpXqs “ 0. The Fisher information matrix is then
defined as the covariance of the score:

Ipθq “ EθrSθpXqSθpXq
J

s,

which (under regularity conditions) can equivalently be computed as

Ipθq “ ´Eθr∇2
θ log pθpXqs.

The Cramér-Rao lower bound states that the variance of any unbiased estimator of gpθq
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is at least ∇gpθqJIpθq´1∇gpθq. This result is fundamental: it shows that estimation
precision is governed by the Fisher information, which quantifies how sensitively the
distribution responds to changes in θ.

The classical approach requires verifying regularity conditions for each model—
conditions that ensure differentiation under the integral sign is valid. It turns out that
a weaker notion of differentiability “on average” suffices and leads to a cleaner and
much more general theory. This is the concept of differentiability in quadratic mean.

Definition 2.12 (Differentiability in Quadratic Mean). A statistical model tPθ : θ P Θu

with densities pθ is differentiable in quadratic mean (DQM) at θ if there exists a
measurable function Sθ : X Ñ Rd such that

ż
ˆ

a

pθ`hpxq ´
a

pθpxq ´
1
2h

JSθpxq
a

pθpxq

˙2

dµpxq “ op}h}
2
q as h Ñ 0.

DQM implies that the Fisher information matrix Ipθq “ EθrSθpXqSθpXqJs exists
and roughly speaking allows for exchange of differentiation and integration. It effectively
replaces the “standard” regularity conditions that we might be familiar with from e.g.
undergraduate textbooks on statistics.

Lemma 2.13. Let the model tPθ : θ P Θu be differentiable in quadratic mean at θ with
score Sθ. Then:

(i) The Fisher information Ipθq “ EθrSθS
J
θ s is well-defined with all entries finite.

(ii) If T : X Ñ R is a measurable function with T 2 uniformly integrable under Eθ1

for all θ1 in a neighborhood of θ, then ψpθ1q “ Eθ1rT s is differentiable at θ with

∇ψpθq “ EθrT ¨ Sθs.

Proof. Exercise 2.8.

The DQM condition allows us to differentiate expectations of statistics, which is
key to establishing a fundamental limit on the variance of any unbiased estimator. This
limit is determined by the Fisher information, quantifying the intuition that estimation
is harder when the distribution Pθ changes slowly with θ (low information). This leads
us to the famous Cramér-Rao Lower Bound.

Theorem 2.14 (Cramér-Rao Lower Bound – Biased Case). Consider a model tPθ :
θ P Θu that is DQM at θ P Θ with positive definite Fisher information matrix Ipθq. Let
δpXq be an Rk-valued estimator that is uniformly square-integrable under Pθ1 for all θ1

in a neighborhood of θ and write ψpθq “ EθrδpXqs for the expectation of the estimator.
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It holds that
VarθpδpXqq ě ∇ψpθq

JIpθq
´1∇ψpθq.

Proof. By definition, we have ψpθq “ EθrδpXqs “
ş

δpxqpθpxq dµpxq. Using Lemma
2.13, we have

∇ψpθq “ EθrδpXqSθpXqs,

and
EθrSθpXqs “ Eθr1 ¨ SθpXqs “ ∇1 “ 0.

Combining these, we obtain

∇ψpθq “ CovθpδpXq, SθpXqq.

Now, for any constant vector a P Rd, consider the scalar random variable Z “ aJSθpXq.
The covariance between δpXq and Z is

CovθpδpXq, Zq “ CovθpδpXq, aJSθpXqq “ aJCovθpδpXq, SθpXqq “ aJ∇ψpθq.

Applying the Cauchy-Schwarz inequality to the covariance squared, we have

pCovθpδpXq, Zqq
2

ď VarθpδpXqq VarθpZq.

Substituting the expressions for covariance and variance, noting that VarθpZq “

VarθpaJSθpXqq “ aJIpθqa, we get

paJ∇ψpθqq
2

ď VarθpδpXqqpaJIpθqaq.

This inequality holds for any vector a. To obtain the tightest bound, we choose
a “ Ipθq´1∇ψpθq. With this choice:

aJ∇ψpθq “ ∇ψpθq
JIpθq

´1∇ψpθq

and
aJIpθqa “ ∇ψpθq

JIpθq
´1IpθqIpθq

´1∇ψpθq “ ∇ψpθq
JIpθq

´1∇ψpθq.

The inequality becomes

p∇ψpθq
JIpθq

´1∇ψpθqq
2

ď VarθpδpXqqp∇ψpθq
JIpθq

´1∇ψpθqq.

Assuming ∇ψpθqJIpθq´1∇ψpθq ą 0 (otherwise the bound is trivial), we can multiply
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by the inverse on both sides to obtain

VarθpδpXqq ě ∇ψpθq
JIpθq

´1∇ψpθq.

The bound in Theorem 2.14 applies to any estimator, regardless of whether it
is biased or unbiased. For unbiased estimators, the bound simplifies and takes a
particularly interpretable form.

Corollary 2.15. Assume the setting of Theorem 2.14. If δpXq is an unbiased estimator
of ϕpθq in a neighborhood of θ and ϕ : Θ Ñ Rd is differentiable, then

VarθpδpXqq ě ∇ϕpθq
JIpθq

´1∇ϕpθq.

If ϕ is the identity function, then this reduces to the familiar inequality:

VarθpδpXqq ě Ipθq
´1. (2.2)

Proof. Note that unbiasedness implies ψpθq “ ϕpθq. If ϕ is the identity function on Rd,
it follows that ∇ϕpθq “ Id.

The following example shows that the requirement of unbiasedness in a neighborhood
of θ1 is critical for the result of Corollary 2.15 to hold.

Example 2.16. Consider X „ Npθ, Idq, θ P Rd and the estimator

δpXq “ ωθ1 ` p1 ´ ωqX

for some ω P r0, 1s and θ1 P Rd. Estimator is unbiased at θ1. However, its variance is

Varθ1pδpXqq “ p1 ´ ωq
2Id.

For ω ą 0, this is strictly smaller than the right-hand side of (2.2), which evaluates
to Ipθ1q´1 “ Id (check). Indeed, for ω ą 0, the estimator is not unbiased over any
neighborhood of θ1. Setting ω “ 0 gives the UMVUE. ♢

If δpXq is unbiased, the inequalities of Corollary 2.15 hold for all θ P Θ. For
unbiased estimators, the Cramér-Rao lower bound provides a target in terms of what
is the best possible variance to achieve. Clearly, if δpXq is unbiased and attains the
Cramer-Rao lower bound, it is a UMVUE. The converse is not true in general: in
certain problems, the UMVUE might not attain the Cramér-Rao lower bound.
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However, in certain problems, attaining the Cramér-Rao lower bound is not only a
sufficient condition for the estimator to be UMVUE, but also a necessary condition.
The implication goes really far: it also tells us the form that our decision rule should
have, given that it is unbiased and attains the Cramér-Rao lower bound. This form is
affine function of the score. This insight will prove to be useful later when we study
asymptotic properties of maximum likelihood estimators in Part II of the course.

Proposition 2.17 (Attainment of the Cramér-Rao bound). Under the conditions of
the Cramér-Rao theorem, equality holds if and only if

δpXq “ ψpθq ` ∇ψpθq
JIpθq

´1SθpXq Pθ-a.s.

In particular, the bound is attained if and only if δpXq is an affine function of the score.

Proof. Fix θ and v P Rk. Consider the scalar estimator δvpXq “ vJδpXq with mean
ψvpθq “ vJψpθq. Applying the (scalar) Cramér–Rao inequality to δv gives

VarθpδvpXqq ě ∇ψvpθq
JIpθq

´1∇ψvpθq “ vJ
´

∇ψpθq
JIpθq

´1∇ψpθq

¯

v.

Since this holds for all v, it is equivalent to the stated matrix inequality.
Moreover, in the scalar proof the inequality comes from Cauchy–Schwarz applied to

CovθpδvpXq, aJSθpXqq with the choice a “ Ipθq´1∇ψvpθq. Equality in Cauchy–Schwarz
holds if and only if

δvpXq ´ ψvpθq “ aJSθpXq Pθ-a.s.

With a “ Ipθq´1∇ψpθq v, this becomes

vJ
pδpXq ´ ψpθqq “ vJ∇ψpθq

JIpθq
´1SθpXq Pθ-a.s.

for every v P Rk, which implies the vector identity in the statement. The converse
direction is immediate by substitution.

Let us consider what this result implies. For an unbiased estimator with ψpθq “ ϕpθq,
Proposition 2.17 tells us that attaining the bound requires

δpXq “ ϕpθq ` ∇ϕpθq
JIpθq

´1SθpXq Pθ-a.s.

At first glance, this seems problematic: the right-hand side depends on the unknown
parameter θ through ϕpθq, ∇ϕpθq, Ipθq, and SθpXq. For the estimator to be a valid
statistic—a function of the data alone—these θ-dependent terms must combine in a
way that eliminates the dependence on θ. This places strong constraints on the model:
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only in special cases does such cancellation occur. Exponential families provide the
canonical example.

Example 2.18 (Some exponential families attain the bound naturally). Consider a
natural exponential family with density

pθpxq “ hpxq exp
`

θJT pxq ´ Apθq
˘

,

where θ P Θ Ď Rd is the natural parameter and Apθq is twice differentiable. The score
is

SθpXq “ ∇θ log pθpXq “ T pXq ´ ∇Apθq.

Since EθrSθpXqs “ 0, we have EθrT pXqs “ ∇Apθq. The Fisher information is

Ipθq “ CovθpSθpXqq “ CovθpT pXqq “ ∇2Apθq.

Now consider estimating ϕpθq “ ∇Apθq “ EθrT pXqs by the estimator δpXq “ T pXq.
This estimator is unbiased, and satisfies the attainment condition:

δpXq ´ ψpθq “ T pXq ´ ∇Apθq “ SθpXq “ Ipθq
´1∇ψpθq

JSθpXq,

where the last equality uses ∇ψpθq “ ∇2Apθq “ Ipθq. Thus, the sufficient statistic
T pXq achieves the Cramér-Rao lower bound for estimating its own expectation. ♢

2.2 Invariance

In Section 2.1.1, we saw that models with a differentiable structure allow us to derive
fundamental limits on estimation accuracy through the Fisher information. Another
type of structure that proves useful is that of symmetry: if transforming the data in a
certain way corresponds to a transformation of the parameter that leaves the model’s
form unchanged, we say the model is invariant under that transformation.

When the loss function respects the same symmetry, it is often natural to restrict
attention to decision rules that also respect it. The word “natural” here has both
technical and conceptual interpretations. On the technical side, invariance can simplify
the analysis: as we will see, equivariant estimators in invariant problems have constant
risk, reducing the comparison of decision rules to a single number. On the conceptual
side, invariance captures the intuition that our estimates should not depend on arbitrary
choices such as the coordinate system (rotation invariance) or unit of measurement
(scale invariance).

This section formalizes these ideas and illustrates them in classical location, location-
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scale, and covariance models. There is much more to say on this topic than fits into
this section. The interested reader is referred to Chapter 3 of Lehmann and Romano
2005, Chapter 6 of Lehmann and Casella 2006 and Berger 2013.

2.2.1 Invariant models

The idea of invariance, or that of symmetries generally, is closely related to the concept
of a group.

Definition 2.19. A group is a set G with an operation ¨ : G ˆ G Ñ G such that

1. pa ¨ bq ¨ c “ a ¨ pb ¨ cq for all a, b, c P G (associativity);

2. there exists e P G with e ¨ a “ a ¨ e “ a for all a P G (identity);

3. for each a P G there exists a´1 P G with a ¨ a´1 “ a´1 ¨ a “ e (inverse).

Groups are common objects in mathematics, and many of the most important
groups in statistics are related to groups in mathematics that we are already familiar
with.

Example 2.20. • pZ,` : pa, bq ÞÑ a` bq is a group with identity 0 and inverse ´a.

• pRą0,ˆ : pa, bq ÞÑ abq is a group with identity 1 and inverse 1{a.

• GLppq (invertible p ˆ p matrices) is a group under matrix multiplication.

• The permutation group Sn acts on X n by permuting coordinates.
♢

Definition 2.21 (Group action). A group G acts on a set A if there is a map GˆA Ñ A,
written pg, xq ÞÑ gx, such that ex “ x and gphxq “ pghqx for all g, h P G and x P A.
The action is transitive if for all x, y P A, there exists g P G such that gx “ y.

In statistical models, we sometimes have actions on the sample space X and the
parameter space Θ. Sometimes, actions on the parameter space have an ‘inverse’ action
on the sample space that ‘respects’ the data generating process: whether we act on the
data, or perform the same corresponding action on the parameter, the data generating
process remains the same.

Definition 2.22 (Equivariance of a model). Consider statistical experiment with
P “ tPθ : θ P Ru defined on a sample space pX ,X q. Let G act on X and Θ, such that
its action is measurable. The model P is equivariant under G if

PgθpAq “ Pθpg´1Aq for all g P G, θ P Θ, A P X .

Equivalently: if X „ Pθ, then gX „ Pgθ.

v2025.0.3 – This is a draft – use at your own risk



2.2. Invariance 53

One of the most important examples of an equivariant model is the location family.

Example 2.23 (Location family). Consider a statistical experiment pRd,BpRdq,P ,Θq

with parameter space Θ “ Rd where P is dominated with respect to the Lebesgue
measure, with Lebesgue density ppx|θq a.e. equal to fpx ´ θq for some measurable
function f : Rd Ñ r0,8q.

The model P is equivariant under the group G “ pRd,`q acting on Rd by translation,
i.e. gcx “ x ` c for all c P Rd and x P Rd.

Indeed, if X „ Pθ, then X ` c „ Pθ`c, since

Pθ`cpAq “

ż

A

fpx ´ pθ ` cqqdx “

ż

x´cPA

fpx ´ θqdx “ PθpA ´ cq.

where we used the change of variables y “ x` c and translation invariance of Lebesgue
measure. ♢

Many common distributions are location families, such as the normal distribution,
Laplace distribution, Cauchy distribution, etc. Another important example of an
equivariant model is the scale family.

Example 2.24 (Scale family). Consider a statistical experiment pRą0,BpRą0q,P ,Θq

with parameter space Θ “ Rą0, where P is dominated with respect to Lebesgue
measure on Rą0, with density

ppx | σq “
1
σ
f
´x

σ

¯

for some measurable function f : Rą0 Ñ r0,8q integrating to one.
The model P is equivariant under the multiplicative group G “ pRą0,ˆq acting on

Rą0 by scaling: gcx “ cx for c ą 0. Indeed, if X „ Pσ, then cX „ Pcσ, since

PcσpAq “

ż

A

1
cσ
f
´ x

cσ

¯

dx “

ż

c´1A

1
σ
f
´y

σ

¯

dy “ Pσpc´1Aq.

Common examples include the exponential family Expp1{σq and the chi-squared distri-
bution scaled by σ2. ♢

Another canonical example of an equivariant model is the multivariate standard
normal distribution; which is spherically symmetric, on top of being a location and
scale family.

Example 2.25 (Spherically symmetric normal). Consider observing X „ Ndpθ, σ2Idq

with θ P Rd and σ2 ą 0 known. The group G of d ˆ d orthonormal matrices under
matrix multiplication acts on both Rd and Θ “ Rd by matrix-vector multiplication:
gQx “ Qx.
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The model is equivariant under this action. If X „ Ndpθ, σ2Idq, then

QX „ NdpQθ, σ2QIdQ
J

q “ NdpQθ, σ2Idq,

using QQJ “ Id. Thus QX „ PQθ, as required.
♢

2.2.2 Invariance and estimation

For models that are equivariant under a group action, it is natural to consider decision
rules that respect the same symmetry. The intuition is straightforward: if the statistical
problem is unchanged by a transformation, the solution should transform accordingly.
Put differently, if two scientists analyze the same data but use different coordinate
systems—one rotated relative to the other, or one using meters while the other uses
feet—their estimates should be related by the same transformation. An estimator that
violates this principle would give answers that depend on arbitrary choices having
nothing to do with the data.

Suppose we are interested in estimating θ P Θ, taking D “ Θ (with some suitable
σ-algebra). The action of G on Θ induces an action on D by gDpdq “ gd for all g P G

and d P D. In some applications it would be unnatural for the loss function to depend
on the orientation in the parameter space for which the estimation error occurs. For
example, for a GPS system, the loss of predicting a certain location should not depend
on one’s initial orientation relative to the true location. This brings us to the concept
of invariant loss.

That is, if we decide d based on data X and the true state turns out to θ (for
which we incur loss Lpθ, dq), this loss should be the same as someone who decides gDpdq

based on data gX and the true state turning out to be gθ (for which they incur loss
Lpgθ, gDpdqq). This motivates the following definition.

Definition 2.26 (Invariant loss). Consider a decision problem pX ,X ,P ,Θ, pD,Dq, Lq.
Suppose G acts on X , Θ, and D, and these actions are measurable. Write gD for the
induced action on D.

A loss function Lpθ, dq is invariant under G if

Lpgθ, gD dq “ Lpθ, dq for all g P G, θ P Θ, d P D.

A decision problem is invariant under G if the model and loss function are invariant
under G.

Example 2.27 (Revisiting the normal location model). Recall the equivariant normal
location model from Example 2.25: X „ Ndpθ, σ2Idq with θ P Rd and σ2 ą 0 known,
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with the group G of d ˆ d orthonormal matrices under matrix multiplication acts on
both Rd and Θ “ Rd by matrix-vector multiplication: gQx “ Qx.

If we are interested in estimating θ, we can consider the loss function Lpθ, dq “

}θ´d}2, defined on Rd ˆRd. This loss is invariant under G since }Qθ´Qd}2 “ }θ´d}2,
turning the corresponding decision problem into an invariant one. ♢

For an invariant decision problem, it can be natural to restrict attention to estimators
that respect the same symmetry. If the data X lead us to the estimate δpXq, then
the transformed data gX should lead us to the correspondingly transformed estimate
gDδpXq. This motivates the following definition.

Definition 2.28 (Equivariant decision rule). Consider a decision problem with decision
space pD,Dq. Suppose G acts on X , Θ, and D, and these actions are measurable.
Write gD for the induced action on D. A decision rule δ : X Ñ D is equivariant if

δpgxq “ gD δpxq for all g P G, x P X .

Equivariant estimators in invariant problems have constant risk, which greatly
simplifies the task of finding optimal procedures.

Theorem 2.29. Assume G acts transitively on Θ (i.e. for all θ, θ1 P Θ there exists
g P G with θ1 “ gθ). If the model P is equivariant, the loss is invariant, and δ is
equivariant, then the risk Rpθ, δq is constant in θ.

Proof. Fix θ0 P Θ. For any θ “ gθ0, using model equivariance and then equivariance
and invariance,

Rpθ, δq “ Egθ0rLpgθ0, δpXqqs

“ Eθ0rLpgθ0, δpgXqqs

“ Eθ0rLpgθ0, g̃ δpXqqs

“ Eθ0rLpθ0, δpXqqs “ Rpθ0, δq.

If we are convinced that equivariant decision rules are the natural ones to consider
in an invariant problem, then the goal becomes finding the best among them. This
is formalized by the uniformly minimum risk equivariant estimator (UMREE), which
plays a role analogous to the UMVUE in the class of unbiased estimators. Theorem 2.29
shows that every equivariant estimator has constant risk, so comparing two equivariant
estimators reduces to comparing a single number rather than two functions on Θ.

Definition 2.30 (Uniformly Minimum Risk Equivariant Estimator). Consider an
invariant decision problem: a model P “ tPθ : θ P Θu that is equivariant under G, and
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a loss function L that is invariant under G. An estimator δ˚ is a uniformly minimum
risk equivariant estimator (UMREE) if:

(i) δ˚ is equivariant: δ˚pgxq “ gD δ
˚pxq for all g P G and x P X , and

(ii) for any other equivariant estimator δ,

Rpθ, δ˚
q ď Rpθ, δq for all θ P Θ.

We now apply the general theory to one of the most important invariant problems:
estimation in a location family under squared error loss. This setting illustrates how
the UMREE can be characterized explicitly as a Bayesian posterior mean under an
improper prior.

Consider observing X “ pX1, . . . , Xnq with joint density
śn

i“1 fpxi ´θq with respect
to Lebesgue measure, where θ P Rd and xi P Rd. The translation group G “ pRd,`q

acts on the sample space Rnd by gcx “ px1 ` c, . . . , xn ` cq and on the parameter
space by gcθ “ θ ` c. Since Lebesgue measure is translation-invariant, the model is
equivariant: if X „ Pθ, then X ` c1 „ Pθ`c.

For squared error loss Lpθ, dq “ }d´θ}2, the induced action on decisions is gcd “ d`c,
and the loss is invariant since }pd`cq´pθ`cq}2 “ }d´θ}2. An estimator δ is equivariant
if and only if δpx ` c1q “ δpxq ` c for all c P Rd. This is a substantial restriction: for
instance, the constant estimator δpxq “ 0 is not equivariant, while the sample mean
and geometric median are.

Since G acts transitively on Θ “ Rd, Theorem 2.29 implies that every equivariant
estimator has constant risk. The UMREE is therefore the equivariant estimator
minimizing Rpθ0, δq for any fixed θ0; taking θ0 “ 0 is conventional. The following
theorem identifies this optimal estimator.

Theorem 2.31 (Pitman estimator in Rd). Let X “ pX1, . . . , Xnq with Xi P Rd have
joint density

śn
i“1 fpxi ´ θq with respect to Lebesgue measure on Rnd, where θ P Rd.

Under squared error loss Lpθ, δq “ }δ ´ θ}2, the (Pθ-a.s. unique) UMREE is

δ˚
pxq “

ż

Rd

θ
n
ź

i“1
fpxi ´ θq dθ

ż

Rd

n
ź

i“1
fpxi ´ θq dθ

,

provided the integrals are finite.

Proof. The translation group G “ pRd,`q acts on Rnd by gcx “ px1 `c, . . . , xn `cq and
on Θ “ Rd by gcθ “ θ ` c. Since Lebesgue measure on Rd is translation-invariant, the
model is equivariant. The squared error loss is invariant since }δ` c´ pθ` cq} “ }δ´θ}.
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By Theorem 2.29, every translation-equivariant estimator has constant risk, so it
suffices to minimize Rp0, δq “ E0r}δpXq}2s over equivariant δ.

First, δ˚ is equivariant: substituting η “ θ ´ c,

δ˚
px1 ` c, . . . , xn ` cq “

ş

Rdpη ` cq
ś

i fpxi ´ ηq dη
ş

Rd

ś

i fpxi ´ ηq dη
“ δ˚

pxq ` c.

Let δ be any other equivariant estimator and write h “ δ´δ˚. Then h is translation-
invariant. We claim E0rxδ˚pXq, hpXqys “ 0.

By definition, δ˚pxq minimizes
ş

Rd }θ´d}2 ś
i fpxi´θq dθ over d P Rd. The first-order

condition gives
ż

Rd

pδ˚
pxq ´ θq

ź

i

fpxi ´ θq dθ “ 0.

Taking the inner product with hpxq, integrating over x under P0, and applying Fubini’s
theorem with translation invariance of h yields E0rxδ˚pXq, hpXqys “ 0.

Finally,

E0r}δpXq}
2
s “ E0r}δ˚

pXq ` hpXq}
2
s

“ E0r}δ˚
pXq}

2
s ` 2E0rxδ˚

pXq, hpXqys ` E0r}hpXq}
2
s

ě E0r}δ˚
pXq}

2
s,

with equality if and only if h “ 0 a.s., implying δ˚ is Pθ-a.s. unique.

The Pitman estimator admits an elegant Bayesian interpretation: it is the ‘posterior
mean’ under the ‘uniform prior’ πpθq91 on Rd. Although this prior is improper (it
does not integrate to a finite value), the posterior is proper whenever the likelihood is
integrable, and the resulting estimator is well-defined. The uniform prior is the right
Haar measure for the translation group—the unique (up to scale) measure on Rd that
is invariant under the group action – explored in more generality in Section 2.2.3.

We now illustrate the Pitman estimator in two classical location families.

Example 2.32 (Normal location). For Xi
iid
„ Ndpθ, σ2Idq with σ2 known, the joint

density is proportional to expp´ 1
2σ2

ř

i }xi ´ θ}2q. Completing the square in θ, the
Pitman estimator evaluates to δ˚pXq “ X̄, which coincides with both the MLE and
the UMVUE. ♢

Example 2.33 (Uniform location). For Xi
iid
„ Uniformpθ, θ ` 1q, the joint density

is
ś

i 1tθďxiďθ`1u “ 1tXpnq´1ďθďXp1qu. This is constant (equal to 1) on the interval
rXpnq ´ 1, Xp1qs and zero elsewhere. The Pitman estimator is therefore the midpoint of
this interval:

δ˚
pXq “

Xp1q ` Xpnq ´ 1
2 .
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This differs from the MLE, which is any point in rXpnq ´ 1, Xp1qs (conventionally taken
as θ̂ “ Xpnq ´ 1). The Pitman estimator uses information from both extremes, while
the MLE uses only one. ♢

These examples highlight that the Pitman estimator may or may not coincide with
other familiar estimators, depending on the model. For the Cauchy location family,
the Pitman estimator takes a more complex form; see Exercise 2.11.

Remark 2.34. The concept of UMREE differs from the concept of UMVUE in that the
latter is defined in the context of unbiased estimators and their variance, whilst the
UMREE is defined in the context of equivariant estimators and a specific loss function.
For different loss functions, we obtain different UMREE’s.

2.2.3 ♠ Haar measures and the general UMREE construction

The Pitman estimator for location families relied on the fact that Lebesgue measure
is translation-invariant. This observation generalizes: for any locally compact group,
there exists a canonical “invariant measure” called the Haar measure, which allows us
to construct best equivariant estimators via the same ‘Bayesian recipe’.

Definition 2.35 (Haar measure). Let G be a locally compact topological group. A
left Haar measure on G is a nonzero Borel measure νL satisfying

νLpgAq “ νLpAq for all g P G and all Borel sets A Ď G.

A right Haar measure νR satisfies νRpAgq “ νRpAq for all g P G and Borel A Ď G.

Equivalently, in terms of integrals: νL is left-invariant if
ż

G

fpghq dνLphq “

ż

G

fphq dνLphq for all g P G and integrable f.

and similarly for right invariance.

Theorem 2.36 (Haar, 1933). Let G be a locally compact topological group. Then:

(i) A right Haar measure exists.

(ii) Any two right Haar measures differ by a positive multiplicative constant.

The analogous statements hold for left Haar measures.

The proof of existence is nontrivial and relies on techniques from functional analysis;
see Folland 2016 for a complete treatment. For our purposes, the key point is that
Haar measures exist and are essentially unique, so they provide a canonical choice of
“uniform” measure on any group.
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Example 2.37 (Common Haar measures). (i) Translation group G “ pRd,`q:
Lebesgue measure dθ is Haar (both left and right as the group is abelian).

(ii) Multiplicative group G “ pRą0,ˆq: The measure dνpσq “ dσ{σ is both left
and right Haar.

(iii) Location-scale group G “ tpa, bq : a ą 0, b P Ru with operation pa1, b1q ¨

pa2, b2q “ pa1a2, a1b2 ` b1q: The left Haar measure is da db{a2, and the right Haar
measure is da db{a.

(iv) Orthogonal group G “ Opdq: Since Opdq is compact, the Haar measure is finite
and can be normalized to a probability measure (the “uniform distribution” on
Opdq).

(v) General linear group G “ GLppq: The left and right Haar measures are
dνpAq “ | detA|´p dA, where dA denotes Lebesgue measure on Rpˆp.

♢

A group G is called unimodular if its left and right Haar measures coincide. Com-
pact groups and abelian groups are all unimodular. The location-scale group in
Example 2.37(iii) is a standard example of a non-unimodular group.

When a group G acts transitively on a parameter space Θ, a Haar measure on G

induces a natural “uniform” measure on Θ by pushing it forward through the orbit
map. Concretely, fix a reference point θ0 P Θ and define τ : G Ñ Θ by τpgq “ gθ0; then
the induced measure on Θ is the push-forward τ#ν given by τ#νpAq “ νpτ´1pAqq for
measurable A Ď Θ (and we often denote τ#ν simply by ν). This measure is invariant
under the group action, and different choices of θ0 change it only by a multiplicative
constant.

We now present the general recipe for constructing best equivariant estimators
using Haar measures.

Theorem 2.38 (UMREE via Haar measure). Consider an invariant decision problem
with model P “ tPθ : θ P Θu equivariant under a locally compact group G that acts
transitively on Θ. Let Lpθ, dq be an invariant loss function, and let ν denote the right
Haar measure on G, and consider the induced measure (also denoted ν) on Θ via the
group action.

Define the generalized Bayes estimator

δ˚
pxq “ argmindPD

ż

Θ
Lpθ, dq ppx|θq dνpθq,

provided the integral is finite. Then δ˚ is equivariant, and if it exists, it is the UMREE.
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Proof. See Berger 2013, Chapter 6.

Given an invariant decision problem:

1. Identify the group G under which the model is equivariant and the loss is
invariant.

2. Verify transitivity: Check that G acts transitively on Θ.

3. Compute the right Haar measure ν on G (or equivalently, on Θ via the
action).

4. Form the ‘generalized Bayes’ estimator using ν as an improper prior:

δ˚
pxq “ argmindPD

ż

Θ
Lpθ, dq ppx|θq dνpθq.

If the latter integral is finite, δ˚ is the UMREE.

2.3 Admissibility

The idea behind admissibility is simple: we should not use a decision rule if another
rule is strictly better. The idea behind admissibility is simple: we wish to only consider
decision rules that are not strictly dominated by some other decision rule.

Definition 2.39. A decision rule δ is admissible if there exists no other estimator δ1

such that

1. Rpθ, δ1q ď Rpθ, δq for all θ P Θ, and

2. Rpθ, δ1q ă Rpθ, δq for at least one θ P Θ.

If such a δ1 exists, we say that δ is inadmissible and that δ1 dominates δ.

Admissibility captures a minimal requirement: we should reject any decision rule
that is strictly dominated by another. Considering admissibility as a criterion leads
to some surprising facts and insights. Perhaps one of the most impactful insights is
the so-called Stein’s shrinkage phenomenon, which has shaped the way we think about
estimation in high-dimensional models.

2.3.1 Stein’s shrinkage phenomenon

Consider the normal means model where we observe X „ Ndpθ, σ2Idq, for some d P N
and σ ą 0, and the aim is to estimate the mean θ. In the case d “ 1 it seems rather
clear that if we do not know anything about the parameter θ, we can not do much
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better than estimating it by the observation X. Proving this rigorously is actually not
completely trivial, see Exercise 2.12.

For larger d it is in fact also not immediately clear whether if we assume no
further structure on θ, we can do better than simply using the maximum likelihood
estimator δMLEpXq “ X. Clearly, X is a sufficient statistic and moreover a complete
one (Example 1.31). It is unbiased over Rd, and hence it is the UMVUE. Furthermore,
it has invariance properties both in terms of location-shifts and rotations; it is the
UMREE for the normal location model with Euclidian loss. It turns out, however, that
it is possible to perform strictly better, in the sense of expected quadratic error.

To get a first indication of this fact, note that for any estimator δ with a finite
covariance we have the bias-variance decomposition (Lemma 2.7)

Eθ}δpXq ´ θ}
2

“ }EθδpXq ´ θ}
2

` Tr CovθδpXq.

If we apply this to δcpXq “ cX we find that Eθ}δcpXq ´ θ}2 “ pc ´ 1q2}θ}2 ` c2σ2d,
which, for given θ, is minimal for c equal to

cθ “
}θ}2

}θ}2 ` σ2d
,

and the minimal value is

Eθ}δcθ
pXq ´ θ}

2
“

σ2d}θ}2

}θ}2 ` σ2d
“

}θ}2

}θ}2 ` σ2d
Eθ}δMLEpXq ´ θ}

2.

Since cθ ă 1, this indicates that it might be advantageous to shrink the estimator X
towards 0, that is, to multiply it by a factor strictly smaller than 1. Since cθ depends
on the unknown parameter θ, one might argue that this is not a sensible estimator.
However, it turns out that for d ě 3, we can shrink by an appropriate data-dependent
constant that leads to an estimator with an expected squared error that is strictly
smaller than that of the MLE for all θ P Rd.

Theorem 2.40 (James-Stein). Define

δJSpXq “

ˆ

1 ´
σ2pd ´ 2q

}X}2

˙

X.

For d ě 3, we have Eθ}δJSpXq ´ θ}2 ă Eθ}δMLEpXq ´ θ}2 for all θ P Rd.

Proof. For the bias and variance of the ith component of the JS estimator we have

EθδJS,ipXq ´ θi “ σ2
pd ´ 2qEθ

Xi

}X}2

v2025.0.3 – This is a draft – use at your own risk



2.3. Admissibility 62

and

VarθδJS,ipXq “ σ2
` σ4

pd ´ 2q
2Varθ

Xi

}X}2 ´ 2σ2
pd ´ 2q

ˆ

Eθ
X2

i

}X}2 ´ Eθ
θiXi

}X}2

˙

,

respectively. (Note that since Eθ1{}X}p is finite if and only if d ą p, all expectations
here are finite for d ě 3. See Exercise 2.13.) It follows that the mean squared error of
the estimator is given by

σ2d ` σ4
pd ´ 2q

2Eθ
1

}X}2 ´ 2σ2
pd ´ 2q

˜

ÿ

i

Eθ
XipXi ´ θiq

}X}2

¸

(check!). By Lemma 2.41 below,

Eθ
XipXi ´ θiq

}X}2 “ Eθ
σ2

}X}2 ´ 2Eθ
σ2X2

i

}X}4 .

Hence, the mean squared error (MSE) Eθ}δJSpXq ´ θ}2 equals

σ2d ´ σ4
pd ´ 2q

2Eθ
1

}X}2 .

Since the MSE of the MLE δMLEpXq “ X equals dσ2, this completes the proof.

The key tool used in the proof above is Stein’s lemma, which provides a useful
identity for expectations involving Gaussian random variables.

Lemma 2.41. Let X „ Ndpθ, Idq and let f : Rd Ñ R be an absolutely continuous (in
each coordinate a.e.) function such that Eθ|pBf{BxiqpXq| ă 8 for i “ 1, . . . , d. Then
for i “ 1, . . . , d,

EθpXi ´ θiqfpXq “ Eθ
Bf

Bxi

pXq.

Proof. Integration by parts, see Exercise 2.14.

The James-Stein theorem gives a number of very interesting insights in statistics for
‘high-dimensional’ models. It shows that by shrinking the MLE towards zero, thereby
reducing the variance at the cost of increasing the bias, we obtain an estimator with a
strictly better risk Eθ}δpXq ´ θ}2. Moreover, although the observed Xi are independent
by assumption, the shrinkage factor depends on all the observations. Hence, to estimate
the ith component θi, we do not only use the information in Xi, but we also borrow
strength from the other observations, even though they are independent coordinate
wise.

One argument that Stein (1956) used to intuitively justify the concept of shrinkage
is the observation that if X „ Ndpθ, Idq, then by the law of large numbers it holds for
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large d that }X}2 « }θ}2 ` d. So the norm of the MLE X is typically substantially
larger than the norm of the parameter θ it is supposed to estimate. Therefore, it may
be beneficial to shrink the vector X so that the norm is reduced.

Alternatively, we may argue that shrinking reduces the contributions of outliers, i.e.
relatively large observations Xi, on the squared estimation error. This possibly comes
at the cost of increasing the error made in the other coordinates, but the net effect
is that shrinking improves the total squared error }δJSpXq ´ θ}2 of the estimator on
average. Observe that this reasoning indicates that it is essential that we assess the
quality of the estimator using a norm that simultaneously takes all coordinates of θ
into account. This allows us to trade off gains in one coordinate with losses in others.

The James-Stein theorem can be generalized in many directions, for instance away
from the normal distribution with unit variance, using other norms, other statistical
models, et cetera. The precise form of the shrinking is not crucial either. Shrinking
towards a fixed point v P Rd other than 0 works just as well for instance (see Exercise
2.15). The general message is always that in high-dimensional settings it is typically
advantageous to somehow reduce the variance by shrinking, or otherwise regularizing.
We explore this further in the next section.

Theorem 2.40 shows that for d ě 3, the MLE δMLEpXq “ X is inadmissible in the
model X „ Ndpθ, Idq, with respect to the squared Euclidean risk. By definition, this
means that there exists another estimator δ such that Eθ}δpXq´θ}2 ď Eθ}δMLEpXq´θ}2

for all θ P Rd, with strict inequality for at least one θ P Rd. The theorem asserts that
the James-Stein estimator is such an estimator. It can be shown however that the
James-Stein estimator itself is inadmissible as well. For example the positive part Stein
estimator

δJS`pXq “

ˆ

1 ´
d ´ 2
}X}2

˙

`

X

is an estimator with strictly smaller risk for all θ P Rd. See for instance Section 3.4 of
Tsybakov (2009). Unfortunately, δJS` is not admissible either. It turns out that finding
an admissible estimator is easy if we take a Bayesian approach – both in terms of its
construction and in terms of verifying its admissibility – we will discuss this in Chapter
4.

2.3.2 Bias-variance trade-off

The Stein-shrinkage phenomenon demonstrates that in high-dimensional settings, trad-
ing bias for variance can yield strict improvements over the best unbiased estimator.
This raises a natural question: how far can we push this trade-off? Can we achieve arbi-
trarily good performance at a particular parameter value by accepting bias elsewhere?

In Example 2.16, we saw an estimator that achieves variance strictly below the
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Cramér-Rao bound at a specific point θ1 by being unbiased only at that point rather
than in a neighborhood. Taken to the extreme, the ‘guesstimator’ δpXq “ θ1 is
admissible—it achieves a risk at θ1 which no other estimator can beat. Of course, this
estimator performs terribly elsewhere in the parameter space. Intuitively, there is a
‘no-free-lunch’ principle at play: exceptional performance at one parameter value must
come at the cost of degraded performance elsewhere.

The following example demonstrates this phenomenon concretely: a pretest estima-
tor that achieves dramatically reduced risk at θ “ 0 suffers substantially inflated risk
at nearby parameter values.

Example 2.42 (Test first, then estimate). Let X „ Npθ, σ2q and consider squared
error loss. The MLE δMLEpXq “ X has constant risk Rpθ, δMLEq “ σ2.

Fix t ą 0 and define the pretest (hard-threshold) estimator

δtpXq “

$

&

%

0, |X| ď t,

X, |X| ą t.

At θ “ 0, writing Z „ Np0, 1q and taking σ “ 1 for simplicity,

Rp0, δtq “ ErZ2
1t|Z| ą tus “ 2

`

tφptq ` Φp´tq
˘

,

so for instance t “ 3 gives Rp0, δ3q « 0.029. We know from the fact that the MLE
is admissible in this setting (Exercise 2.12) that there must be some θ such that
Rpθ, δ3q ą Rpθ,Xq. This is indeed the case: Rp2, δ3q « 3.766 ą 1. For |θ| Ñ 8, the
Rpθ, δ3q approaches that of Rpθ,Xq. The cost for performance at θ “ 0 is paid for by
a worse performance ‘nearby’ θ “ 0. ♢

Example 2.42 suggests that dramatic gains at one parameter value force losses
nearby. Can we quantify this trade-off? The Cramér-Rao bound provides one such
tool, but it requires differentiability of the model and is most informative for unbiased
estimators. For biased estimators, or for models lacking smooth structure, we need a
more general approach.

Understanding this cost is not merely of theoretical interest. Later in this chapter,
we will encounter models where trading bias for variance is not optional but necessary—
unbiased estimators may not exist, or may perform poorly. To navigate such settings,
we need tools to characterize the fundamental limitations on estimation.

The constraint risk inequality offers exactly this. The idea is simple: if two
distributions Pf and Pg are ‘similar’, yet the parameters f and g are far apart, then no
estimator can perform well at both. An estimator that gets close to f under Pf will
tend to be far from g under Pg, and vice versa.
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To make this precise, we need to quantify two notions of distance: distance between
parameters and similarity between distributions. For parameters, we use a (semi-)metric
d on Θ. For distributions, we use the Bhattacharyya coefficient

ρpPf , Pgq “

ż

?
pf pg dµ,

which measures the overlap between two densities. Geometrically, ρpPf , Pgq is the cosine
of the angle between ?

pf and ?
pg viewed as unit vectors in L2pµq. This geometric

viewpoint on the space of densities has (implicitly) already appeared in our discussion
of differentiability in quadratic mean.

Lemma 2.43 (Constraint Risk Inequality). Let pΘ, dq be a (semi-)metric space and
let Pf , Pg be probability measures on pX ,X q dominated by a common measure µ, with
densities pf and pg. For any estimator δ : X Ñ Θ and any f, g P Θ,

b

Efdpδ, fq2 `

b

Egdpδ, gq2 ě dpf, gq ¨ ρpPf , Pgq.

Proof. By the triangle inequality, for all x P X ,

dpf, δpxqq ` dpδpxq, gq ě dpf, gq.

Multiplying both sides by
a

pf pxqpgpxq and integrating with respect to µ gives
ż

dpf, δq
?
pf pg dµ `

ż

dpδ, gq
?
pf pg dµ ě dpf, gq ¨ ρpPf , Pgq.

For the first term, the Cauchy–Schwarz inequality yields
ż

dpf, δq
?
pf ¨

?
pg dµ ď

c

ż

dpf, δq2 pf dµ ¨

c

ż

pg dµ “

b

Efdpf, δq2.

The same argument applied to the second term completes the proof.

The constraint risk inequality reveals a fundamental tension in estimation. The
right-hand side, dpf, gq ¨ ρpPf , Pgq, captures the difficulty of the estimation problem
between f and g: it is large when the parameters are far apart (large dpf, gq) yet
the distributions are similar (large ρ). When this product is large, the sum of the
root-MSEs at f and g must also be large—no estimator can perform well at both.

The bound is most informative when ρpPf , Pgq is not too small. If Pf and Pg are
nearly orthogonal (ρ « 0), the bound becomes vacuous; but this is unsurprising, since
very different distributions are easy to distinguish. The interesting regime is when
statistical similarity coexists with parameter separation.
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We apply the constraint risk inequality in more complicated settings in Section 2.4.1,
but for now let us illustrate it in a model where the Cramér-Rao bound does not apply.

Example 2.44. Let X1, . . . , Xn
iid
„ Uniformp0, θq for θ ą 0. We use Lemma 2.43

to show that the θ2{n MSE achieved by the unbiased estimator n`1
n
Xpnq cannot be

improved by allowing an estimator to be biased.
For θ1 ă θ2, the densities pθ1 “ θ´1

1 1r0,θ1s and pθ2 “ θ´1
2 1r0,θ2s overlap only on r0, θ1s,

so
ρpPθ1 , Pθ2q “

ż θ1

0

c

1
θ1θ2

dx “

c

θ1

θ2
.

For the product measure of n observations, ρpPbn
θ1 , P

bn
θ2 q “ pθ1{θ2qn{2. Lemma 2.43

then gives, for any estimator δ,

a

Eθ1 |δ ´ θ1|2 `
a

Eθ2 |δ ´ θ2|2 ě pθ2 ´ θ1q

ˆ

θ1

θ2

˙n{2

.

Writing θ2 “ θ1 ` ϵ for small ϵ ą 0, the right-hand side is approximately ϵ ¨ e´nϵ{p2θ1q.
For any ϵ P rθ1{n, 3θ1{ns, this quantity is at least of order θ1{n. In particular, for any
estimator δ and any θ2 P rθ1 ` θ1{n, θ1 ` 3θ1{ns, either Eθ1 |δ ´ θ1|2 or Eθ2 |δ ´ θ2|2 must
be at least of order θ2

1{n2.
Since the above recipe works for arbitrary θ1, this rules out estimators that attain

MSE’s of a smaller order than θ2{n across the parameter space, no matter how large
or small n and θ are.

♢

2.4 Minimax paradigms

Admissibility is a minimal requirement: it rules out estimators that are uniformly
dominated, but little else. The guesstimator δpXq “ θ1 is admissible—no estimator can
beat it at θ1—yet it is clearly unsatisfactory. Admissibility tells us which estimators to
avoid, but does not prescribe how to choose among the many that remain.

The constraint risk inequality shows that trade-offs across the parameter space
are unavoidable: exceptional performance at one parameter value must be paid for
elsewhere. But how should we navigate these trade-offs?

The minimax paradigm takes the pessimist’s view: assume the worst and optimize
accordingly. Rather than asking “is there any θ where this estimator is dominated?”
(admissibility), we ask “what is the largest risk this estimator can incur?” and seek
to minimize this worst-case risk. Where admissibility is permissive—accepting any
estimator that is not uniformly beaten—minimaxity is demanding: it insists on the
best possible guarantee against the least favorable parameter value.
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Definition 2.45 (Minimax risk and minimax estimator). Consider a decision problem
pX ,X ,P ,Θ, pD,Dq, Lq and let C denote the class of all (possibly randomized) decision
rules δ : X Ñ D.

The minimax risk is defined as

R˚ :“ inf
δPC

sup
θPΘ

Rpθ, δq.

A decision rule δ˚ is called minimax if it achieves the minimax risk:

sup
θPΘ

Rpθ, δ˚
q “ R˚.

The quantity supθPΘ Rpθ, δq is called the maximum risk (or worst-case risk) of δ.

The minimax criterion can be interpreted as a two-player zero-sum game. In an
estimation problem, the statistician chooses an estimator δ, and then “nature” (or an
adversary) chooses the parameter θ to maximize the risk. The minimax estimator is the
statistician’s optimal strategy in this game, guaranteeing the best possible worst-case
performance.

Remark 2.46 (Pessimism or robustness?). The minimax approach is sometimes criticized
as overly pessimistic (or overly conservative): why should we optimize for the worst
case when it may rarely occur? However, this perspective has several compelling
justifications:

(i) Robustness: The minimax estimator provides a strong statistical guarantee—its
risk never exceeds R˚, regardless of the true θ.

(ii) Ruling out super-efficiency: As we saw in Example 2.42, achieving exceptionally
low risk at some θ values necessarily inflates risk elsewhere (cf. the constraint
risk inequality). Minimax estimation explicitly penalizes such greedy trade-
offs, forcing estimators that do not sacrifice worst-case performance for gains at
favorable parameter values.

(iii) Unknown or adversarial settings: In some applications, θ may be chosen by an
adversary (e.g., in game theory or robust statistics) or may represent a “hard”
instance. The minimax estimator is natural in such settings.

(iv) Submodel flexibility: Nothing prevents us from considering minimax risk over a
subset Θ1 Ă Θ:

sup
θPΘ1

Rpθ, δq ď sup
θPΘ

Rpθ, δq (2.3)

This allows us to calibrate our pessimism to the problem at hand. By considering
various subsets Θ1, we can study how the difficulty of estimation depends on the
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region of the parameter space. Comparing minimax risks across nested subsets
reveals which parts of the parameter space drive the difficulty of the problem.
For certain models, the minimax risk is only non-trivial for such restriction
– for example the uniform distribution studied in Example 2.44. Indeed, in
example shows infδ supθPΘ Rpθ, δq “ 8 an iid sample of size n from Uniformr0, θs,
θ P Θ “ p0,8q.

(v) Restriction to estimator classes: Rather than optimizing over all decision rules
C, we may restrict to a subclass C 1 Ă C—for instance, unbiased estimators,
equivariant estimators, or linear estimators. This yields

inf
δPC

sup
θPΘ

Rpθ, δq ď inf
δPC1

sup
θPΘ

Rpθ, δq.

The UMVUE and UMREE can be viewed through this lens: they are minimax
within their respective estimator classes.

Finding minimax estimators and determining the minimax risk is generally difficult:
the definition involves an infimum over all estimators and a supremum over the
parameter space, neither of which admits a direct computation in most problems. We
now present several tools that simplify this task in structured settings.

Our first tool connects back to the theory of equivariant estimation developed in
Section 2.2. Recall that in invariant decision problems—where both the model and loss
respect a group symmetry—equivariant estimators have constant risk (Theorem 2.29).
This dramatically simplifies the minimax problem: among estimators with constant
risk, the one with the smallest risk is automatically minimax.

Theorem 2.47 (Hunt-Stein for compact groups). Consider a decision problem where
a locally compact abelian group G acts on X , Θ, and D “ Θ. Assume:

(i) the action of G on Θ is transitive,

(ii) the model is equivariant under G,

(iii) the loss L is invariant under G and d ÞÑ Lpθ, dq is convex for all θ.

Then the UMREE δ˚ is minimax.

(♠). Let δ˚ be best equivariant with constant risk r˚. Let ν be the Haar measure on G,
and let G1 Ă G2 Ă ¨ ¨ ¨ be an increasing sequence of compact sets with 0 ă νpGnq ă 8

and
Ť

n Gn “ G. For any estimator δ, define

δ̄npxq “
1

νpGnq

ż

Gn

g´1δpgxq dνpgq.
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Since νn :“ νp¨ XGnq{νpGnq is a probability measure, convexity and Jensen’s inequality
give

Lpθ, δ̄npxqq ď
1

νpGnq

ż

Gn

Lpθ, g´1δpgxqq dνpgq.

Taking expectations and using invariance of the loss and equivariance of the model,

Rpθ, δ̄nq ď
1

νpGnq

ż

Gn

Rpgθ, δq dνpgq ď sup
θ1

Rpθ1, δq.

For abelian G, the sequence δ̄n converges to an equivariant estimator δ̄ satisfying
the same risk bound (Exercise 2.19). Since δ̄ is equivariant, Rpθ, δ̄q ě r˚. Hence
supθ Rpθ, δq ě r˚ for all δ, so δ˚ is minimax.

We now apply the Hunt-Stein theorem to determine the minimax risk in the Gaussian
location model, and examine how this interacts with the James-Stein phenomenon
from Section 2.3.1.

Example 2.48. Consider X „ Ndpθ, σ2Idq with θ P Rd under squared error loss
Lpθ, δq “ }δ´ θ}2. This is a location family: the translation group G “ pRd,`q acts on
X “ Rd and Θ “ Rd by gcpxq “ x ` c, the model is equivariant, the loss is invariant,
and G is locally compact abelian.

By Example 2.32, the (UMREE) Pitman estimator is δ˚pXq “ X. It has constant
risk Rpθ, δ˚q “ Eθ}X ´ θ}2 “ dσ2. By the Hunt-Stein theorem, δ˚ is minimax, so the
minimax risk for the estimation problem of estimating θ P Rd is dσ2.

For d ě 3, Theorem 2.40 shows that the James-Stein estimator satisfies

Rpθ, δJSq “ dσ2
´ pd ´ 2q

2σ4Eθr}X}
´2

s ă dσ2 for all θ P Rd.

Thus the James-Stein estimator is also minimax. As }θ} Ñ 8, the correction term
vanishes and Rpθ, δJSq Ñ dσ2, so supθ Rpθ, δJSq “ dσ2.

The moral is that minimaxity and admissibility are complementary criteria. We
now have two minimax estimators: the UMVUE/UMREE/MLE and the James-Stein
estimator. In high dimensions, the minimax criterion alone does not distinguish between
X and δJS—both achieve the same worst-case risk. Admissibility could break the tie:
among minimax estimators, we might prefer those that are not dominated. Morover,
for any bounded subset Θ1 Ă Θ, supθPΘ1 Rpθ, δJSq ă supθPΘ Rpθ, δq: if we are even
slightly more optimistic than worst case across the entire parameter space, we prefer
the James-Stein estimator. ♢

Despite appearing to be opposing viewpoints, admissibility and minimaxity are not
incompatible. In fact, minimaxity can imply admissibility under the right conditions.
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Theorem 2.49 (Unique minimax implies admissible). If δ˚ is the unique minimax
estimator, then δ˚ is admissible.

Proof. Suppose δ˚ is unique minimax. If δ1 is any other estimator, then by uniqueness,

sup
θ
Rpθ, δ˚

q ă sup
θ
Rpθ, δ1

q.

This implies there exists some θ0 P Θ such that Rpθ0, δ
˚q ă Rpθ0, δ

1q, so δ1 does not
dominate δ˚. Since δ1 was arbitrary, δ˚ is admissible.

Alternatively, suppose for contradiction that δ˚ is inadmissible, so some δ1 dominates
it: Rpθ, δ1q ď Rpθ, δ˚q for all θ, with strict inequality for at least one θ. Then

sup
θ
Rpθ, δ1

q ď sup
θ
Rpθ, δ˚

q “ R˚,

so δ1 is also minimax—contradicting the uniqueness of δ˚.

As Example 2.48 illustrates, uniqueness often fails in simple settings: both the
MLE and James-Stein estimator are minimax for the Gaussian location model when
d ě 3. When multiple minimax estimators exist, admissibility provides a criterion for
choosing among them.

We now turn to another tool for establishing minimaxity: the submodel flexibility
noted in (2.3). If we can identify a submodel P0 Ă P that captures the “hardest” part
of the problem, then finding the minimax estimator over P0 suffices.

Lemma 2.50. If δ is minimax for θ under P P P0 Ă P and

sup
P PP0

RpP, δq “ sup
P PP

RpP, δq,

then δ is minimax for θ under P P P.

Proof. For any other estimator δ1,

sup
P PP

RpP, δ1
q ě sup

P PP0

RpP, δ1
q ě sup

P PP0

RpP, δq “ sup
P PP

RpP, δq.

We illustrate the power of this lemma by reducing a vast nonparametric problem to
the Gaussian location model, where the Hunt-Stein theorem applies.

Example 2.51 (Population mean with bounded variance). Consider the nonparametric
model

P “ tPbn : P probability measure on pR,BpRqq with VarP pXq ď Mu
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for some known M ą 0. We wish to estimate ϕpP q “ EP rXs under squared error loss.
The sample mean has risk RpP, X̄q “ VarP pXq{n ď M{n, with equality when

VarP pXq “ M . To show X̄ is minimax, consider the Gaussian submodel P0 “

tNpθ,Mqbn : θ P Ru. This is a location family, so by the Hunt-Stein theorem, X̄ is
minimax over P0 with constant risk M{n.

Since P0 Ă P and X̄ achieves its maximum risk M{n on the submodel P0,
Lemma 2.50 implies that X̄ is minimax over all of P . ♢

2.4.1 Minimax rates

For some models, like the Gaussian location model studied in Example 2.48, the minimax
risk is relatively easy to compute exactly in terms of various problem characteristics,
such as dimension, variance, or sample size. Let us summarize the findings thus far.

Example 2.52 (Minimax rate for the Gaussian location model). Consider the family of
Gaussian location estimation problems indexed by i “ pn, d, σ2q P N ˆ N ˆ p0,8q. For
each i “ pn, d, σ2q, we observe X1, . . . , Xn

iid
„ Ndpθ, σ2Idq and wish to estimate θ P Rd

under squared error loss Lipθ, δq “ }δ ´ θ}2.
From Example 2.48, the minimax risk for a single observation (n “ 1) is dσ2. For n

i.i.d. observations, it suffices to consider the sufficient statistic X̄ „ Ndpθ, σ2Id{nq (by
Rao-Blackwell, Theorem 1.43), so rescaling gives minimax risk

R˚
n,d,σ2 “

dσ2

n
.

We can extract rate information by examining how the risk scales with each character-
istic; how much difficult does the problem become when we increase e.g. dimension,
variance or how much easier it becomes when we increase the sample size. ♢

When the exact minimax risk is difficult to compute, we often settle for characterizing
its rate—how the minimax risk scales with problem characteristics. This coarser lens is
powerful: it allows us to compare the difficulty of different estimation problems and to
identify which estimators are “rate-optimal” without pinning down exact constants.

Definition 2.53. Consider a collection of decision problems, indexed by i P I, given
by the tuple pXi,Xi,Pi,Θi, pDi,Diq, Liq with risk function Ri. The minimax rate is a
function r : I Ñ R such that

c˚rpiq ď inf
δ

sup
θPΘi

Ripθ, δq ď C˚rpiq

for some constants c˚, C˚ ą 0 and for all i P I.
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Knowledge of the exact minimax risk immediately yields the rate: in Example 2.52,
the minimax rate is rpn, d, σ2q “ dσ2{n with constants c˚ “ C˚ “ 1. More often,
exact constants are intractable but the rate remains accessible. Proving a minimax
rate requires two ingredients: an upper bound (exhibiting an estimator achieving risk
Oprpiqq) and a lower bound (showing no estimator can do better than Ωprpiqq).

In many nonparametric problems, achieving the optimal rate requires carefully
balancing bias and variance—neither the unbiased estimator nor the lowest-variance
estimator is rate-optimal. The minimax rate framework helps identify the correct
trade-off, even when exact constants remain elusive. We illustrate with a classical
nonparametric model where the exact minimax risk is unknown, but the rate can be
determined.

Consider observing X1, . . . , Xn
iid
„ f where f is an unknown probability density

on r0, 1s. Rather than estimating the entire density, we focus on a simpler target:
evaluating f at a fixed point x0 P p0, 1q.

Without restrictions on f , this problem is hopeless—the density could have arbitrary
local behavior near x0. We therefore assume f belongs to a Hölder smoothness class.
For β ą 0 and M ą 0, define

FβpMq “

"

f : r0, 1s Ñ R` :
ż 1

0
f “ 1, |f pkq

pxq ´ f pkq
pyq| ď M |x ´ y|

α for all x, y P r0, 1s

*

,

where k “ tβu is the number of derivatives and α “ β ´ k P r0, 1q controls the
smoothness of the kth derivative. The case β “ 1 corresponds to Lipschitz densities;
β “ 2 requires a Lipschitz first derivative; and so on. Larger β means smoother
densities, which should make estimation easier.

Formally, the statistical model is P “ tPbn
f : f P FβpMqu, where Pf denotes the

distribution on r0, 1s wit Lebesgue density f .
Consider the family of estimation problems indexed by i “ pn, βq P Nˆ p0,8q, with

parameter space Θi “ FβpMq for fixed M ą 0, and loss Lipf, δq “ pδ ´ fpx0qq2.
We are interested in determining the minimax rate for the minimax risk

R˚
n,β “ inf

δ
sup

fPFβpMq

Ef rpδ ´ fpx0qq
2
s.

First interesting observation: the problem has no unbiased estimator.

Proposition 2.54. Consider the decision problem corresponding to estimating fpx0q

for a fixed x0 P p0, 1q on the basis of n i.i.d. observations X1, . . . , Xn „ fpxqdx from
f P FβpMq. For any sample size n ě 1, there is no unbiased estimator of fpx0q.

Proof. Exercise 2.22.
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Since no unbiased estimator exists, we must navigate the bias-variance trade-off.
The minimax rate framework tells us how to do this optimally.

If f were constant in a neighborhood of x0, then the probability that Xi falls in an
interval rx0 ´ h, x0 ` hs would be approximately 2h ¨ fpx0q. Counting observations in
this interval and dividing by 2nh would give an unbiased estimator. Of course, f is
not constant, so this procedure introduces bias—but if f is smooth and h is small, the
bias should be small.

This reasoning leads to the kernel density estimator

f̂hpx0q “
1
nh

n
ÿ

i“1
K

ˆ

Xi ´ x0

h

˙

,

where K : R Ñ R is a kernel function satisfying
ş

K “ 1, and h ą 0 is the bandwidth.
The simplest choice is the box kernel Kpuq “ 1

21t|u|ď1u, which recovers the histogram-
style estimator described above. Smoother kernels (e.g., the ‘Gaussian kernel’ Kpuq “

1?
2π
e´u2{2) yield smoother estimates but the same asymptotic behavior.
The bandwidth h controls the bias-variance trade-off. A small h means we average

over a narrow window, capturing local behavior but using few observations—low bias,
high variance. A large h averages over many observations but blurs local structure—low
variance, high bias.

To quantify this, we analyze the bias and variance separately. For the bias, Taylor
expansion of f around x0 combined with the Hölder condition yields (see Exercise 2.20)

|Ef rf̂hpx0qs ´ fpx0q| ď C1h
β

for a constant C1 depending on M and K. The smoothness β determines how quickly the
bias vanishes as h Ñ 0: smoother densities have smaller bias for the same bandwidth.

For the variance, each summand 1
h
KpXi´x0

h
q has magnitude of order 1{h and is

nonzero with probability of order h. This gives (see again Exercise 2.20)

Varf pf̂hpx0qq ď
C2

nh

for a constant C2. The variance decreases with n (more observations) and increases as
h Ñ 0 (narrower window).

By Lemma 2.7, we obtain

Ef rpf̂hpx0q ´ fpx0qq
2
s ď C2

1h
2β

`
C2

nh
.

This expression captures the bias-variance trade-off: as h decreases, the first term
shrinks but the second grows. The optimal bandwidth h˚ minimizes the sum by
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balancing the two terms. Setting h2β — 1{pnhq and solving yields

h˚
— n´1{p2β`1q.

Substituting back, both the squared bias and the variance are of order n´2β{p2β`1q,
giving

sup
fPFβpMq

Ef rpf̂h˚px0q ´ fpx0qq
2
s À n´2β{p2β`1q.

This establishes an upper bound on the minimax risk: there exists an estima-
tor achieving rate n´2β{p2β`1q. But is this the best possible? Perhaps a cleverer
construction—something other than kernel estimation—could achieve a faster rate. To
rule this out, we need a lower bound showing that no estimator, however ingenious,
can do better.

The constraint risk inequality (Lemma 2.43) is the key tool. Recall the intuition:
if two parameter values f0 and f1 generate statistically similar distributions yet have
well-separated values of the target functional fpx0q, then no estimator can perform
well at both. The product |f1px0q ´ f0px0q| ¨ ρpPbn

f0 , P
bn
f1 q measures this tension, and

the constraint risk inequality converts it into a lower bound on the worst-case risk.
We construct a pair of densities that are hard to distinguish. Let f0 ” 1 be the

uniform density on r0, 1s, and let

f1 “ 1 ` ϵψh,

where ψh is a smooth bump function centered at x0 with support of width h, normalized
so that

ş

ψh “ 0 (ensuring f1 integrates to one) and scaled so that both f0 and f1 lie in
FβpMq. The Hölder constraint forces the bump to have height at most of order hβ: a
taller bump would violate the smoothness condition. Thus |f1px0q ´ f0px0q| — ϵhβ.

How similar are the distributions Pbn
f0 and Pbn

f1 ? The Bhattacharyya coefficient
satisfies (Exercise 2.21)

ρpPbn
f0 , P

bn
f1 q ě p1 ´ c1ϵ2hq

n

for a constant c ą 0. For small enough peturbations, the distributions remain close
(Bhattacharyya coefficient near 1) – provided nϵ2h À 1; they become distinguishable
when nϵ2h " 1. This reflects the intuition that n observations, each falling in the bump
region with probability h, provide roughly nh “effective observations” for detecting a
perturbation of size ϵ.

Applying Lemma 2.43:
b

Ef0pδ ´ f0px0qq2 `

b

Ef1pδ ´ f1px0qq2 ě |f1px0q ´ f0px0q| ¨ ρpPbn
f0 , P

bn
f1 q.
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The left-hand side is bounded by 2
a

supf Ef rpδ ´ fpx0qq2s. Consequently, the worst-
case risk of any estimator δ is bounded below by the square of the right-hand side. The
right-hand side is of order ϵhβ when nϵ2h À 1. Choosing ϵ as large as possible subject
to this constraint gives ϵ — pnhq´1{2, and hence the minimax risk satisfies

R˚
n,β Á ϵ2h2β

—
h2β

nh
“
h2β´1

n
.

This bound holds for any h ą 0. Optimizing over h—choosing h to maximize the lower
bound—yields h — n´1{p2β`1q, and substituting gives

inf
δ

sup
fPFβpMq

Ef rpδ ´ fpx0qq
2
s Á n´2β{p2β`1q.

Combining the upper and lower bounds, we conclude that the minimax rate for
estimating fpx0q over the Hölder class FβpMq is

R˚
n,β — n´2β{p2β`1q.

The kernel density estimator with optimally chosen bandwidth is rate-optimal: no
estimator can achieve a faster rate, and the bias-variance trade-off we identified is
indeed the correct one.

Remark 2.55 (CDF vs density estimation). The contrast with CDF estimation (Exam-
ple 2.11) is instructive. The empirical CDF F̂nptq “ 1

n

řn
i“1 1tXiďtu is unbiased for F ptq

and achieves the parametric rate n´1{2. Why is density estimation so much harder?
Geometrically, the CDF integrates the density up to t, averaging over a macroscopic

region. This averaging stabilizes estimation: whether or not Xi falls below t is
informative about F ptq regardless of the local shape of f . The density at a point,
however, describes infinitesimal behavior—how much probability mass is packed into
an arbitrarily small neighborhood of x0. No finite sample can resolve infinitesimal
structure without assumptions, which is why smoothness (the Hölder condition) is
essential and why the rate n´2β{p2β`1q is slower than n´1{2 for any finite β.
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Exercises

Exercise 2.1 (UMVUE for the mean). Consider the (nonparametric) model correspond-
ing to observing X1, . . . , Xn i.i.d. from an unknown distribution P on pR,BpRqq with
finite variance. We wish to estimate the population mean ϕpP q “ EP rX1s.

(a) Show that the sample mean X̄n “ 1
n

řn
i“1 Xi is the UMVUE for ϕpP q “ EP rX1s.

You may use the result from Exercise 1.17 that the order statistics are a complete
sufficient statistic for this model.

(b) Show that the sample variance S2 “ 1
n´1

řn
i“1pXi ´ X̄nq2 is the UMVUE for the

population variance σ2pP q “ VarP pX1q.

Exercise 2.2 (UMVUE for the CDF in the normal mean model). Consider a statistical
model corresponding to X1, . . . , Xn

iid
„ Npθ, σ2q, θ P R unknown, known variance σ2 ą 0.

We wish to estimate the CDF at a fixed point t, i.e., ϕpθq “ Φppt ´ θq{σq.

(a) Show that the UMVUE for ϕpθq is given by

δpXq “ Φ
˜

t ´ X̄

σ
a

1 ´ 1{n

¸

.

(b) Compare the variance of δpXq with the variance of the empirical CDF F̂nptq “

1
n

řn
i“1 1tXiďtu of Example 2.11. Which one is smaller and why?

Exercise 2.3 (Linear model). Let Y „ NnpXβ, σ2Inq for unknown β P Rp and σ2 ą 0,
where X P Rnˆp has full column rank.

(a) Show that pβ̂OLS, s
2q, where β̂OLS “ pXJXq´1XJY and s2 “ 1

n´p
}Y ´ Xβ̂OLS}2,

is a complete sufficient statistic for pβ, σ2q.

(b) Conclude that β̂OLS is the UMVUE for β.

(c) Recall that the Gauss-Markov theorem states that β̂OLS is the Best Linear
Unbiased Estimator (BLUE) regardless of the distribution of Y , as long as it has
mean Xβ and covariance σ2In. How does the UMVUE property under normality
relate to the BLUE property?

Exercise 2.4 (Bias-Variance Decomposition). Prove Lemma 2.7.
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Exercise 2.5 (Consistency and Bias). Let θ̂1, θ̂2, . . . be i.i.d. random vectors in Rd with
finite covariance matrix Σ and mean vector µ. Consider ‘the estimator’ θ̄m “ 1

m

řm
j“1 θ̂j

of θ P Rd. Show that Er}θ̄m ´ θ}2s Ñ 0 if and only if Erθ̂1s “ θ.

Exercise 2.6 (Uncorrelated with 0-unbiased estimators). Let δpXq have finite variance.
Show that a necessary and sufficient condition for δ to be the UMVUE of its expectation
gpθq “ EθrδpXqs is that CovθpδpXq, UpXqq “ 0 for all θ P Θ and all statistics U such
that EθrUpXqs “ 0 for all θ P Θ (i.e., U is an unbiased estimator of zero).

Exercise 2.7 (Cramer-Rao Lower Bounds). (a) LetX1, . . . , Xn
iid
„ Npθ, σ2q with known

variance σ2 ą 0. Compute the Cramer-Rao lower bound for the variance of any
unbiased estimator of θ P R.

(b) Let X1, . . . , Xn
iid
„ Bernoullippq for p P p0, 1q. Derive the Cramer-Rao lower bound

for the variance of any unbiased estimator of p. What is the noticeable difference
compared to the normal distribution case? What is the worst-case lower bound
(over p P p0, 1q)?

Exercise 2.8 (DQM implications). The aim is to prove Lemma 2.13. Throughout, let µ
be a dominating measure for the model with densities pθ “ dPθ{dµ.

(a) Show that ?
pθ,

?
pθ`h P L2pµq, and conclude that Ah :“ ?

pθ`h ´
?
pθ P L2pµq.

(b) Using part (a) and the fact that L2pµq is a vector space, conclude that hJSθ
?
pθ P

L2pµq for all sufficiently small h and hence Ipθq “ EθrSθS
J
θ s has all entries finite.

(c) Using the algebraic identity a´b “ p
?
a´

?
bqp

?
a`

?
bq and the DQM expansion,

show that
pθ`h ´ pθ “ hJSθ pθ ` r̃h,

where r̃h is a remainder term that you should specify explicitly in terms of
rh :“ ?

pθ`h ´
?
pθ ´ 1

2h
JSθ

?
pθ.

(d) Let T : X Ñ R satisfy EθrT 2s ă 8. Show that the contribution of the remainder
term to ψpθ ` hq ´ ψpθq is negligible:

ż

T pxqr̃hpxq dµpxq “ op}h}q.

Hint: Use the Cauchy-Schwarz inequality and the bound }rh}L2pµq “ op}h}q.

(e) Combine the results of parts (c) and (d) to conclude that if Eθ1rT 2s ă 8 for
all θ1 in a neighborhood of θ, then ψpθ1q “ Eθ1rT s is differentiable at θ with
∇ψpθq “ EθrT ¨ Sθs.
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Exercise 2.9 (Covariance matrix estimation as an invariant decision problem). Let
X1, . . . , Xn

iid
„ Npp0,Σq with Σ positive definite, so the sufficient statistic is S “

řn
i“1 XiX

J
i „ Wishartppn,Σq. The parameter space is Θ “ S``

p , the set of p ˆ p

positive definite matrices.
Consider the general linear group G “ GLppq acting on data by gApX1, . . . , Xnq as

pA,Xiq ÞÑ AXi (equivalently, gAS “ ASAJ) and on parameters by gAΣ “ AΣAJ.

(a) Show that the model is equivariant under this group action.

(b) The squared Frobenius loss LpΣ, δq “ }δ ´ Σ}2
F , where }M}F “

a

TrpMJMq is
the Frobenius norm, is not invariant under this action. Verify this by finding
matrices A, Σ, and δ such that LpAΣAJ, AδAJq ‰ LpΣ, δq.

(c) The Stein loss is defined as

LSpΣ, δq “ TrpδΣ´1
q ´ log |δΣ´1

| ´ p.

Show that Stein loss is invariant under the action of GLppq.

Exercise 2.10 (Pitman estimator for a scale family). Let X1, . . . , Xn
iid
„ Exppσq with

density fpx | σq “ 1
σ
e´x{σ for x ą 0 and σ ą 0. We wish to estimate σ under the

scale-invariant loss
Lpσ, δq “

ˆ

δ

σ
´ 1

˙2

.

(a) Verify that this loss is invariant under the multiplicative group G “ pRą0,ˆq

acting by gcσ “ cσ and gcδ “ cδ.

(b) Show that an UMREE estimator is of the form δ˚pxq “ a
řn

i“1 xi for some
constant a ą 0. Hint: Consider an equivariant estimator δpcxq “ cδpxq and its
Rao-Blackwellization δ˚ “ EσrδpXq | X̄s, where X̄ “ n´1 řn

i“1 Xi.

(c) Find the UMREE by minimizing Rp1, δ˚q in a ą 0. Hint: If Xi
iid
„ Expp1q, then

řn
i“1 Xi „ Gammapn, 1q.

Exercise 2.11 (Pitman estimator for the Cauchy location family). Let X1, . . . , Xn
iid
„

Cauchypθ, 1q with density

fpx ´ θq “
1

πp1 ` px ´ θq2q
, x P R, θ P R.

(a) Write down the Pitman estimator for θ under squared error loss.
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(b) For n “ 2, show that the Pitman estimator can be written as

δ˚
pX1, X2q “

X1 ` X2

2 `
1
2pX1 ´ X2q ¨ g

ˆ

X1 ´ X2

2

˙

for some odd function g : R Ñ R, and reason that g ” 0.

Hint: Use the substitution η “ θ ´ X1`X2
2 and let u “ X1´X2

2 .

(c) For n “ 3, show that as x3 Ñ 8 with x1, x2 fixed, the Pitman estimator satisfies

δ˚
px1, x2, x3q Ñ

x1 ` x2

2 .

Interpret this result.

Exercise 2.12 (Admissibility of the MLE in the normal mean model for d “ 1). For
d “ 1 and d “ 2 the MLE X is admissible in the model X „ Ndpθ, Iq. This exercise
deals with the case d “ 1. So we assume that X „ Npθ, 1q. The goal is to prove that
there exists no other estimator θ̂ such that Eθpθ̂ ´ θq2 ď EθpX ´ θq2 for all θ P R, with
strict inequality for some θ P R.

For τ ą 0, consider the Np0, τq prior on the parameter θ. Denote the corresponding
prior density by πτ .

(i) Show that if an estimator θ̂ as described above would exist, then there would
exist an ε ą 0 and θ0 ă θ1 such that

1 ´

ż

Eθpθ̂ ´ θq
2πτ pθq dθ ě ε

ż θ1

θ0

πτ pθq dθ.

(ii) Let θ̃τ be the posterior mean corresponding to the prior πτ . Compute the
corresponding Bayes risk

ż

Eθpθ̃τ ´ θq
2πτ pθq dθ.

You may use without proof that the posterior mean minimizes this integrated
risk among all estimators.

(iii) Using the results of (i) and (ii), show that if an estimator θ̂ as described above
would exist, then

1 ´
ş

Eθpθ̂ ´ θq2πτ pθq dθ

1 ´
ş

Eθpθ̃τ ´ θq2πτ pθq dθ
Ñ 8

as τ Ñ 8. Derive a contradiction.
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Remark 2.56. Admissibility of the MLE in the case d “ 2 can also be proved using
this approach via the Bayes risk. The analysis is more involved however, since using
conjugate Gaussian priors as in the case d “ 1 does not work. See Problem 4.5 on p.
398 of Lehmann and Casella (1998).

Exercise 2.13 (Negative moments of the multivariate Gaussian). Let X „ Ndp0, Iq.
Show that Ep1{}X}pq ă 8 if and only if d ą p.

Exercise 2.14 (Proof of the James-Stein lemma). Prove Lemma 2.41.

Exercise 2.15 (Shrinking towards another point). Let X „ Ndpθ, Iq and v P Rd. Define
the estimator

θ̃JS “ v `

ˆ

1 ´
d ´ 2

}X ´ v}2

˙

pX ´ vq.

Prove that for d ě 3, this estimator also satisfies Eθ}θ̃JS ´ θ}2 ă Eθ}θ̂MLE ´ θ}2 for all
θ P Rd.

Exercise 2.16 (Oracle version of James-Stein). Use the expression for the risk of the
James-Stein estimator to prove that if X „ Npθ, σ2Iq, then for every θ P Rd and d ě 3,

Eθ}θ̂JS ´ θ}
2

ď 4σ2
` inf

cPR
Eθ}cX ´ θ}

2.

This is a so-called oracle inequality that asserts that up to a constant, the risk of the
James-Stein estimator is as good as the risk that could be achieved by an oracle that
may use its knowledge of the true parameter θ to choose the degree of shrinking.

Exercise 2.17 (Estimating the distribution is hard). Let P be the set of all probability
measures on pR,BpRqq with variance bounded by σ2. This exercise shows that estimating
the distribution P itself in total variation distance is impossible with uniform control
over P .

Let P0 “ Np0, 1q. For M ą 1, define the mixture distribution

PM “

ˆ

1 ´
1
M

˙

Np0, 1q `
1
M
NpM2, 1q.

(a) Verify that P0, PM P P for all M ą 1.

(b) Show that dT V pP0, PM q Ñ 1 as M Ñ 8.

Hint: Consider the event AM “ tx : x ą M2{2u and compute P0pAM q and
PM pAM q.
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(c) Let Pbn denote the n-fold product measure corresponding to n i.i.d. draws from
P . Show that for any fixed n,

dT V pPbn
0 , Pbn

M q Ñ 0 as M Ñ 8.

Hint: Let N be the number of samples from the NpM2, 1q component. Show that
Pbn

M pN “ 0q Ñ 1 as M Ñ 8, and that conditionally on N “ 0, the two product
measures coincide.

(d) Conclude that for any estimator P̂n : Rn Ñ P and any sample size n,

sup
P PP

EP rdT V pP̂n, P qs ě
1
2 .

Hint: Use Le Cam’s method: for any estimator and any pair of distributions
P,Q,

EP rdT V pP̂n, P qs ` EQrdT V pP̂n, Qqs ě dT V pP,Qqp1 ´ dT V pPbn, Qbn
qq.

Exercise 2.18. Let Pθ “ Npθ, σ2q and Pθ1 “ Npθ1, σ2q be two univariate normal distri-
butions with the same variance. Show that

dT V pPθ, Pθ1q ď
1

2σ |θ ´ θ1
|.

Hint: Use Pinsker’s inequality, which relates total variation distance to Kullback-Leibler
divergence: dT V pP,Qq ď

b

1
2DKLpP }Qq.

Exercise 2.19 (♠). This exercise completes the proof of the Hunt-Stein theorem. Let
G be a locally compact abelian group with Følner sequence tGnu, and let δ̄n be the
partial group averages defined in the proof of Theorem 2.47.

(a) Show that δ̄n is asymptotically equivariant: for all h P G,

Eθ}δ̄nphXq ´ hδ̄npXq}
2

Ñ 0 as n Ñ 8.

Hint: Express the difference as integrals over Gn△hGn and use the Følner prop-
erty.

(b) Let r˚ be the constant risk of the UMREE. Show that lim infn Rpθ, δ̄nq ě r˚.

Hint: If Rpθ, δ̄nk
q ă r˚ ´ ϵ along a subsequence, use a compactness argument to

extract a limit that is equivariant with risk strictly below r˚, contradicting the
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definition of the UMREE.

Exercise 2.20 (Kernel density estimation bounds). Consider the kernel density estimator
f̂hpx0q “ 1

nh

řn
i“1 K

`

Xi´x0
h

˘

for a density f P FβpLq at a point x0. Assume the kernel
K satisfies

ş

Kpuq du “ 1,
ş

|u|β|Kpuq| du ă 8, and
ş

ujKpuq du “ 0 for all integers
1 ď j ă β.

(a) Show that the bias is bounded by

|Ef rf̂hpx0qs ´ fpx0q| ď C1h
β,

where C1 depends on L and K.

(b) Show that the variance is bounded by

Varf pf̂hpx0qq ď
C2

nh
,

where C2 depends on }K}8 (or }K}2
2) and fpx0q (or }f}8).

Exercise 2.21 (Bhattacharyya affinity under perturbation). Let Pf0 be the uniform
distribution on r0, 1s (density f0 ” 1) and let Pf1 have density f1pxq “ 1 ` ϵψhpxq,
where ψhpxq “ ψppx ´ x0q{hq for a function ψ supported on r´1{2, 1{2s with

ş

ψ “ 0
and bounded magnitude. Assume |ϵψhpxq| ď 1{2 so that f1 is a valid density.

Show that the Bhattacharyya affinity between the product measures satisfies

ρpPbn
f0 , P

bn
f1 q ě 1 ´ cnϵ2h

for some constant c ą 0 depending on ψ.

Exercise 2.22 (Non-existence of unbiased density estimators). Let F be the class of
Lipschitz densities on r0, 1s. We wish to show that for any fixed x0 P p0, 1q and any
sample size n ě 1, there is no unbiased estimator of fpx0q.

Proceed by contradiction: Suppose δpX1, . . . , Xnq is an unbiased estimator, i.e.,
Ef rδs “ fpx0q for all f P F .

(a) Fix f0 P F . Consider perturbations fϵ “ f0 ` ϵg where g is Lipschitz, supported
on an interval ra, bs Ă r0, 1s not containing x0, and satisfies

ş

g “ 0. Show that
the unbiasedness condition implies

ż 1

0
gptqhf0ptq dt “ 0,
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where hf0ptq “
ş

r0,1sn´1 δpt, x2, . . . , xnq
śn

j“2 f0pxjq dxj.

(b) Use the result from (a) to show that hf0ptq must be constant for almost every
t P r0, 1sztx0u.

(c) Show that this constant must be f0px0q.

(d) Deduce that for any fixed t ‰ x0, the function δtpx2, . . . , xnq “ δpt, x2, . . . , xnq is
an unbiased estimator of fpx0q based on n ´ 1 observations. Explain why this
leads to a contradiction.
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A Metric Spaces
A.1 Metrics

Definition A.1 (Metric). Let X be a set. A metric on X is a function d : X ˆX Ñ R
such that for all x, y, z P X:

(i) dpx, yq ě 0 (non-negativity);

(ii) dpx, yq “ 0 if and only if x “ y (identity of indiscernibles);

(iii) dpx, yq “ dpy, xq (symmetry);

(iv) dpx, zq ď dpx, yq ` dpy, zq (triangle inequality).

Definition A.2 (Metric Space). A metric space is a pair pX, dq, where X is a set and
d is a metric on X.

Example A.3 (Euclidean Space). Let X “ Rn. The Euclidean metric is defined by

dpx, yq “ }x ´ y}2 “

d

n
ÿ

i“1
pxi ´ yiq

2.

Then pRn, dq is a metric space. ♢

Example A.4 (Function Space). Let X “ Cr0, 1s, the set of continuous real-valued
functions on the interval r0, 1s. The supremum metric (or uniform metric) is defined by

dpf, gq “ sup
tPr0,1s

|fptq ´ gptq|.

Then pCr0, 1s, dq is a metric space. ♢

A.2 Topology

Definition A.5 (Open Ball). Let pX, dq be a metric space. The open ball of radius
r ą 0 centered at x P X is the set

Brpxq “ ty P X : dpx, yq ă ru.

Definition A.6 (Open Set in Metric Spaces). A subset U Ď X is called open if for
every x P U , there exists an ϵ ą 0 such that Bϵpxq Ď U .
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Definition A.7 (Closed Set). A subset F Ď X is closed if its complement XzF is
open.

Definition A.8 (Closure). The closure of a subset A Ď X, denoted A, is the intersection
of all closed sets containing A. It is the smallest closed set containing A.

Definition A.9 (Neighborhood). A subset N Ď X is called a neighborhood of a point
x P X if there exists an open set U such that x P U Ď N . Equivalently, N is a
neighborhood of x if there exists an ϵ ą 0 such that Bϵpxq Ď N .

Proposition A.10. Let pX, dq be a metric space. The collection T of open sets in X

(as defined in Definition A.6) satisfies the following properties:

(i) H P T and X P T ;

(ii) The union of any collection of open sets is open;

(iii) The intersection of any finite collection of open sets is open.

Definition A.11 (Continuous Function). Let pX, dXq and pY, dY q be metric spaces. A
function f : X Ñ Y is continuous at a point x P X if for every ϵ ą 0, there exists a
δ ą 0 such that dXpx, yq ă δ implies dY pfpxq, fpyqq ă ϵ. The function f is continuous
if it is continuous at every point in X.

Proposition A.12. Let pX, dXq and pY, dY q be metric spaces. A function f : X Ñ Y

is continuous if and only if for every open set V Ď Y , the preimage f´1pV q is open in
X.

Proposition A.12 reveals that continuity can be characterized entirely in terms of
open sets, without explicit reference to the underlying metric.

Definition A.13 (Topology Generated by a Metric). The collection of all open sets in
a metric space pX, dq forms a topology on X, called the topology induced by the metric
d.

This motivates the generalization of continuity in metric spaces to spaces where
only the notion of “openness” is defined, which leads to the definition of a topological
space. It turns out that the properties of Proposition A.10 are precisely the properties
needed to have things function the way they do for metrics.

Definition A.14 (Topology). A topology on a set X is a collection T of subsets of X
satisfying:

(i) H P T and X P T ;

(ii) The union of any collection of sets in T is in T ;
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(iii) The intersection of any finite collection of sets in T is in T .

The pair pX, T q is called a topological space. The elements of T are called open sets.

Remark A.15. Every metric induces a topology, but not every topology arises from a
metric. A topological space whose topology is induced by a metric is called metrizable.

Definition A.16 (Separable Space). A topological space X is called separable if it
contains a countable dense subset. That is, there exists a countable set D Ď X such
that D “ X.

Definition A.17 (Polish Space). A topological space X is called a Polish space if it
is separable and completely metrizable. That is, there exists a metric d on X which
induces the topology of X such that pX, dq is a complete metric space.

A.3 Compactness

Definition A.18 (Bounded Set). A subset A of a metric space pX, dq is bounded if
there exists x P X and R ą 0 such that A Ď BRpxq.

Definition A.19 (Compactness). A subset K of a topological space X is compact if
every open cover of K has a finite subcover. That is, if K Ď

Ť

iPI Ui where each Ui is
open, then there exists a finite subset J Ď I such that K Ď

Ť

jPJ Uj.

Definition A.20 (Sequential Compactness). A subset K of a metric space is sequen-
tially compact if every sequence in K has a convergent subsequence whose limit belongs
to K.

In metric spaces, compactness and sequential compactness are equivalent.

Definition A.21 (Locally Compact Space). A topological space X is locally compact
if every point x P X has a compact neighborhood. That is, for every x P X, there
exists an open set U containing x such that U is compact.

Example A.22 (Euclidean space is locally compact). The space Rd with the Euclidean
topology is locally compact. For any x P Rd, the open ball B1pxq has closure B1pxq

equal to the closed ball ty : }y´x} ď 1u, which is compact by the Heine–Borel theorem.
More generally, any open or closed subset of Rd is locally compact. Compact spaces

are trivially locally compact. ♢

Definition A.23 (Limit Point). A point x P X is a limit point (or accumulation point)
of a set A if every open neighborhood of x contains a point of A distinct from x.
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Definition A.24 (Generated Topology). Let X be a set and S be a collection of
subsets of X. The topology generated by S is the smallest topology on X containing S.
It consists of all arbitrary unions of finite intersections of elements of S. The elements
of S are called a subbasis for the topology.

Example A.25 (Standard Topology on R). Let X “ R. The standard topology on R
is the topology generated by the collection of all open intervals pa, bq. In fact, this is
the same as the topology induced by the Euclidean metric dpx, yq “ |x ´ y|. ♢

Example A.26 (Topology of Pointwise Convergence). Let X be the set of all functions
f : r0, 1s Ñ R. The topology of pointwise convergence is the topology generated by
sets of the form

St,pa,bq “ tf P X : a ă fptq ă bu

where t P r0, 1s and a ă b are real numbers. Convergence in this topology corresponds
exactly to pointwise convergence: a sequence fn Ñ f if and only if fnptq Ñ fptq for all
t P r0, 1s. ♢
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B Measure Theory
B.1 Measure and Probability

The foundational concept in measure theory is the sigma-algebra, which defines the
collection of subsets to which we can assign a measure.

Definition B.1. A σ-algebra F on a set Ω is a collection of subsets of Ω that satisfies
the following properties:

(i) H P F

(ii) If A P F , then Ac P F

(iii) If A1, A2, . . . P F , then
Ť8

i“1 Ai P F

Once we have a σ-algebra, we can define a measure, which generalizes the concepts
of length, area, and probability.

Definition B.2. Consider a measurable space pΩ,Fq. A measure µ on a σ-algebra F
is a function that assigns a non-negative real number to each set in F and satisfies the
following properties:

1. µpHq “ 0

2. If A1, A2, . . . P F are disjoint, then µp
Ť8

i“1 Aiq “
ř8

i“1 µpAiq

If µpΩq ă 8, then µ is called a finite measure. If in addition µpΩq “ 1, then µ is a
probability measure.

These components form the standard objects of study in measure theory.

Definition B.3. A pair pΩ,Fq consisting of a set Ω and a σ-algebra F is called a
measurable space. A triple pΩ,F , µq consisting of a measurable space and a measure µ
is called a measure space. If µ is a probability measure, the triple is called a probability
space.

Many important measures are not finite, but satisfy a weaker condition called
σ-finiteness.

Definition B.4. A measure µ on pΩ,Fq is called σ-finite if there exists a sequence of
sets A1, A2, . . . P F such that

Ť8

i“1 Ai “ Ω and µpAiq ă 8 for all i.

A simple example of a measure that can be finite or σ-finite is the counting measure.
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Example B.5 (Counting Measure). Let Ω be a countable set and F “ 2Ω. The
counting measure µ is defined by µpAq “ |A| (the number of elements in A) for any
A Ď Ω. This measure is σ-finite since Ω is countable (take Ai “ tωiu). ♢

Measures are often defined on a smaller class of sets (like intervals in R) and then
extended to the full σ-algebra. Carathéodory’s Extension Theorem guarantees that
this extension is unique for σ-finite measures.

Theorem B.6 (Uniqueness of Measure Extension). Let A be a collection of subsets
of Ω that is closed under finite intersections (a π-system) and generates the σ-algebra
F “ σpAq. If two measures µ and ν on pΩ,Fq agree on A (i.e., µpAq “ νpAq for all
A P A), and they are σ-finite on A, then µ “ ν on F .

Measures also behave continuously with respect to increasing or decreasing sequences
of sets.

Proposition B.7. Let µ be a measure on pΩ,Fq.

1. (Continuity from below) If A1 Ď A2 Ď ¨ ¨ ¨ is an increasing sequence of sets
in F and A “

Ť8

n“1 An, then

µpAq “ lim
nÑ8

µpAnq.

2. (Continuity from above) If A1 Ě A2 Ě ¨ ¨ ¨ is a decreasing sequence of sets in
F with µpA1q ă 8 and A “

Ş8

n“1 An, then

µpAq “ lim
nÑ8

µpAnq.

We now turn to the functions between measurable spaces, which must preserve the
measurable structure.

Definition B.8. Let pΩ,Fq and pS,Gq be measurable spaces. A function f : Ω Ñ S is
measurable (or F{G-measurable) if for every B P G, the preimage f´1pBq P F .

That is, f is measurable if

f´1
pBq “ tω P Ω : fpωq P Bu P F for all B P G.

Conversely, any function induces a σ-algebra on its domain.

Definition B.9. Let pΩ,Fq and pS,Gq be measurable spaces, and let f : Ω Ñ S be a
measurable function. The σ-algebra generated by f , denoted by σpfq, is the collection
of all preimages of sets in G:

σpfq “ tf´1
pBq : B P Gu.

v2025.0.3 – This is a draft – use at your own risk



B.1. Measure and Probability 130

This is the smallest σ-algebra on Ω with respect to which f is measurable. Note that
σpfq Ď F since f is measurable.

Definition B.10. The Borel σ-algebra on a topological space pX, T q, denoted by
BpXq, is the σ-algebra generated by the open sets T . In particular, if pX, dq is a metric
space, BpXq is generated by the open balls.

If pX,BpXqq and pY,BpY qq are two measurable spaces equipped with their Borel
σ-algebras, then any continuous function f : X Ñ Y is measurable.

For X “ R, BpRq is the σ-algebra generated by the collection of all open intervals
in R. Sets in BpRq are called Borel sets. This is the standard σ-algebra used when the
sample space is R (or Rd).

On the real line, the most important measure is the one that assigns lengths to
intervals.

Definition B.11 (Lebesgue Measure). The Lebesgue measure λ on pR,BpRqq is the
unique measure satisfying λppa, bsq “ b ´ a for all intervals pa, bs.

The Lebesgue measure is σ-finite since R “
Ť8

n“1p´n, ns.
Measurable functions are closed under various operations.

Proposition B.12. Let pΩ,Fq, pS,Gq, and pT,Hq be measurable spaces.

1. (Composition) If f : Ω Ñ S is F{G-measurable and g : S Ñ T is G{H-
measurable, then the composition g ˝ f : Ω Ñ T is F{H-measurable.

A measurable function can be used to transport a measure from its domain to its
codomain.

Definition B.13 (Push-forward Measure). Let pΩ,F , µq be a measure space, pS,Gq a
measurable space, and T : Ω Ñ S a measurable function. The push-forward measure of
µ by T , denoted µT (or sometimes T#µ or µ ˝T´1), is the measure on pS,Gq defined by

µT
pBq “ µpT´1

pBqq for all B P G.

Intuitively, µT describes the distribution of the random element T pωq when ω is
distributed according to µ.

The relationship between integrals under the original and push-forward measures is
given by the change of variables formula.

Theorem B.14 (Change of Variables Formula). Let T : pΩ,F , µq Ñ pS,Gq be measur-
able. For any measurable function g : S Ñ R, g is integrable with respect to µT if and
only if g ˝ T is integrable with respect to µ, and

ż

S

gpyq dµT
pyq “

ż

Ω
gpT pωqq dµpωq.

v2025.0.3 – This is a draft – use at your own risk



B.2. Integration 131

Definition B.15 (Equivalence Relation). An equivalence relation „ on a set X is a
binary relation that satisfies three properties for all a, b, c P X:

1. Reflexivity: a „ a.

2. Symmetry: If a „ b, then b „ a.

3. Transitivity: If a „ b and b „ c, then a „ c.

Given an equivalence relation „ on a set X, the equivalence class of an element x P X,
denoted rxs, is the set of all elements in X equivalent to x:

rxs “ ty P X : y „ xu.

The set of all equivalence classes is called the quotient set and denoted by X{ „.

Equivalence relations allow us to define measurable structures on quotient spaces.

Definition B.16 (Quotient σ-algebra). Let pX,Σq be a measurable space and „ an
equivalence relation on X. The quotient σ-algebra on the quotient space X{ „, denoted
by Σ{ „, is defined as

Σ{ „“
␣

B Ď X{ „
ˇ

ˇ π´1
pBq P Σ

(

,

where π : X Ñ X{ „ is the canonical projection map πpxq “ rxs.

This is the largest σ-algebra on X{ „ making the projection π measurable.

B.2 Integration

B.2.1 The Standard Machinery

A common strategy in measure theory to prove a property p for all measurable functions
is the so-called “standard machine” or “approximation by simple functions”. The steps
are typically:

1. Indicator Functions: Prove that p holds for indicator functions 1A for all
measurable sets A.

2. Simple Functions: Extend the result to non-negative simple functions s “
řn

i“1 ci1Ai
by linearity.

3. Non-negative Measurable Functions: Use the fact that any non-negative
measurable function f is the limit of an increasing sequence of non-negative
simple functions sn Ò f . Prove that p is preserved under this limit (often using
the Monotone Convergence Theorem).
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4. General Measurable Functions: For a general measurable function f , write
f “ f` ´ f´ where f` “ maxpf, 0q and f´ “ maxp´f, 0q. Extend the result by
linearity, provided integrability conditions are met.

Key theorems supporting this machinery include:

Theorem B.17 (Monotone Class Theorem). Let A be an algebra of sets generating
a σ-algebra F . Let M be a collection of subsets of Ω that is a monotone class (i.e.,
closed under countable increasing unions and countable decreasing intersections). If
A Ď M, then F Ď M.

Theorem B.18 (Monotone Convergence Theorem). If tfnu is a sequence of non-
negative measurable functions such that fn Ò f pointwise, then

lim
nÑ8

ż

fn dµ “

ż

f dµ.

Lemma B.19 (Fatou’s Lemma). If tfnu is a sequence of non-negative measurable
functions, then

ż

lim inf
nÑ8

fn dµ ď lim inf
nÑ8

ż

fn dµ.

Theorem B.20 (Dominated Convergence Theorem). Let tfnu be a sequence of mea-
surable functions converging pointwise to f . If there exists an integrable function g

such that |fn| ď g for all n, then f is integrable and

lim
nÑ8

ż

fn dµ “

ż

f dµ.

The condition of a single dominating function in the DCT can be relaxed to uniform
integrability, which controls the integrals of the sequence uniformly over sets of small
measure.

Definition B.21 (Uniform Integrability). Let pΩ,F , µq be a measure space. A collec-
tion of measurable functions tfiuiPI is called uniformly integrable if

lim
MÑ8

sup
iPI

ż

t|fi|ąMu

|fi| dµ “ 0.

Equivalently, for every ε ą 0, there exists M ą 0 such that

sup
iPI

ż

t|fi|ąMu

|fi| dµ ă ε.

When µ is a finite measure, uniform integrability admits an equivalent characteriza-
tion in terms of sets of small measure.
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Proposition B.22. Let pΩ,F , µq be a finite measure space. A collection tfiuiPI of
integrable functions is uniformly integrable if and only if:

1. supiPI

ş

|fi| dµ ă 8, and

2. for every ε ą 0, there exists δ ą 0 such that for all A P F with µpAq ă δ,

sup
iPI

ż

A

|fi| dµ ă ε.

Uniform integrability provides a necessary and sufficient condition for L1 conver-
gence.

Theorem B.23 (Vitali Convergence Theorem). Let pΩ,F , µq be a finite measure space
and let tfnu be a sequence of integrable functions converging in measure to f . Then
fn Ñ f in L1pµq if and only if tfnu is uniformly integrable.

B.2.2 Function spaces

Definition B.24 (Lp spaces). Let pΩ,F , µq be a measure space. For 1 ď p ă 8, let
LppΩ,F , µq denote the set of all measurable functions f : Ω Ñ R such that

}f}p :“
ˆ
ż

Ω
|f |

p dµ

˙1{p

ă 8.

Similarly, L8pΩ,F , µq consists of all essentially bounded measurable functions, i.e.,
those for which there exists a constant C such that |fpωq| ď C for almost all ω. The
essential supremum is defined as:

}f}8 :“ inftC ě 0 : |fpωq| ď C for µ-almost all ωu.

The quantity } ¨ }p satisfies most properties of a norm (non-negativity, homogeneity,
triangle inequality), but it is only a semi-norm on Lp, because }f}p “ 0 implies f “ 0
only almost everywhere (not everywhere). To obtain a Banach space, we must identify
functions that are equal almost everywhere.

Definition B.25 (Lp spaces). We define an equivalence relation „ on Lp by f „ g

if and only if f “ g µ-almost everywhere. The Lp space is the quotient space of
equivalence classes:

Lp
pΩ,F , µq :“ Lp

pΩ,F , µq{ „ .

Elements of Lp are equivalence classes rf s, but it is standard practice to abuse notation
and refer to them as functions f .
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Equipped with the norm }rf s}p :“ }f}p, the space Lp becomes a Banach space (a
complete normed vector space).

Important special cases include:

• LppRdq: When Ω “ Rd equipped with the Lebesgue measure.

• Lppr0, 1sq: The space of functions on the unit interval square-integrable with
respect to Lebesgue measure. This is a standard setting for functional analysis.

• ℓp: When µ is the counting measure on N, the space is the set of sequences pxnq

with
ř

|xn|p ă 8.

• L2pµq: For p “ 2, the space is a Hilbert space with inner product xf, gy “
ş

fg dµ.

B.2.3 Change of measure

Let µ be a measure on pΩ,Fq and let f : Ω Ñ r0,8s be a non-negative measurable
function. We can define a new measure ν on pΩ,Fq by setting

νpAq “

ż

A

f dµ for all A P F .

It is a standard exercise in measure theory to verify that ν indeed satisfies the properties
of a measure.

Definition B.26 (Probability Density). If the function f is non-negative and the
induced measure ν satisfies νpΩq “ 1 (i.e., ν is a probability measure), then f is called
a probability density of ν with respect to the reference measure µ.

The relationship between ν and µ constructed above implies a specific property
called absolute continuity.

Definition B.27 (Absolute Continuity). Let ν and µ be two measures on a measurable
space pΩ,Fq. We say ν is absolutely continuous with respect to µ (denoted ν ! µ) if
for all A P F ,

µpAq “ 0 ùñ νpAq “ 0.

The fundamental result connecting these concepts is the Radon-Nikodym theorem,
which states that under mild conditions, absolute continuity is sufficient to guarantee
the existence of a density.

Theorem B.28 (Radon-Nikodym Theorem). Let ν and µ be two measures on a
measurable space pΩ,Fq, and assume that µ is σ-finite. If ν ! µ, then there exists a
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non-negative measurable function f : Ω Ñ r0,8q such that for all A P F ,

νpAq “

ż

A

f dµ.

The function f is unique up to a set of µ-measure zero. We call f the Radon-Nikodym
derivative or density of ν with respect to µ, and denote it by f “ dν

dµ
.

The next theorem provides a characterization of sufficient statistics (Definition 1.9).
The theorem provides the measure-theoretic foundation for the Factorization Theorem
(Theorem 1.12) encountered in the main text. Its proof is quite involved and is omitted
here, but one can find it in Halmos and Savage 1949.

Theorem B.29 (Halmos–Savage). Let P be a family of probability measures dominated
by a σ-finite measure. A statistic T is sufficient for P if and only if for all P,Q P P,
the likelihood ratio dP {dQ admits a σpT q-measurable version.

B.3 Joint distributions

B.3.1 Product measures and independence

Given two measurable spaces pΩ1,F1q and pΩ2,F2q, the product σ-algebra, denoted
F1 bF2, is the σ-algebra on Ω1 ˆΩ2 generated by the collection of measurable rectangles
tA ˆ B : A P F1, B P F2u.

If µ1 and µ2 are σ-finite measures on pΩ1,F1q and pΩ2,F2q respectively, there exists
a unique measure µ “ µ1 b µ2 on the product space such that

µpA ˆ Bq “ µ1pAqµ2pBq for all A P F1, B P F2.

Definition B.30 (Independence). Let pΩ,F , P q be a probability space. Two events
A,B P F are independent if P pAXBq “ P pAqP pBq. Two random variables X : Ω Ñ X
and Y : Ω Ñ Y are independent if for all A P X and B P Y , the events tX P Au and
tY P Bu are independent.

In terms of joint distributions, independence means the joint distribution is the
product measure of the marginals. That is, the joint law of pX, Y q is PpX,Y q “ PX bPY .

Definition B.31 (i.i.d.). A sequence of random variables X1, X2, . . . , Xn is independent
and identically distributed (i.i.d.) if they are mutually independent and all have the
same marginal distribution.

If X1, . . . , Xn
iid
„ P , their joint distribution on the product space pX n,X bnq is the

product measure Pbn, defined inductively by Pb1 “ P and Pbpn`1q “ Pbn b P .
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B.3.2 Conditional probability and expectation

The definition of conditional probability is based on the concept of conditional expec-
tation.

Definition B.32 (Conditional Expectation). Let pΩ,F , P q be a probability space,
G Ď F a sub-σ-algebra, and X an integrable random variable (i.e., E|X| ă 8). The
conditional expectation of X given G, denoted ErX | Gs, is the equivalence class of
G-measurable random variables Z such that

ż

G

Z dP “

ż

G

X dP for all G P G.

The existence and uniqueness (up to almost sure equivalence) of Z are guaranteed
by the Radon-Nikodym theorem.

Theorem B.33 (Existence and Uniqueness of Conditional Expectation). Let pΩ,F , P q

be a probability space, G Ď F a sub-σ-algebra, and X an integrable random variable.
Then there exists a unique (up to almost sure equivalence) G-measurable random variable
Z such that

ż

G

Z dP “

ż

G

X dP for all G P G.

With this tool, we can rigorously define the probability of an event given partial
information.

Definition B.34 (Conditional Probability). The conditional probability of an event
A P F given a sub-σ-algebra G, denoted P pA | Gq, is defined as the conditional
expectation of the indicator function of A:

P pA | Gq :“ Er1A | Gs.

When conditioning on a random variable Y , we mean conditioning on the σ-algebra
generated by Y , i.e., ErX | Y s :“ ErX | σpY qs.

Conditional expectations satisfy a generalized version of Bayes’ theorem.

Theorem B.35 (Abstract Bayes Formula). Let P and Q be probability measures on
pΩ,Fq such that P ! Q, and let L “ dP {dQ be the Radon-Nikodym derivative. For
any sub-σ-algebra G Ď F and any P -integrable random variable f ,

EP rf | Gs “
EQrfL | Gs

EQrL | Gs
P -a.s.

Often, we want to view the conditional probability P p¨ | Gqpωq as a probability
measure on pΩ,Fq for each fixed ω. This is not guaranteed by the general definition
(due to null sets for each A). However, it is possible in sufficiently “nice” spaces.
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A crucial property relating measurability with respect to a random variable and
functions of that random variable is given by the Doob-Dynkin Lemma.

Lemma B.36 (Doob–Dynkin Lemma). Let pS,Sq be a standard Borel space and let
X : pΩ,Fq Ñ pS,Sq be measurable. Then a random variable Y : pΩ,Fq Ñ pR,BpRqq

is σpXq-measurable if and only if there exists a measurable function g : S Ñ R such
that Y “ gpXq.

This lemma implies that ErZ | Xs “ gpXq for some measurable function g. Specifi-
cally, if Y is σpXq-measurable, it is a function of X.

Under certain conditions, conditional probabilities can be realized as a kernel that
is a measure for each fixed ω.

Definition B.37 (Regular Conditional Probability). Let pΩ,F , P q be a probability
space and G Ď F a sub-σ-algebra. A regular conditional probability is a function
κ : Ω ˆ F Ñ r0, 1s such that:

1. For each ω P Ω, κpω, ¨q is a probability measure on pΩ,Fq.

2. For each A P F , ω ÞÑ κpω,Aq is a version of P pA | Gq.

Regular conditional probabilities are guaranteed to exist when Ω is a standard Borel
space (e.g. a Polish space (see Definition A.17 in Appendix A) equipped with its Borel
σ-algebra).

Theorem B.38 (Existence of Regular Conditional Probabilities). Let pΩ,F , P q be a
probability space where Ω is a Polish space and F “ BpΩq is its Borel σ-algebra. For
any sub-σ-algebra G Ď F , there exists a regular conditional probability given G.

A related concept is the Markov kernel, which generalizes the idea of a transition
matrix.

Definition B.39 (Markov Kernel). Let pX,X q and pY,Y q be measurable spaces.
A Markov kernel (or probability kernel) from pX,X q to pY,Y q is a function K :
X ˆ Y Ñ r0, 1s such that:

1. For each x P X, the map B ÞÑ Kpx,Bq is a probability measure on pY,Y q.

2. For each B P Y , the map x ÞÑ Kpx,Bq is X -measurable.

Markov kernels are used to model random mappings where the output distribution
depends on the input, such as in conditional distributions P pY P B | X “ xq.

Finally, we state the version of Bayes’ rule for densities, which is the most common
form used in statistical inference.
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Theorem B.40 (Bayes’ Rule for Densities). Let Θ and X be random variables taking
values in measurable spaces pΩΘ,FΘq and pΩX ,FX q, respectively. Suppose the joint
distribution of pΘ,X q is dominated by a product measure ν b µ, with joint density
ppθ, xq. Then the conditional distribution of Θ given X “ x has density (with respect
to ν):

ppθ | xq “
ppθ, xq

ş

ΩΘ
ppϑ, xq dνpϑq

,

provided the denominator is positive and finite. In the common case where ppθ, xq “

ppx | θqπpθq (likelihood ˆ prior), this becomes the familiar form:

ppθ | xq “
ppx | θqπpθq

ş

ppx | ϑqπpϑq dνpϑq
.

B.4 Concentration of measure

Lemma B.41 (Jensen’s Inequality). Let pΩ,F , P q be a probability space, let X P L1pP q

be real-valued, and let φ : R Ñ R be convex such that E|φpXq| ă 8. Then

φpErXsq ď ErφpXqs.

If φ is strictly convex, then equality holds if and only if X is constant P -a.s. Moreover,
for any sub-σ-algebra G Ď F ,

φpErX | Gsq ď ErφpXq | Gs P -a.s.

Lemma B.42 (Markov’s inequality). If X ě 0, then for any a ą 0,

PpX ě aq ď
ErXs

a
.

Proof. Note that a ¨1X ě a ď X. Taking expectations gives a ¨PpX ě aq ď ErXs.

The following concentration inequalities are immediate consequences.

Lemma B.43 (Chebyshev’s inequality). If VarpXq ă 8, then for any k ą 0,

Pp|X ´ ErXs| ě kq ď
VarpXq

k2 .

Proof. Apply Markov’s inequality to pX ´ ErXsq2 with threshold k2.

Lemma B.44 (Chernoff’s bound). For any random variable X and any a P R,

PpX ě aq ď inf
tą0

e´taEretX
s.
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Proof. For any t ą 0, the event tX ě au implies tetX ě etau. Apply Markov’s inequality
to etX and take the infimum over t ą 0.

B.5 Transforms

Definition B.45 (Laplace Transform). Let µ be a finite measure on pRk,BpRkqq. The
Laplace transform of µ is the function ψ : Rk Ñ R defined by

ψptq “

ż

Rk

ext,xy dµpxq,

provided the integral exists.

The Laplace transform is a powerful tool for characterizing measures. A key property
is its uniqueness:

Theorem B.46 (Uniqueness of Laplace Transform). Let µ and ν be two finite measures
on Rk. If their Laplace transforms agree on an open set containing the origin, then
µ “ ν.

Proof Sketch. We sketch the argument for k “ 1 and compact support. Suppose µ and
ν are supported on a compact interval ra, bs. The Laplace transform condition implies

ż b

a

etx dµpxq “

ż b

a

etx dνpxq

for all t in a neighborhood of 0. By analyticity, this equality extends to all t P R. By
linearity,

ż b

a

P pex
q dµpxq “

ż b

a

P pex
q dνpxq

for any polynomial P . The algebra of functions of the form x ÞÑ P pexq separates points
on ra, bs and vanishes at no point. By the Stone-Weierstrass theorem, such functions
are dense in the space of continuous functions Cpra, bsq with respect to the uniform
norm.

Thus, for any continuous function f ,
ş

f dµ “
ş

f dν. Since measures on Borel
σ-algebras are determined by their integrals against continuous functions (Riesz Rep-
resentation Theorem), we conclude µ “ ν. The extension to non-compact support
requires more careful analysis involving truncation or compactification, but the core
idea remains the density of exponential families in function spaces.

This uniqueness property extends to signed measures. If µ is a signed measure with
ş

ext,xy dµpxq “ 0 for all t in an open set, then µ is the zero measure. This fact is crucial
for proving completeness of exponential families.
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Another important transform is the characteristic function, which similarly provides
a powerful tool for characterizing measures.

Definition B.47 (Characteristic Function). Let µ be a finite measure on pRk,BpRkqq.
The characteristic function of µ is the function ϕ : Rk Ñ C defined by

ϕptq “

ż

Rk

eixt,xy dµpxq,

where i “
?

´1.

Unlike the Laplace transform, the characteristic function is always defined for any
finite measure (since |eixt,xy| “ 1 is bounded). It also uniquely determines the measure.

Theorem B.48 (Uniqueness of Characteristic Functions). Let µ and ν be two finite
measures on Rk. If their characteristic functions agree, i.e., ϕµptq “ ϕνptq for all t P Rk,
then µ “ ν.

This theorem is a direct consequence of the Fourier Inversion Theorem. Since the
characteristic function is essentially the Fourier transform of the measure, and the
Fourier transform is injective, the measure is uniquely determined.
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