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Foreword

These lecture notes accompany the course STA 732 - Statistical Theory at Duke
University. They provide an exposition of a mathematical theory of statistics. Sections
and exercises with # are more advanced and optional course material. This is a work
In progress.

The text assumes students have a background in real analysis, measure theory, and
linear algebra. Appendices A, B, and C provide condensed refreshers on the most
important concepts. Some of the proofs (marked #) rely on techniques from functional
analysis. To keep the notes self-contained, Appendix C introduces these techniques.
For those familiar with the subject, it may be interesting to see how these tools are
applied; for those who are not, it provides a helicopter overview but is not required for

the course.
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o E.L. Lehmann and G. Casella, Theory of Point Estimation (1998).
o G. Casella and R.L. Berger, Statistical Inference (2002).

o J.H. van Zanten, Statistics for High- and Infinite-Dimensional Models (unpub-
lished).

Part two of the notes draws significantly from A.W. van der Vaart, Asymptotic Statistics
(1998). Harry van Zanten’s lecture notes have been a stylistic model, which, for me
personally, set a standard for how to write a brief but rigorous exposition that I have

tried to emulate.



Notation

« N ={1,2,...} denotes the set of natural numbers, and Ny = {0, 1,2,...}.

o For a set A, its power set is denoted as 24 = {S : S < A}, the set of all subsets
of A.

o The indicator function of a set A is denoted as 14 or = +— 1{x € A}, which takes

value 1 if z € A and 0 otherwise.

« Given measurable spaces (X, Z") and (), %), a measurable map f: X — ) is
to be understood as being measurable with respect to the o-algebras 2" and #%'.
If f is measurable and real valued, but no sigma-algebra is specified, the Borel

o-algebra B(R) is what is meant.

o For probability measures, we will sometimes forego the set notation whenever
no ambiguity arises: both P(X € A) and P(x : X(z) € A) are shorthand for
P({x: X(z) € A}).

e We use X ~ P to denote that the random variable X has distribution P.
o The n-fold product measure of a probability measure P is denoted by P®".

o We use the notation a,, < b,, to indicate that a,, < Cb,, for some constant C > 0

independent of n. We write a,, = b, if both a, < b, and b, < a,.
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Part 1

Statistical Decision Theory



1 Models, Statistics and Decisions

Inference is the process of drawing conclusions from evidence. In deductive inference,
the conclusions follow with certainty by reasoning from the premises. In inductive
inference, the conclusions are uncertain; they are at best probable.

Statistical inference is inductive inference in which the evidence consists of data
generated by some unknown data-generating process involving randomness. This
randomness can arise from several sources: we may be randomly sampling a subset
from a larger population, our measurements may contain error, or the phenomenon
itself may be governed by inherently stochastic mechanisms.

To describe the data-generating process, we need to describe the randomness
that underlies it. Probability theory provides a mathematical language for describing
randomness. It allows us to formally reason about the question: given a data-generating
process, what is the distribution of the observable data? In statistics, however, we wish
to formally reason about probable cause based on observed effects. This concerns ‘the
inverse’ of the previous question: what does the observed data tell us about certain
unknown features of the data-generating process?

We pursue statistical inference about unknown features of a data-generating process
because they govern the real-world consequences of our actions. Whether a treatment
saves lives, whether an investment succeeds, or a policy achieves its intended effect — all
depend on the true nature of that process. Statistical decision theory is a mathematical
framework for reasoning about optimal actions when consequences depend on an

uncertain process we can only observe indirectly.

1.1 Statistical Models

The central object of statistical decision theory is a statistical model, which is a
collection of probability distributions. Each of these probability distributions is a

possible description of the data-generating process.

Definition 1.1. A statistical model is a collection of probability measures P defined

on a measurable space (X, Z):
forall Pe P, P: 2 — [0,1] is a measure that satisfies P(X) = 1.

The objects accompanying the statistical model typically carry the special names

and interpretations in statistical literature.
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o The space (X, Z") is the sample space. Tt represents the set of all possible data.

o The accompanying sigma-algebra 2~ are the events. The collections of outcomes

to which the model can assign probabilities.

e The collection P specifies the possible ‘theories’ that could have generated the
data.

o The triple (X, 2, P) can be referred to as the statistical experiment (or simply

the experiment), we revisit this terminology in Definition 1.6 below.

o The outcome of the experiment is represented by an element x € X'. Equivalently
(and more informatively), it is the list of all A € 2" for which = € A. In other
words, the outcome tells us exactly which events have occurred and which have

not.

Measure theory provides a rigorous framework ensuring the intuitive properties
we expect from probabilities hold without exception. Some of these properties follow
almost immediately from the definition of a probability measure and a sigma-algebra
(see Definitions B.1 and B.2):

o If the event A implies the event B (i.e. A € B), then P(A) < P(B) for every
PeP.

o If we can assign probability to the event A, we can assign it to its complement
A° and we have P(A°) =1 — P(A).

Less intuitive! but highly desirable mathematically, is the ability to assign probabilities
to countable unions of events. Without it, paradoxes and inconsistencies can arise in
uncountable sample spaces.

Besides its desirable properties in terms of formalizing probabilities, the sigma-
algebra formalizes the information that can be extracted from the data. This allows us
to compare models with the same underlying sample space but where different events

are observable.

Example 1.2. Consider an experiment of rolling two six-sided dice and observing the
eyes on top each die. Formally, we could model this as (X, 2", P) where the sample
space is given by

X ={1,2,3,4,5,6} x {1,2,3,4,5,6},

and its powerset 2~ = 2% are the observable events, and P should consist of a subset
of the probability measures on (X', 2Z"). The sum of the eyes on each die is observable:
S: X — R given by S(x,y) = x +y for (z,y) € X, and so is whether the first die is
larger than the second die: L(x,y) = Lizsy.

land in the eyes of some, controversial Regazzini 2013.
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Consider another statistical model which models the case where we only observe

the sum of the eyes on each die:
(X,0(5),9Q),

where o(9) is the sigma-algebra generated by S (see Definition B.9) and the collection
Q consists of the probability measures P € P restricted to o(S). The sample space is
the same as in the first experiment, but the sigma-algebra is strictly smaller.

In the first experiment, we can determine the value of the first die, the second die,
whether they are equal, whether the first is larger, etc. In the second experiment, the
observables are a subset of the observables in the first experiment. That is, certain
events that we could assign probabilities to in the first experiment, we cannot assign
probabilities to in the second experiment, such as the event that the first die is larger
than the second die. O

The two experiments in Example 1.2 model different observational scenarios of the
same underlying random phenomenon. The first experiment provides more information:
knowing the individual outcomes of each die, we can reconstruct their sum. Conversely,
knowing only the sum, we cannot recover the individual outcomes. Whether the first
experiment is more suitable of the inference problem at hand depends on the question
we are interested in. For certain inferential goals, knowing the sum of the individual
dice is all we need. We will formalize this idea in Section 1.2, where we will discuss the
concept of sufficient statistics. For now, let us note that the sigma-algebra captures
precisely which features of the outcome are observable, making it possible to formalize
such comparisons. The definition of the sample space allows for a lot of freedom: it
need not match the minimal description of the data; in principle, it could be the whole
universe, provided the sigma-algebra correctly captures the information available in
the experiment.

To close this section, we will discuss the idea of a parameter space. It is common
that we are only interested in particular characteristics of the data-generating process,
such as its mean, certain quantiles, and so on. These are typically functionals on P:
they map each P to some value, for example its mean Sde(:U). We will call these
characteristics parameters. Consider a set © of possible values of those parameters for

our statistical model. We call this set the parameter space.

Definition 1.3. A parameter space for the model P is a set © together with a map
P — §(P) from P onto ©.

Example 1.4. Let (X, 2) = (R, B(R)), where B(R) is the Borel o-algebra on R (see
Definition B.10). Consider the collection of probability measures P = {N(6,1) : 6 € R},

v2025.0.3 — This is a draft — use at your own risk
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where N (0,0?%) denotes the normal distribution with mean 6 and variance o:

1 (z—0)2
N9,2Azzf T 202 du.
(0.°)(A) i= | e

Further, consider the collection
Q = {all probability measures on (R, B(R)) with finite mean}.

Both (X, 2", P) and (X, 2", Q) are valid statistical models. The set © = R is a valid
parameter space for P and Q under the map Q — {2dQ(z). The set © = [-1,1] is

not a valid parameter space for either P or Q under the same map (why?). O

There is an important distinction between the models P and Q in Example 1.4.
In the first model, the mean uniquely identifies its distribution: there is a one-to-one
correspondence between the parameter space and the collection of probability measures.
In the second model, the mean does not uniquely identify its distribution: many
different probability measures have the same mean. The same parameter (here the

mean) can identify the entire distribution in one model but fail to do so in another.

Definition 1.5. A statistical model P is identifiable by a parameter space O if for all
P, P’ € P, it holds that if (P) = 6(P’), then P = P'.

The identifiability condition §(P) = §(P') = P = P’ means that the parameter
space © forms a ‘coordinate system’ for the collection of probability measures P. Since
the map P — 60(P) is surjective, it means that every probability measure in P is
uniquely determined by its parameter value in ©.

Every statistical model P admits a trivial identifiable parameterization: simply
take © = P and 0(P) = P. Whilst always possible, this parametrization is not always
the most useful. Typically, the introduced parameter space brings along useful extra
structure on the model that the bare set P does not ‘directly’ possess. In the vast
majority of examples in this course we choose © to be a open, convex subset of R?.
This endows the model with the rich Euclidean structure: vector-space operations, a
natural notion of a distance metric, an inner product, differentiability, and so on.

When a model is identifiable, we may (and usually do) identify the parameter
value 6 with the distribution P itself, so that “knowing #” is equivalent to “knowing
which distribution generated the data”. That is, we can index the distributions by the
parameter value:

P ={P:0€0}

where the subscript € uniquely labels the distribution Fj.

v2025.0.3 — This is a draft — use at your own risk
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This type of parametrization is what we will mostly be concerned with in this

course, leading us to the definition of a statistical experiment.

Definition 1.6. A statistical experiment is a tuple (X, 2", P,©) where the parameter
space © indexes the collection of probability measures P = {Fp : § € O} on the sample
space (X, Z).

There is often an intricate interplay between the parametrization of the model and
the formulation of the sample space, leading to multiple ways to write down what is
effectively the same model. Sufficiency is one concept that allows us to formalize this

idea, which we will discuss next.

Remark 1.7 (But wait... isn’t my data supposed to be a random variable?). In the
current framework, there is no random variable explicitly representing ‘the data’ in the
experiment. This may appear to differ from the typical introductory setting; where a
statistical setting is defined by a random variable with a given distribution depending
on some parameter: “let X ~ N(6,1) for 6 € [—1,1]”. Alternatively, one may be used
to the following formal setting from probability courses, in which one considers an
(implicit) probability space (€2, F,P) and defines a random variable (or rather a random
element) X : Q2 — X representing ‘the data before it is observed’. The law of X is then
defined as P(A) = P(w : X(w) € A) for some unknown probability measure P € P on
(X, Z).

In our framework, we work directly with (X', 2", P) without introducing any under-
lying probability space. We can always recover the setup in which ‘the data is a random
variable’ (and it is often linguistically and pedagogically useful to do so). Simply take
the target space (X, Z") of the random variable that is supposed to represent the data
and consider the identity map X : X — X, X(x) = z for all x € X'. Tt is easy to see
that this map is measurable with respect to 2 . Further, the collection P describes
the possible laws of this ‘random element’: P(A) = P(z: X(z) € A) for all Ae 2 in
PeP.

With this understanding in place, we will frequently use the familiar language of
random variables—for instance, “let X ~ N (0, 1) for § € [—1, 1]” should be understood
as shorthand for the statistical model (R, B(R),{N(6,1) : 6 € [—1,1]}). In this context,
there can be little to no ambiguity which sigma-algebra we are referring to (recall
the definition of the normal distribution in Example 1.4). Similarly — recalling that
independent random variables are distributed according to the product measure (see
Definition B.30 in Appendix B) — X3,..., X}, S N(0,1) with 6 € © is to be understood
as shorthand for the statistical model (R", B(R"), {N(6,1)®" : 6 € ©}).

v2025.0.3 — This is a draft — use at your own risk



1.2. Statistics, Sufficiency and Likelihoods 7

1.2 Statistics, Sufficiency and Likelihoods

In Example 1.2, we noted that knowing the sum of two dice provides less information
than knowing each die individually: from the sum alone, we cannot recover the
individual outcomes. Yet for certain inferential goals, the sum may contain all the
information we need. This section makes precise the notion of a statistic that captures
“all the information about the parameter.” This will allow us to compare different
formulations of models and judge when they are effectively the same for all intents and

purposes. We start by defining what a statistic is.

Definition 1.8. A statistic is a measurable map 7' from the sample space (X, Z") to

some measurable space (T, 7).

Given a statistical model P = {Fp : 0 € O} defined on a measurable space (X, .Z"),
a statistic is a measurable map 7' : X — T into another measurable space (7, .7). The
statistic T induces a new statistical model on (7,.7), which we denote PT = {P} :

0 € ©}, where each P} is the push-forward measure of Py under T
P} (B) = Py(T"(B)) forall Be 7.

The map T : X — T sends each possible outcome of an experiment to a ‘summary’ of
the data. Ideally, the summary 7'(X) is more ‘compressed’ than the original data X,
while retaining all relevant information about the parameter 6.

This brings us to the idea of sufficiency. The key idea is that a statistic 7'(X) is
sufficient if, once we know T'(X), the remaining randomness in X tells us nothing
further about which P, generated the data. Formally, the conditional distribution of
X given T'(X) should not depend on 6.

Definition 1.9 (Sufficiency). Consider an identifiable model P = {P, : € ©} on a
sample space (X, Z"). A statistic T : X — T is sufficient for P if for every A e 2,
the conditional probability Py(A | T') admits a version that does not depend on 6.

Recall that the conditional probability Py(A | T') is formally defined as a conditional
expectation Ey[14 | T'] (see Definition B.32 in Appendix B). This expectation is a
random variable, measurable with respect to the o-algebra generated by T, satisfying

the condition

JB]E(,[]lA | T\(2) dPy(z) = Py(x: z € A, z € B)

for all B € o(T).
Because conditional expectations are only unique up to Py-null sets, saying that

“Py(A | T') admits a version that does not depend on 6” means: for each A € 2 there
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exists a measurable function hy : X — [0, 1], independent of , such that
Eo[14 | T)(z) = ha(xz) PFp-as. for all 6 € ©.

For ‘nice’ g-algebras (for example, the Borel o-algebra), we can go a step further and
find a measurable function hy : 7 — [0, 1], independent of 6, such that for all C' € .7,

JhA(t)dPgT(t) = PB(AnTNC)) = Pp(z:ze A T(z)eC), Voeo.
C

That is, Eg[14 | T] can be represented as a function of 7' (a so called ‘regular’
conditional probability), not depending on 0: Ey[l4 | T|(x) = ha(T(z)). Regardless of
the representation, the key point is that h4 does not depend on 60: after conditioning
on the ‘information of T’ (the o(T)-algebra), whatever we know about the event A does
not depend on 0 (up to sets of zero measure).

Sufficiency is a property of how the parameter enters the distribution of the data.
The same statistic may be sufficient for one model but not another, and crucially
depends on how the model is parametrized (we will see an illustration of this in
Example 1.13).

Before studying interesting cases, we note that sufficiency is trivially achieved when
no information is discarded. A statistic that is appropriately invertible is sufficient: by

inverting the map, we can recover the data from the statistic.

Proposition 1.10. Consider a statistic T : X — T that is bijective, and assume its

inverse is also measurable. Then, T is sufficient.

Proof. Consider the o-algebra generated by T', o(T'). This is the smallest o-algebra
containing all the preimages T~!(B) of the sets in B € 7, so

o(T)c Z.

As the inverse of T  is measurable, T(A) € 7 for all A € 2". Hence, for any event
A e 2, measurability of T and its inverse implies that A = T~(T(A)) € o(T), so 14
is o(T')-measurable. Conclude that o(7) = 2.

Hence, we have that for all A e 27,

Py(A|T)=Ey[la|T] =14,

where the second equality holds because conditioning a o(7")-measurable random

variable on T returns itself. Since 14 does not depend on @, T is sufficient. n

The interesting cases of sufficiency are when the statistic is not invertible: A non-
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invertible statistics compresses the data in a strict sense, without losing information
about the parameter.

If models have densities with respect to a common measure, we have a very useful
characterization of sufficiency that allows us to check sufficiency by looking at the form
of their probability density functions. We need these densities to be well-defined with

respect to a common measure.

Definition 1.11. A statistical model P on a measurable space (X, 2") is dominated
by a o-finite measure p on (X, 2") if every P € P is absolutely continuous with respect
to p (denoted P « p). That is, for every A e 27, if u(A) = 0, then P(A) = 0 for all
PeP.

If a model is dominated by u, the Radon—Nikodym theorem (see Theorem B.28 in
Appendix B) guarantees the existence of a non-negative measurable function p = dP/dy,
called the Radon—Nikodym derivative of P with respect to u, such that for all Ae 27,

P(A) = Lp(sm dyu(z).

When the model is parameterized as P = { Py : § € ©}, we denote the density of Py by
p(- | 8) or py(-). The choice of dominating measure is not unique; if © dominates P,
then any measure equivalent to p also dominates P.

For a fixed parameter value 0, the map x — p(z | 0) is the probability density
function (with respect to ). If we instead fix the observation x, the map 6 — p(x | 0)
is called the likelihood function. Note that since the density is defined only up to a
set of p-measure zero, the likelihood function is also only defined up to a p-null set
of x’s. For a fixed x, different versions of the density may yield different likelihood
functions, but they will agree for py-almost all z. In practice, we usually work with
a specific, canonical version of the density (e.g., one that is continuous in z), which
makes the likelihood unique.

The following theorem says that a statistic is sufficient if and only if the likelihood

function can be factorized into a function of the statistic and a function of the data.

Theorem 1.12 (Fisher-Neyman Factorization). Let P = {Py : 0 € O} be dominated
by a o-finite measure u, with densities p(x | 0) = dPy/du. A statistic T is sufficient
for P if and only if

p(z | 0) = g(T(x),0) h(x) p-a.e., forallfe®©

for some non-negative measurable functions g : T — [0,00) and h : X — [0, 0).
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(8 ) Proof. (<) If p(x | 0) = g(T(x),0) - h(x) for all € O, then on the support of any

Py (i.e. where h > 0),
dPG o g(T7 9)
Py ~ g(T,0)

is o(T)-measurable. Hence, by Bayes formula (Theorem B.35 in Appendix B),

[ﬂAdPgl‘ ]
Ep|gpe | T]

Py(A|T) = Ey[14| T) = — Ep[14 | T).

Since this is true all ¢’ € O, we find that Py(A | T') admits a version that does is
constant in #. Hence, T is sufficient.

(=) Fix any 6y € ©. By the Halmos—Savage theorem, T being sufficient implies
that dPy/dPy, is o(T)-measurable. Setting g(7'(z),0) := dPp/dPy,(x) and h := dPy,/du

gives the factorization:

ar)
dp

(©) = e ) = oT(0).0)- D), e

]

The factorization says: the likelihood splits into a part g that depends on 6 but
only through 7'(z), and a part h that depends on z directly but not on 6. All the
f-dependence is mediated by T

Equipped with the Fisher—Neyman factorization theorem, we can revisit the example

of two dice from Example 1.2.

Example 1.13. Consider again rolling two dice as in Example 1.2. We will discover
that whether the sum S(z,y) = = + y is sufficient depends critically on the assumed
model.

Model 1 (Nonparametric): Suppose both dice are i.i.d. with unknown probability
density? p on {1,...,6}, so the model is

P ={P,: P,({(z,y)}) = p(x)p(y), p a probability density on {1,...,6}}.

The sum is not sufficient for the above model (no matter which parameterization is

used). Consider the conditional probability of (1,6) given S = 7:

Pp<(1,6) 1S = 7) _ p(1)p(6) .

S D(R)D(T — k)

This depends on p. If p is uniform, this equals 1/6. If the die is loaded toward extreme

2A Radon-Nikodym derivative with respect to the counting measure.
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faces, it is larger. Knowing the sum is 7 does not pin down the conditional distribution
of the outcome; the particular realization (1,6) versus (3,4) carries information about
p.

Model 2 (A scalar family): Suppose each die follows a tilted distribution

e@x

- 22:1 eok’

Here 6 = 0 gives fair dice, # > 0 biases toward higher faces, and # < 0 biases toward

po(T) re{l,...,6}, OeR. (1.1)

lower faces. The joint density is

( ) e@(x-i—y) e9(9[;-&-1/)
bol\l,Y) = 6 5 = 6 5" 1 )
(X1 €%) (X1 ™) h(z,y)
—_—
g(z+y,0)

which factors through the sum. By the Fisher-Neyman factorization theorem, S is
sufficient for 6.

The contrast is instructive. Model 2 is indexed by a scalar parameter. Model 1 is
nonparametric—a vastly larger model in which no reduction beyond the full data (the
pair of eyes) is possible. Both models are identifiable (see Exercise 1.5), yet the sum is

only sufficient in Model 2. Sufficiency is determined by the choice of the model. ¢

The example illustrates that sufficiency depends on the model P: the same statistic
can be sufficient for one family of distributions and insufficient for another.

Sometimes, two models may have sample spaces that look different, but they can
be mapped to the same common sample space via sufficient statistics. This is called

observational equivalence.

Definition 1.14. Two statistical models (X, 2", {P : 0 € ©}) and (¥, %, {Qy : 0 € O})
with a common parameter space © are observationally equivalent if there exist sufficient
statistics T : X — T and S : Y — T such that P = Qj for all § € ©.

Models being observationally equivalent means we can transform them to a common
sample space, without losing information about the parameter. In particular, when

one model can be mapped to the other, they are observationally equivalent.

Example 1.15. Let P = {N(y,0*)®" : p € R} on R" and Q = {N(p,0%/n) : u € R}
on (R, B(R)) for a fixed 6% > 0. Then X = n~!>" | X; is sufficient for P, the identity
is sufficient for Q, and both have distribution N(u,c?/n). Thus, the two models are

observationally equivalent. O

Intuitively, if two experiments are observationally equivalent, we should be able

to simulate the outcome of one experiment using the outcome of the other (possibly
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with some independent randomization), without knowing the true parameter value.
However, under the notion of observational equivalence introduced in Definition 1.14,
this is not always possible: it does not allow for randomization. Later, in Chapter
5, we will introduce a slightly more general notion of equivalence called simulation
equivalence (sometimes called Blackwell sufficiency). This notion is more general than
observational equivalence: it says that the two models are simulation equivalent if given
the data of one model, we can simulate data as if it were generated by the other model.
For most models (those defined on ‘nice’ sigma-algebras), observational equivalence
implies simulation equivalence. For now, we will just illustrate this idea using the

following example.

Example 1.16 (Simulation Equivalence of Normal Models). Let P = {N(u,c?)®" :
pe R} on R" and Q@ = {N(u,0%/n) : p € R} on R. These models are simulation

equivalent:

e From P to Q: Given (Xy,...,X,) ~ P, output X =n~1>7" X,
o From Q to P: Given Y ~ @, generate 71, ..., 2, ¢ N(0,0?) and output

X, =Y+ 2% 2.

It can be shown that P,(X € A) = Q,(A) for all A € B(R) and p € R, and similarly,
for Y ~Qu Y + 7 — Z can be shown to be distributed as i = 1,...,n iid. N(u,o?)

random variables (see Exercise 1.6). O

A sufficient statistic always exists: the identity map X (z) = x itself is trivially
sufficient by Proposition 1.10. We typically seek a sufficient statistic that achieves

maximal reduction of the data. This brings us to the notion of minimal sufficiency.

Definition 1.17. A sufficient statistic T' is minimal sufficient for an experiment
(X, Z°,{Py : 0 € ©}) if for any other sufficient statistic S, it satisfies o(T") < o(5)

modulo Py-null sets:
o(T) < o(o(S) uN), N ={NeZ :P(N)=0V0e 0O}

Minimal sufficient statistics partition the sample space into the coarsest equivalence
classes that preserve all information about . Any other sufficient statistic S generates
a larger g-algebra than T, except for sets which have probability zero under all F.

Another way to think about minimal sufficiency is that a sufficient statistic T is
minimal sufficient if it is a function of every other sufficient statistic. We can formalize
this idea if T takes values in a measure space with a nice o-algebra, like the Borel

o-algebra. For such nice g-algebras, Definition 1.17 is equivalent to the following: for
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any sufficient statistic S, there exists a measurable function f such that T' = f(95)
almost surely under all Py, § € © (Doob-Dynkin, Lemma B.36 in Appendix B).
Just as with sufficiency, minimal sufficiency can be difficult to verify. Luckily, we

have the following useful tool to check minimal sufficiency.

Proposition 1.18. Let (X, 2 ,{Py : 0 € ©}) be a dominated model. A statistic
T is minimal sufficient if and only if T(x) = T(2') whenever the likelihood ratio
p(z | 0)/p(x’ | 0) is constant in 0 (except for a p-null set).

& Proof. (=) Define an equivalence relation ~ on X by = ~ 2z’ if and only if
p(z | 0)/p(x’ | 0) is constant in 0, and let S(z) denote the equivalence class of z. We
claim S is sufficient (it is measurable with respect to the quotient o-algebra 27/ ~,
see Definition B.16 in Appendix B). For each equivalence class s, fix a representative
xs. For any x with S(z) = s, we have p(z | 0)/p(zs | ) = h(z) for some function A not
depending on #. Thus,

p(x [ 0) = p(xs [ O)h(x) = g(S(x), 0)h(z).

By the factorization theorem, S is sufficient. Since T is minimal sufficient, T is a
function of S, so S(x) = S(2') implies T'(z) = T(2'). The equality S(z) = S(2') is
precisely the condition that the likelihood ratio is constant in 6.

(«<=) Suppose T'(x) = T'(z') whenever the likelihood ratio is constant in 6. Let S
be any sufficient statistic. By the factorization theorem, p(z | 6) = §(S(z), 0)h(x). If
S(x) = S(z’), then

Pl 6) )
p(a' [0)  h(z)
which is constant in §. We have found that S(z) = S(z’) implies that T'(z) = T'(z').

This aforementioned fact is sufficient to construct a function f : S(X) — T such
that foS = T. For each s € S(X), choose any z, € S™!({s}) and define f(s) := T(zs).
This is well-defined: if 2’ € S7'({s}) is another choice, then S(z') = s = S(z,), so
by assumption T'(2') = T(x,). For any x € X, we have z € S™'({S(z)}), hence
f(S(x)) = T(x). Moreover, f is measurable: we have S7'(f~1(A)) =T '(A) e Z .

Thus, T is a measurable function of S. Since S was arbitrary, T is minimal
sufficient. O

To illustrate minimal sufficiency, we consider the following examples.

Example 1.19 (Minimal Sufficiency for Uniform). Let Uniform(0,#) be the uniform
distribution on the interval [0, 0] with 6 > 0, that is, probability measure on (R, B(R))
defined through the Lebesgue density p(z | 0) = $1{0 < z < 6}.
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1.2. Statistics, Sufficiency and Likelihoods 14

Consider the statistical model corresponding to X1, ..., X, < Uniform(0, §) with
6 > 0. The likelihood is .
p(x | 0) = oo How < 0},

where x(y) is the n-th order statistic. By Theorem 1.12, the n-th order statistic X, is
sufﬁ(nent. The likelihood ratio is

px]0)  Haw <
p(y[0)  yw <

This is constant in ¢ if and only if z(,) = y(n) (check this!). Thus, X,y is minimal
sufficient. O

Example 1.20 (Minimal Sufficiency via Likelihood Ratios). Let X1, ..., X, ¢ N(u, 02).

Case 1: 0% known. The likelihood ratio is

Pelm) _ o (—2}‘2 (ZI?—Zy?—2un(x—y)>> :

p(y | 1)

This is constant in p if and only if Z = y. Thus X is minimal sufficient.

Case 2: Both p and o* unknown. The likelihood ratio is

plz | p,0?) .
L —exp | —=— ; y; —n:r;—y :
| 1e.07) 2t 2 )
This is constant in (y,0?) if and only if z = g and Y, 22 = > y2. Thus (X, X?) is

minimal sufficient. O

Next, we introduce an additional type of sufficiency called completeness. A property

that rules out redundancy in a statistic completely.

Definition 1.21. A statistic T"is complete for P if for every o(T")-measurable integrable

random variable U,
Ep[U]=0forall PeP = U =0 P-as. forall PeP.

The definition of completeness is of a technical nature: if T' is complete, there is
no non-trivial function of 7" whose expectation is constant across all P € P. Given an
identified model {P : 6 € ©}, the idea is this: T contains no component that varies
with the data but carries zero information about 6 on average.

Completeness and sufficiency are logically independent properties: neither implies

the other. Completeness is not in and of itself useful; the trivial statistic T : x — ¢ for
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1.2. Statistics, Sufficiency and Likelihoods 15

a constant ¢ is complete for any model (check). However, when combined, they yield a

powerful result: a complete sufficient statistic is automatically minimal sufficient.

Theorem 1.22 (Bahadur). If T is complete and sufficient for P = {Py : 6 € O}, then

T is minimal sufficient.

Proof. Let S be any sufficient statistic. Fix B € o(T'). By sufficiency of S, there exists
Hgp : X — R such that

Hp :=Ey[lg | o(S)] PFpas. forall e .

Fix such a version Hp, so Hp is 0(.S)-measurable and note that 0 < Hp < 1.
The random variable
U := EQ[HB ‘ O'(T)] — ]lB

is o(T)-measurable (for each #), integrable, and satisfies Ey[U] = 0 for all §. By
completeness of T' (Definition 1.21), we conclude that U = 0 Py-a.s. for all 0, i.e.

Ey[Hp | o(T)] =15 Py-a.s. for all 6.

Since 0 < Hp < 1, this identity forces Hg = 1p Fp-a.s. (indeed, on B we have
Eo[l — H | o(T)] = 0, and on B® we have Ey|H | o(T)] = 0). Since Hp is o(5)-
measurable, Hg = 1 Py-a.s. implies that 15 is (S5)-measurable modulo Pp-null sets.
As B € o(T) was arbitrary, o(T) < o(S) modulo Pp-null sets for every 6. O

The previous theorem shows that the notion of completeness is stronger than
minimal sufficiency: every complete sufficient statistic is minimal sufficient. The
converse is not true: the following example shows that minimal sufficiency does not

imply completeness.

Example 1.23. Let Xy,..., X, ~ Uniform(#, 0+ 1) for € R. The likelihood function

1S

L(9) = 1_[ Lio<ai<o+1} = Lia(,)—1<0<e0y)-
i=1

The likelihood is non-zero if and only if the interval [2(,) — 1, 2(1)] is non-empty and
contains ¢. The pair T' = (X(1), X(»)) determines the likelihood function (as a function
of §) and is therefore minimal sufficient.

However, T' is not complete.

Consider the statistic R = X,y — X(1). The expectation of R is

n 1 n—1
— (0 —
n+l> ( +n—i—1) n+1

EQ[R] = Eg[X(n)] — E@[X(l)] = ((9 + (Check).
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1.2. Statistics, Sufficiency and Likelihoods 16

Pick arbitrary 6y € R. Since R is not a constant, g(7') = R — Ey,[R] is a non-zero

function of T. However, R has zero expectation for all §. Thus, T is not complete. ¢

Next, we introduce the concept of ancillarity. This is a property of a statistic that

is independent of the parameter.

Definition 1.24. Consider statistic V mapping (X, 2") to (V,¥). V is ancillary for
P ={Fy:0e0}if Py(x:V(x)e A) does not depend on 0 for all A€ ¥. That is, if
the distribution of V(X) does not depend on 6.

While a sufficient statistic carries all the information about #, an ancillary statistic

carries none—its distribution is the same regardless of which P generated the data.

Example 1.25 (Ancillary in Scale Families). Let Xi,..., X, = Uniform(0,6) for

unknown ¢ > 0. The maximum X, is sufficient for § (Example 1.19). The ratios

< Xl Xn—l)

X' X

are ancillary: their joint distribution does not depend on . To see this, write X; = QU;
where U; % Uniform(0,1). Then X;/X(,) = U;/U,, which involves only the U;. O

A sufficient statistic captures all information about €; an ancillary statistic carries
none. One might hope these two types of statistics are “orthogonal” in some sense —-
the sufficient part and the ancillary part of the data do not interact. This is not true
in general: a minimal sufficient statistic can be dependent on an ancillary statistic.
However, when the sufficient statistic is also complete, this independence is guaranteed.

This is the content of Basu’s theorem.

Theorem 1.26 (Basu). Consider a statistical model (X, 2 ,P) with P = {Py : 0 € O}.
Let T be complete and sufficient for P, and let V' be ancillary for P. Then T and V

are independent under every Py e P.

Proof. Fix B € ¥ and set A := {V € B}. By sufficiency of T, the conditional
expectation
HB = Eg[]lA ’ O’(T)]

admits a version that is the same for all  (i.e. Hp is o(T)-measurable and does not
depend on 0 up to Fy-a.s. equality). By ancillarity, cg := Py(A) is constant in §. Hence
for every 6,

Eo[Hp| = Eg[14] = cs,

so with G := Hp — cg we have Gp o(T)-measurable and Ey4|Gg] = 0 for all §. By
completeness of T (equivalently, of o(T")), Gg = 0 Py-a.s. for all 0, i.c.

Eg[]]_{VGB} | O'(T)] = PQ(V € B) Pg-a.S.
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1.2. Statistics, Sufficiency and Likelihoods 17

for all B € ¥. This is exactly the independence of V' and o(7'), hence of V and 7. [

Basu’s theorem is very useful for showing independence between statistics without

deriving their joint distribution directly.

Example 1.27. Revisiting Example 1.25, where Xi,..., X, g Uniform(0, 0), we
identified that X(,) is sufficient and the ratios V = (X1/X(,, ..., Xn1/X(@) are
ancillary.

It turns out that X(,) is complete. Hence, by Basu’s theorem, X(,) and V' are —
perhaps surprisingly — independent.

To check completeness of T := X, note that its density is fr(t) = nt"~'/0" for
0 <t < 6. Suppose Ey[g(T)] = 0 for all # > 0. Then

0
f gt)t"tdt =0 forall § > 0.
0

Differentiating with respect to 6 gives g(6)0"~! = 0, which implies g(#) = 0 for almost
all 0. Thus, X(,) is complete. O

There is a particular class of models for which it is easy to check completeness of
sufficient statistics: the class of exponential families, which we will introduce in the

next section.

Exponential Families

Many common statistical models share a structure that leads to elegant sufficiency and

completeness results.
Definition 1.28. A family of distributions P = {F : § € ©} on (X, Z") dominated by

a o-finite measure p is an exponential family if the densities can be written as

p(x | 0) = exp{n(0) ' T(x) — B(0)}h(x), (1.2)
where T : X — R¥ and h : X — [0, 00) are measurable functions, and 7 : © — R*.

The map T : X — R* is the natural sufficient statistic: by the Fisher-Neyman
factorization theorem, 7' is sufficient for € in any exponential family — the density (1.2)
factors as g(T'(z),0) - h(x). For i.i.d. observations X7, ..., X, from a distribution in an

exponential family, the sufficient statistic is the sum " | T(X;).

Proposition 1.29. If P = {P : 0 € O} is an exponential family with natural sufficient
statistic T, then the model {PS™ : 6 € ©} is also an exponential family, with natural
sufficient statistic (zy,...,x,) — Doy T(x;).
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Proof. The joint density is

ﬁp($i | 9) = eXp{n(Q)T ZT(:L‘,) — nB(Q)} ﬁ h(x,),

i=1 =1

which is of the form (1.2) with T(x1,...,2,) = Y, T(x;), B(§) = nB(0), and

h(zy, ... z0) =[], h(z;). O

The exponential family is in natural (or canonical) parameterization if © < R* and

n(0) = 0 is the identity map. The natural parameter space is

H= {77 e R*: L{ exp{n'T(z)}h(z)du(z) < oo}.

The set ‘H is convex (verify this). A naturally parameterized exponential family with
H is called full-rank if H contains an open subset of R¥. For full-rank exponential
families, there is a convenient route to minimal sufficiency: we show that 7' is complete

using the proposition below, after which minimality is implied by Theorem 1.22.

Proposition 1.30. Let P = {P, : n € H} be an exponential family in natural parame-
terization with natural sufficient statistic T. If H contains an open subset of R*, then

T is complete.

& Proof. The density of T' (note T takes values in a regular Borel space) with respect

to some base measure v is

pr(t|n) = exp(n't — B(n)).

Suppose E,[g(T)] = 0 for all n € H. Then
| st el - By av(e) =0
for all n € H. Since e~ % 0, this implies

j g(t) exp(nt) du(t) = 0

for all 7 in an open subset of H. The left side is the Laplace transform of the (signed)
measure g dv. Since Laplace transforms are analytic and this one vanishes on an open
set, it vanishes on its entire domain. By uniqueness of the Laplace transform, g dv = 0,

so g(T') = 0 v-a.s., hence Pj-a.s. for all n € H. O

What if {F, : 6 € ©} is not a family in natural parameterization? If 7 is injective,

we may re-index the family as follows. Set = := 1(©) and define a re-parameterized
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family
Q5 = PW_1(§)7 gE =.

Then, by injectivity of 1, we have
{Qe:E€E} ={Fy:0€ 06}

as sets of probability measures. Given this re-indexing, if 7(©) has nonempty interior
in R* (equivalently; contains an open set), Proposition 1.30 implies that the natural
sufficient statistic 7" is complete for this family, hence also complete under the original
parameterization. Indeed, completeness is a property of the family of distributions,
not of the parameterization: if two parameterizations define the same collection of
probability measures and T is complete for one, it is complete for the other as well.
The exponential family encompasses a wide range of models. Many of the models

we will see in this course belong to this class.

Example 1.31 (Common exponential families). Most identifiably-parameterized

commonly-used exponential families are full rank.

« Poisson model: Consider the Poisson(#) distribution for # > 0, defined by its

density with respect to the counting measure:

fre—?

x!

1
plx | 0) = =—'exp(mlog0—0), re{0,1,...}.
x!
This constitutes an exponential family with sufficient statistic 7'(x) = x and
natural parameter n = logf. Since # > 0, the natural parameter n ranges over

all of R, which is an open set, so Proposition 1.30 yields that 7" is complete.

Similarly, for a sample X1, ..., X, < Poisson(f), the sum 7' = >" | X; is a

complete sufficient statistic.

« Binomial model: The Bernoulli(p) distribution for p € (0,1) has counting

measure density
pz|p)=p"(1-p)'~", xe{0,1}.

This is an exponential family with 7'(z) = x and natural parameter n(p) =
log(p/(1—p)). Since n(p) ranges over all of R for p € (0, 1), the family is full-rank.
For the n i.i.d. draws model — Xi,..., X, ¢ Bernoulli(p) — the sum DX
is complete and sufficient. Since the map p — n(p) is a bijection between the
parameter space (0,1) and the natural parameter space R, the statistic is also

complete and sufficient for the original parameterization.

e Multinomial model: Consider a categorical distribution on k categories with
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probabilities p = (p1,...,px) satisfying p; > 0 and Z§=1 p; = 1. A single
observation is a basis vector x = e; indicating category j, equivalently represented

as x € {0, 1}* with Z?Zl x; = 1. The density with respect to counting measure is

Using the constraint p, = 1 — 25;11 pjand x, =1 — 25;11 xj

k—1 k—1 k-1
p.
logp(z | p) = Z z;logp; + (1 — 2 q:j> log pr. = Z x; logp—z + log ps.
j=1 j=1 Jj=1

This is an exponential family with sufficient statistic T'(z) = (21, ..., 75_,) € R¥!
and natural parameter 7; = log(p;/py) for j = 1,...,k— 1. Since p; > 0 for all j,
the ratios p;/py can take any positive value, so n € RA~!. The natural parameter
space is all of R¥~!, which is open, so the family is full-rank.

For X1, ..., X, " Categorical(p), the sufficient statistic is 3" | T(X;) = (N1, ..., Ne_1),

where N; = > | X;; counts observations in category j. This statistic is complete.

Gamma model: Consider the Gamma(a, b) distribution with shape parameter
a > 0 and rate parameter b > 0: its density (with respect to Lebesgue measure

on (0,00)) is

a

['(a)

p(z | a,b) = z et — exp((a —1)logz — bz + alogb — log I‘(a)).

This constitutes an exponential family with sufficient statistic 7'(z) = (logz, x)
and natural parameter 7 = (a — 1, —b). The natural parameter space is (—1, ) x

(—o0,0), which is an open subset of R.

For a sample X1, . .., X, " Gammal(a, b), the statistic T’ = > log Xy, D00 Xi)

is sufficient and complete.

Multivariate normal model: Consider the Ny(u, ) distribution for u e R?

and Y positive definite. The density with respect to Lebesgue measure on R? is

1
P | 1, %) = @m) S exp( 5 (@ — )= (@ — ).
Expanding the quadratic form gives
1
pla | . X) = (2m) 25 exp (S ) T - J2 T e

L+
STy )
AR
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This is an exponential family with sufficient statistic T'(x) = (z,z2 ") and natural

parameters 7y = X'y € R? and 7, = =337, a negative definite d x d matrix.

dxd

The natural parameter space is R x {M e Reym

RA+d(d+1)/2

: M < 0}, which is open in

For i.i.d. observations X, ..., X, the sufficient statistic is (3], X, >, Xi X,1).
Since >, X;X,| = S +nXX" where S = > (X — X)(X; — X)T, the pair

(X, S) is an equivalent (and complete) sufficient statistic.

The map (g, X) — (87 p, —3571) is a bijection between the original parameter
space R? x {M € R&:¢ - M > 0} and the natural parameter space, so (X,9) is

also complete for the original parameterization u € R? and ¥ > 0.
A non-example (a curved exponential family): An exponential family model
can fail to have a complete sufficient statistic if the parameter space has a different
dimension than the minimal sufficient statistic. For example, suppose Xi,..., X, ~

i.i.d. N(6,6%). Then the density can be expressed as

Pl x0) = c(O)h(r, ... xy) exp{— > a7 /[20°] + ) :/6}.

In this case, T'(x) = (3., >, z?) is a minimal sufficient statistic (why?), but 7(©)
equals {(—1/[267],1/0) : 6 € ©}, which is a curve in R? — it does not contain an open

set.

O

We have so far discussed sufficiency and completeness as properties of the statistical
model, allowing us to identify when different mathematical formulations of models
are the same ‘for all intents and purposes’. This development, however, has been
independent of any specific statistical task. To proceed, we must define what we aim to
achieve with the data—whether to estimate a parameter, test a hypothesis, or predict
a future value—and how to evaluate our success. In the next section, we introduce the
framework of decision theory, which allows us to formalize these goals and rigorously

compare statistical procedures.

1.3 Decision Problems

Given all the possiblities in terms of writing down models, which one is the ‘correct’
one? One might be tempted to adopt a very large model on the grounds that it is “most
likely to contain the true data-generating process”. We will see that this reasoning is
flawed. Larger models typically come with costs: more parameters to estimate, higher

variance, etc. To compare models meaningfully, we must first specify what we intend
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to do with the data: what decision or action we will take, and how we quantify the
consequences of making that decision under different possible states of nature. Only
once the decision problem (and an associated utility or loss function) has been fixed can
we meaningfully compare statistical procedures, models, or parameterizations according
to their expected performance.

Given observed data x and a statistical model P, we want to determine which
decision to take. For example, we may want to infer which probability distribution in
the collection P is ‘most likely’ to have generated the data. Perhaps we are interested
in testing whether a particular /) € P gave rise to the observed data versus it is
more likely that the data was generated by distribution P, € P\{Fy}. Perhaps we are
interested in predicting a future observed data from the data-generating process, and
we want to make sure that our prediction is ‘good’ in the sense that if given that the
true data-generating process is Fy € P, then the prediction is ‘close’ to future data
drawn from Fy. We will develop the formal framework that encapsulates these different
inferential goals in a unified way.

To formalize this, we first need to specify the ingredients of a decision problem.
Besides a statistical experiment (X', 2", P), a decision problem consists of set of possible
actions (decisions), and a way to quantify the consequences of each action under each
possible data-generating process. The set of possible actions forms the decision space D,
equipped with a o-algebra & to ensure measurability when we later define expectations

and integrals over decisions.
Definition 1.32. A decision space is a measurable space (D, 2).

A (deterministic) decision rule is a measurable function that assigns an action to

each possible data outcome.

Definition 1.33. A (deterministic) decision rule is a measurable function 6 mapping
the sample space (X, Z") into (D, 2).

Later on, we will also consider randomized decision rules, which allow for proba-
bilistic mixing of different deterministic decision rules.
To evaluate the quality of decisions, we need a loss function that measures the

penalty for choosing action d € D when the true data-generating process is Py.

Definition 1.34. A loss function is a function L : © xD — [0, c0) such that d — L(6, d)

is measurable for each 6 € ©.

The loss function L(6,d) quantifies the penalty incurred by taking decision d when
the ‘true state of nature’ is . The choice of decision space D and loss function L

depends on the inferential goal and the consequences of errors in the application at
hand.
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Two of the most common types of problems which we will study extensively with

corresponding loss functions are estimation and hypothesis testing.

Example 1.35 (Estimation). Suppose we wish to estimate an unknown parameter
0 € © < R*. A natural choice is to take the decision space D = © and to equip it with
the Borel sigma-algebra 2 = B(0).

Examples of loss functions for estimation:

 Euclidean distance; L(6,d) = |6 — d|.
« Squared Euclidean distance; L(6,d) = |0 — d|*.
o Sup-norm loss; L(0,d) = |0 — d|, = max; |6; — d;|.

o Zero-one loss; L(0,d) = Ligra}-
O
Example 1.36 (Hypothesis Testing). Suppose we wish to test between two hypotheses:
Hy:0€ Oy versus Hy : 0 € ©1, where © = Oy U ©; and Oy n ©; = . The decision

space is D = {0, 1}, where d = 0 means “accept Hy” and d = 1 means “accept H;”. A

simple loss function is:

0 ifd=0andfe0O,,
0 ifd=1and#fe6,
a ifd=0andfeO,
b ifd=1andfeO,,

\

L(0,d) = <

where a,b > 0 are the costs of Type II and Type I errors, respectively. When a = b = 1,
this is the zero-one loss. When a # b, we reflect asymmetric consequences—for instance,
in medical testing, falsely declaring a patient healthy (Type II error) might be far more
costly than falsely declaring them sick (Type I error). O

Combining all the ingredients, we can now define a decision problem.

Definition 1.37. A (statistical) decision problem is a tuple (X, 2", P,0, (D, 2), L)
where (X, 2", P,0) is a statistical experiment and (D, 2) is a decision space and L is

a loss function.

For decision problems with identifiable models, the expected loss (under Fp) of the

decision rule § given the ‘true state of nature €’ is called its risk.

Definition 1.38 (Risk Function). Given an identifiable statistical model P = {F :

6 € ©} on a measurable space (X, Z"), a decision space (D, Z) and a loss function
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L : 0 x D — R, the risk of a decision rule ¢ : X — D is defined as

R(0,6) = L L(0,5(2))dPy(x). (1.3)

whenever this integral exists in [—o0, o0].

Instead of the integral in Equation (1.3), we will frequently write

R(0,0) = Ep,[L(6,0(X))] = Eg[L(0,6(X))],

where the expectation is to be understood as the expectation under the probability
distribution Py and the random element X is simply the identity map on X (see Remark
1.7).

Throughout this course, we evaluate decision rules based on their risk, the expected
loss. One might object that focusing on the first moment of the loss is a limiting choice
made for mathematical convenience. However, there is considerable flexibility in the
choice of loss function itself. For instance, if our goal is for an estimator to be e-close to
the true parameter with high probability, the loss function L(f,d) = L{jp_q¢ captures
exactly this objective.

Beyond flexibility in L, there are deeper reasons to focus on expected loss. One
appeals to frequency under (hypothetical) repetitions and betting interpretations: if we
use a decision rule § repeatedly under the same conditions, the average loss converges
to the risk R(0, ) by the law of large numbers. A more philosophical justification,
grounded in rational preferences over random outcomes, is given in Section 1.3.3.

So far, our decision rules § : X — D have been deterministic: given data x, the
action 0(z) is fully determined. Just as mixed strategies in game theory allow players to
randomize over actions, we can allow decision rules to incorporate auxiliary randomness

independent of the data.

Definition 1.39. A randomized decision rule is a measurable function § : X x[0, 1] — D.

Given data x € X’ and an independent random variable U ~ Uniform(0, 1), the decision
is 0(z,U).

The risk of a randomized rule averages over both the data and the auxiliary

randomness:

R(6,9) JJ (6, 6(X,u))dudPy(z JJ 0,5(X,u))dPy(z)du.  (1.4)

Often, we will simply write this as Ey [L(Q, (X, U ))], but it is important to remember
that U is ancillary to the model.
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Why allow randomization? In most estimation problems, deterministic rules suf-
fice—randomization cannot improve expected performance when the loss is convex (as
we will see in Section 1.3.1 below). However, randomization becomes important in two

settings we will study later:
o Hypothesis testing (Chapter 3): To achieve exactly a prescribed significance level
a, we may need to randomize when the test statistic falls on the boundary of the
rejection region (see Exercise 1.14).
o Bayesian decision theory (Chapter 4).

Furthermore, for general (non-convex) loss functions, randomization can strictly

reduce the worst-case risk, as shown in the following example.

Example 1.40 (Matching pennies). Let X € {0,1} be a single observation from a
model with © = {0, 1} and

0.3 if0 =0,
0.6 if0=1.

The decision space is D = {0,1} with 0-1 loss L(6,d) = 1{6# # d}. Consider the

deterministic rule 6(x) = z. Its risk is
R(0,6) = Py(X =1) =03,  R(1,6) = P,(X = 0) = 0.4

The worst-case risk is maxy R(6,d) = 0.4.
Now consider a randomized rule that follows d(z) = = except when X = 0, where it
randomizes:

I{u <~} ifz=0,
1 itz =1.

Sz, u) =

The risks are R(0,0) = 0.3 + 0.7y and R(1,0) = 0.4(1 — 7). Setting these equal gives
v = 1/11, yielding
4
max R(0,0) = T 0.364 < 0.4.

Randomization strictly improves the risk for the worst-case 6. O

The example above shows that randomization allows us to ‘hedge’ against the
worst-case scenario. We will return to such worst-case analyses in later chapters.

For convex loss functions, however, randomized decision rules do not outperform
deterministic decision rules. The theorem below makes this precise: for any randomized
decision rule, there exists a deterministic decision rule with at most the same risk if

the loss is convex.
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Theorem 1.41. If d — L(0,d) is convex for all § € ©, then for any randomized
decision rule 0, there exists a deterministic decision rule 0* with R(6,6*) < R(6,0) for

all 0 € ©.

Proof. Let 6 : X x [0,1] — D be a randomized decision rule. Define the deterministic
decision rule 6*(z) = EV[d(x, U)]. By convexity of d — L(f,d) and Jensen’s inequality,

L(0,6*(x)) = L(0,EY[6(z,U)]) < EV[L(0,6(z, U))].
Taking expectations over X ~ P yields
R(0,0%) = Eg[L(0, 6*(X))] < Eg[EV[L(6,6(X,U))]| = R(6,9). O

Remark 1.42 (Why a uniform random variable?). The choice of U ~ Uniform(0,1) as
the source of randomness may seem restrictive. Does a single uniform provide enough
randomness? For decision spaces with standard measurability properties (e.g., D < R¥
with the Borel o-algebra), the answer is yes: any conditional distribution on D can be

generated from a uniform random variable. We revisit this in Section 4.2.

1.3.1 Sufficiency and loss

Intuitively, a sufficient statistic T contains all the information about the parameter 0
that is relevant to making decisions. So, if we are able to attain a certain level of risk
in one model, we should be able to attain the same level of risk in the forward model
induced by sufficient statistic 7.

The Rao-Blackwell theorem formalizes this intuition. It states that for any convex
loss function, we can improve (or at least match) the performance of any decision rule

by conditioning on a sufficient statistic.

Theorem 1.43 (Rao-Blackwell, convex loss). Let T' be a (T,.7)-valued sufficient
statistic for P ={Py:0€ ©}, and let L : © x D — [0,0) be a loss function.

If d — L(60,d) is convex for each 6 and D < R™ is convez, closed and equipped with
the Borel o-algebra, then for any decision rule 6 : X — D with Eg[|5(X)|] < oo, there
exists a decision rule 6* satisfying 6*(X) = Eg[d(X) | T| Py-a.s. for all 6 € © and

R(0,6%) < R(6,5) for all € O.

If L is strictly convezx, the inequality is strict unless  is already a function of T

Proof. Fix any 6 € ©. The random vector 6*(X) = Ey[6(X) | T'] is o(T')-measurable

(and hence 2 -measurable) and admits a version not depending on 6; meaning that
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there exists a version of the conditional expectation that does not depend on € (through
similar arguments as in Exercise 1.13) and is D-valued. Hence, 6*(X) is a valid decision
rule.

By Jensen’s inequality (see Lemma B.41 in Appendix B),
L(0,8*(X)) = L(O, Ba[5(X) | T]) < B[ L8, 5(X)) | T]

as d — L(0,d) is convex. Taking expectations gives R(6,6*) < R(0,9). If L(6,-) is
strictly convex and ¢ is not o(T')-measurable, then §(X) is non-constant conditional

on 1" with positive probability, and Jensen’s inequality is strict on that event, giving
R(0,6*) < R(0,9). ]

This theorem is powerful because it gives us a constructive way to improve estimators.
If you have an estimator § and a sufficient statistic T', you should consider §* = E[¢ | T'].
For example, if T is minimal sufficient, this often leads to the “best” possible reduction.
If T is complete and sufficient, and we restrict ourselves to unbiased estimators, the
Lehman-Scheffé theorem (which we will cover later) tells us 0* is the unique best
unbiased estimator.

For general loss functions, we have a randomized version of the Rao-Blackwell
theorem. The theorem says: we lose nothing by restricting to decision rules based on T’

alone.

Theorem 1.44 (Rao-Blackwell, general loss). Let T be a (T, )-valued sufficient
statistic for P = {Py : 0 € O}, and let L : © x D — [0,0) be a loss function.
Consider (D, 2) a standard Borel measurable space. For general loss functions, let

0 : X — D be any decision rule. There exists a randomized decision rule 0* of the form
*(X,U) = f(T'(X),U) for some measurable function f :T x [0,1] — D such that

R(0,6%) = R(0,5) for all 0 € ©.

Proof. By sufficiency, the conditional distribution of X given T'(X) admits a version
not depending on 6: we denote its conditional expectation by E[h(X) | T'] for functions
h: X — R. Since (D, 2) is standard Borel, the conditional distribution of §(X) given
T(X) =t can be represented via a measurable function (see Theorem B.38 in Appendix
B). By sufficiency, this function does not depend on #: there exists f: 7 x [0,1] — D
such that for each t € T, the random variable f(t,U) with U ~ Uniform(0, 1) has the
same distribution as §(X) given T'(X) = t. Define 6*(z,u) = f(T(x), u).

For each t € T, by construction,

L L(O, f(t,u))du = E[L(0,5(X)) | T = 1.
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Therefore,

1%&%5*)::E9Lf L0, F(T(X), u))du]

= BE[E[L(0,0(X)) | T1]

— Ey[L(6,8(X))] = R(8,). O

Together, the Rao-Blackwell theorems can be summarized as follows. For convex
losses, deterministic conditioning on a sufficient statistic improves performance. For gen-
eral losses, a sufficient statistic combined with randomization based on the conditional
distribution attains equally good performance. Sufficiency means all decision-relevant

information is contained in 7.

1.3.2 Comparing decision problems

Now that the key infrastructure of statistical decision theory is in place, we are able to

formalize several fundamental questions.

1. Comparing decision rules: Given a model P and loss function L, which
decision rule ¢ has the ‘best’ risk function R(6,0)?

2. Comparing loss functions: For a given model P, how does the choice of loss

function L affect which decision rules are optimal?

3. Comparing models: Given models P = {P: 0 € ©} and Q = {Qy: 0 € O}, a
decision space (D, Z) and loss function L : © x D — R, how does the choice of
model P (or Q) affect inference?

We will do an in-depth study of each of these questions in this course in the order
of the list above. To give a flavor, we now preview each of these questions in turn.
Comparing decision rules

Given a statistical model P and a loss function L, we seek to identify decision rules

with small risk. Ideally, we would find a rule 0* with uniformly minimum risk:
R(6,0%) < R(0,6) for all § € © and all decision rules 9.

It turns out that uniformly optimal rules rarely exist (see Exercise 1.15). Given that
a uniformly optimal rules does not exist, the question “which rule has the best risk
function?” is ill-posed. We must refine our criterion for comparing decision rules. In

these notes, we will consider two main strategies:
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1. Global risk comparisons. Compare rules based on summaries of their entire

risk function:

o Admissibility: Eliminate rules that are uniformly dominated by another rule.

o Bayes risk: Average the risk over 6 € © with respect to a prior distribution

(‘weighing’ the risk accross the parameter space).

o Minimax risk: Find the best rule with respect to the worst-case risk; i.e. 0*
such that

sup R(6,0") = inf sup R(4, 9). (1.5)
00 9eC peo

where C is the class of all decision rules.
2. Restricted decision rules. Impose additional structure or constraints:

» Unbiasedness: Require for example that Ep [6(X)] = 6 for estimation

problems.

« Invariance: Require decision rules to respect symmetries in the problem (e.g.
translation invariance for location parameters, or invariant to scale: unit of

measurement does not matter).

o Level constraints: For testing, consider tests with Type I error rate at most

« and find the most powerful test within this class.

These approaches are not mutually exclusive. In some problems, the best unbiased
estimator coincides with a Bayes rule, or the minimax rule can be found within the
class of invariant procedures. In other cases, we will see that we have to choose between
being e.g. minimax or unbiased. There is a deep connection between admissibility and
Bayes’ risk which we will explore in Chapter 4. In many problems, the best unbiased
estimator coincides with a Bayes rule, or the minimax rule can be found within the
class of invariant procedures. Understanding these connections is a central goal of this

course.

Comparing loss functions

Once we have a deepened understanding of optimal decision rules given statistical
model, a decision space and a loss function, we can start to compare different loss
functions and see how they affect the optimal decision rules. Different loss functions
encode different priorities: squared error loss heavily penalizes large errors and leads to
estimators sensitive to outliers; absolute error loss treats all errors more equally and
yields more robust estimators; zero-one loss distinguishes only between correct and

incorrect decisions, ignoring the magnitude of errors entirely.
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We will see that the quality of an inference depends fundamentally on the chosen
loss function; what constitutes an optimal decision rule changes as the loss function
changes. A decision rule that is optimal for one loss function may not be optimal for
another. Understanding the interplay between loss function and model allows us to
reflect on the consequences of errors in specific applications. A medical diagnostic test,
a financial trading algorithm, and a scientific hypothesis test may all involve the same
statistical model but call for different loss functions.

In some cases, it makes sense to study a model for a collection of loss functions.
These considerations will not be the main focus of this course, but we will touch upon

them here and there.

Comparing models

After we have a deepened understanding of performance ‘within’ the context of a given
statistical model, a decision space and loss function(s), we can revisit the question
posed at the end of Section 1.1 (see Example 1.4): which model is the right one?
The concept of sufficiency introduced in Section 1.2 allows us to say when models are
effectively the same for all intents and purposes. However, in many cases of practical
interest, we are interested in comparing models that are fastly different, and knowing
which is better for a particular task at hand.

Given a parameter space O, a decision space D and a loss function L : © x D — R,

consider two models

P ={P:0e0} with each Py defined on sample space (X, Z")
and Q = {Qy : 0 € ©} with each @y defined on sample space (Y, %).

The parameter space ©, which represents the phenomenon of interest, is the same for
both models. The distributions Py and )y could be different. Their sample spaces
(X, Z) and (), %) could be vastly different. When the two models are observationally
equivalent, we expect there not to be any difference in terms of inference. But when
they are not, how do we decide which model is “better”? Or more generally, how do
we quantify how much information is lost by choosing one model over the other?

Le Cam and Yang 1986 gives the following example:

Example 1.45 (Estimating the half-life of Carbon 14). A physicist wants to estimate
the half-life of Carbon 14, assuming the lifetime of a C** atom follows an exponential
distribution with rate parameter # > 0. To do so, the physicist considers two possible
experimental designs.

In the first setup, the physicist takes a sample of n atoms and observes the number

of disintegrations x € Ny over a fixed time period of 2 hours. Under this model,
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Py = Poisson(2n(1 — e2%)): the distribution of the count in fixed time. This defines
the statistical experiment P = {F : 0 € (0,90)}, where Py is defined on the sample
space of non-negative integers.

In the second setup, the physicist observes the waiting time y > 0 until a fixed
number of disintegrations, say m = 10°, occurs. Here, Qp = Gamma(m, ), defining
another experiment Q = {Qy : 6 € (0,00)}, with Qg on the positive real line. Which

setup is more informative? Explore this further in Exercise 1.9. O

Given a loss function L : © x D — R, we could compare best possible performance
of the two models. We could find for example that one model has a strictly better

performance in terms of minimax risk:

inf sup Ep,[L(6,0(X))] = inf sup Eqg,[L(0,6(Y))] + €
5 9eo 5 9eo

for some € > 0, which is means that the model P is ‘e-deficient’ for the loss function L
compared to the model Q in terms of its best worst-case performance. We could even
go a step further and compare the best worst-case performance of the two models with
respect to a large collection of loss functions, to see if the one model is deficient across
loss functions compared to the other. In other cases, we might find that two models
with different sample spaces and distributions lead to exactly the same best possible
performance. Sometimes, we might find that this to be true for all loss functions.

The above notion of deficiency allows us to think about situations where models
are not observationally equivalent: given that a statistic is not sufficient for a model,
how much information is lost? Note that being ‘e-deficient’ might not mean that the
model P is ‘bad’; it might be the better model to work with for practical purposes.
Finding its deficiency with respect to another model is a way to quantify how much
information is lost when approximating one model by something that is perhaps more
tractable, or more affordable in terms of experimental design.

This line of thinking extends to perhaps the most powerful theoretical tool developed
in Part II: The ability to compare models asymptotically. Under certain regularity
conditions, complicated models can be shown to ‘tend asymptotically’” —in various
precise senses—to much simpler experiments whose performance is well understood.
This allows us to reason about performance in complicated models by reasoning about
performance in simpler models, enabling meaningful analysis of performance that would
otherwise be intractable.

Lastly, another reason to compare models is misspecification. We might want to
know how robust decision procedure is if in reality, the model Q is the correct one, but

we are using the model P to make decisions.
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1.3.3 & Why (Expected) Loss?

One might reasonably ask: why focus on expected loss rather than, say, the median
loss, or some quantile of the loss distribution, or the maximum loss? And why consider
loss functions at all?

Suppose that if 6 were known, you could provide a preference ordering over possible
decisions in D. We write d; < dj if we prefer decision d; to decision dj (or are indifferent
between them) when the true parameter is 6. For instance, in hypothesis testing with
0 € ©p, we would prefer deciding Hy over deciding H;. In estimation, we typically
prefer decisions closer to the true value of the estimand ¢(#).

These preferences naturally extend to randomized decisions. Consider now a
comparison between two randomized decision rules: We write d; < J if we prefer (or

are indifferent to) the randomized decision rule d; over ds.
Al (Transitivity): If 51 < 52 and (52 < (53, then (51 < 53.

A2 (Independence): If §; < dy, then

AS1 4 (1= A\)d3 < A + (1 — A)35 for all Ae (0,1], 65

A3 (Continuity): If 4; < d2 < d3, then there exist A\,, Ay € (0, 1) such that

A1 + (1= Xg)d3 < 0a < Apdy + (1 — Np)03.

The first axiom says that if we prefer d, over §; and d3 over &9, then we should also
prefer 3 over ;. This makes the comparison < a partial order on the space of decision
rules. The second axiom says that mixing between decision rules in an irrelevant
alternative should not reverse preferences. The third axiom says there is no decision
rule that is infinitely preferable to another; every decision rule can be made comparable
through appropriate randomization. We will skip the philosophical discussion of why
these axioms could be considered ‘rational’

These axioms are enough to guarantee that our preferences over the decision space
can be represented by risk in the sense of Definition 1.38: there exists a loss function

such that the corresponding risk function captures our preferences.

Theorem 1.46 (Representation Theorem). If the space of decision rules equipped
with the comparison < satisfies axioms Al, A2 and A3, then there exists a measurable
function L : © x D — [—o0, 0] such that

51 < (52 < R(@,(Sl) < R(e,ég)
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See Ferguson 1967 for a proof. In words, if our preferences over the decision space
are rational in this sense, then they can be represented by minimizing expected loss for

some loss function L.
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Exercises

Exercise 1.1. Consider an experiment in which we observe Y = 1 + ¢, where € R? is

an unknown vector and € ~ Ny(0, 021;) is independent noise with unknown o > 0.

1. Write down a corresponding statistical model and verify that the set © :=

R? x (0,o0) is identifiable under an appropriate parameterization.

2. Suppose we instead believe p lies on a ray through the origin: u = av for
some unknown a € R and direction v € S9! in the unit sphere. Consider
the statistical model {Ny(av,0%l;) : a € R,v € S¥ 1 o > 0} and the set
Oray =R x S9! x (0, 0).

Is there a parameterization ¥ : Py — Ouay such that for every P € P, with
Y(P) = (o,v,0) we have P = Ny(av,0?I,)? If not, give a subset O, < O,y for

ray —

which such a parameterization exists and is identifiable.

FEzercise 1.2. In Example 1.2, show that the observable L (whether the first die is
larger than the second) is not o(S5)-measurable. What is the smallest sigma-algebra

containing o(.S) that makes L measurable?
Ezercise 1.3. Consider X = R, 2" = B(R), and the model
P = {%N(Gl, 1) + LN (02, 1) : (61,0,) € R?}.

(a) Can we take the inverse of the indexing map (61, 62) — Py, o, (as a well defined

map) onto R? to obtain a valid parameter space for P?

(b) Show that O« := {(6,0,) € R? : 6; < 65} is a valid parameter space under the
map 3N (01,1) + 1N(62,1) — (01,6) and that the induced parameterization is

identifiable in the sense of Definition 1.5.

FEzercise 1.4. Let x, z € R" and consider statistical model (R", B(R"™), P) where P =
{P,s:a,peR}and P,z is the multivariate normal distribution with mean oz + 5z
and variance I,,. Find a sufficient condition on x and z and an explicit parameterization
(a map from P to R?) that makes the model P identifiable with © = R2.

FExercise 1.5. Revisiting Example 1.13, prove that the sum S is not sufficient in Model
1 but is sufficient in Model 2. Specifically:

(a) In Model 1 (nonparametric), show that the conditional distribution of the outcome

given S = 7 depends on the unknown distribution p.
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(b) In Model 2, use the definition of sufficiency (or the Factorization Theorem) to
prove that S is sufficient for pg.

FExercise 1.6. Verify the claims in Example 1.16.
(a) Show that if Xy,..., X, " N(u,0?), then X ~ N(u,02/n).

(b) Show that if Y ~ N(u,02/n) and Zy, ..., Z, *¢ N(0,02) independent of Y, then
the variables X; =Y + Z; — Z are i.i.d. N(u,c?).

Exercise 1.7. Verify the claims in Example 1.23. Let X1,..., X, i Uniform(6, 6 + 1)
for 0 € R.

1. Show that 7" = (X(1), X(»,)) is minimal sufficient.

2. Show that T is not complete.

Ezercise 1.8. Let {P, : n € ©}, © < R* be an exponential family with density
p(x | n) = exp{n'T(x) — A(n)}h(x) with respect to a o-finite measure p.

1. Show that P,, = P, if and only if (1, — n2) T () is constant u-a.e.

2. Conclude that P, = Py <= n =7’ if and only if there do not exist distinct
n,1m2 € © with (9, — ne) "T(x) constant p-a.e.

Ezercise 1.9. Revisiting Example 1.45, suppose we are interested in estimating the
mean lifetime 7 = 1/6.
(a) In the first setup, let X be the number of disintegrations in time ¢ = 2. Show

—2

that the maximum likelihood estimator for 7 is 7, = Toa(I=X /@)

(b) In the second setup, let Y be the time until m disintegrations. Show that the

maximum likelihood estimator for 7 is 75 = Y /m.

(c) Compare the variances of these two estimators (you may use a heuristic argument,
considering what happens for m, n and 7). Which experiment seems more

informative if we want to estimate 7, particularly for large 7 (long lifetimes)?

Ezxercise 1.10. The empirical distribution of a sample X, ..., X,, is given by P satisfying

P(A)= > 1(X;e A)/n

i

for all measurable sets A < X. Suppose X = R.
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(a) Show that observing the empirical distribution Pis observationally equivalent to

observing the sample cumulative distribution function

(b) Show that observing the empirical distribution is observationally equivalent to

observing the order statistics (X, ..., X))

Ezercise 1.11. Consider the following definition: A model P, on a product space
(X", A") is exchangeable if for all P, € P, sets A; € A,..., A, € A, and permutation
mof {1,...,n},

Py(A; x - x Ay) = Py(Ap, X -+ x Ag)).

Let P, be an exchangeable model on (X", A"), where X is a finite set. Prove

that the empirical distribution P,, defined by P,(A) = L 3" | 1,(X,), is a sufficient

T on

statistic.

Ezercise 1.12. Consider the statistical model (R", B(R™), P) where P = {P; : f € O}
and © < L,[0, 1] (see Definition B.24) is such that Y = (Y3,...,Y,) ~ Py satisfies

}/;:f(,l/n)—i_eza izl?"'vnv

for f € © and 61,...,enii~dN(O,1).
(a) Is the map ¥ : © — P, f — Py injective?

(b) Consider instead © equal to the space Lo([0, 1], B[0,1],[P,,) where the measure
P, : B[0,1] — [0, 1] is to be understood as

_ ]{ie{l,...,n}:i/neA}]‘

P (A)

Show that this makes the previous map injective and provide a map from P to ©

that makes the parameterization identifiable.

Ezxercise 1.13. Let T be a sufficient statistic for the model P = {F : 0 € ©}. Show
that if A(X) is any bounded measurable function that does not depend on 6, then the
conditional expectation Ey[h(X) | T'] admits a version that does not depend on 6.

Hint: Use the definition of conditional expectation and the fact that T is sufficient
and use the standard machine of measure theory (Appendiz B Section B.2.1).
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Ezercise 1.14 (Deterministic and randomized tests). Let X1, ..., X, " Poisson(0) with
0 > 0 unknown, and consider testing Hy : 0 < 0y versus H; : 6 > 6. The decision

space is D = {0, 1}, where d = 1 means “reject Hy”. A deterministic test is

0(x) = 15, @i > ¢}

for some threshold ¢ € N.

1. Show that there may be no ¢ such that Py, (>, X; > ¢) = « for a given

significance level a.

2. Consider the randomized test

1 if >0 x>,
0(z,u) = § Hu <v}) if D 2 =c,
0 if Z?:l r; < C.

Show that ¢ € N and « € [0, 1] can be chosen such that Fy,[§(X,U)] = «.

Ezercise 1.15 (Nonexistence of uniformly optimal rules). Consider the statistical model
corresponding to X ~ Py where Py, = N(0,1) and Py, = N(1,1) and let A denote the

set of all (possibly randomized) decision rules. Define the risk set
R = {(R(6o,0), R(61,6)) : 6 € A} = R%.

1. Consider estimating ¢ under squared error loss. Compute the risk pair for:
(a) the estimator §o(X) = 0,
(b

(c
(d) the estimator 6(X) = X.

the estimator 6;(X) =1,
the estimator d1/,(X) = 1/2.

)
)
)
)

Which of these decision rules do you prefer? Can you think of a rule that is better
than all of them?

2. A decision rule §* is uniformly optimal if (R(6y, 6*), R(61,0*)) is componentwise
smaller than or equal to (R(6y,0), R(01,9)) for all § € A. Using the risk pairs

(specifically, dy and ¢;), argue that no uniformly optimal rule exists.

FEzercise 1.16 (#). Consider an experiment of flipping a coin infinitely many times.

(a) What should the sample space X be? What is its cardinality?
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(b) What sigma-algebra 2  would naturally represent the observable events (e.g.,
"the n-th flip is heads")?

(c¢) Explain why it is impossible to define a countably additive probability measure
on (X,2%) that consistently assigns probabilities to cylinder sets C,, = {x € X :

x, = 1} as if the coin flips were independent.

Hint: Consider what happens if all singleton sets have probability zero versus positive

probability.

Ezercise 1.17 (& Empirical distribution equivalence). Let (X, 27) = (R", B(R")) and

consider the i.i.d. model
P ={P®" : Pe0}, O = M;(R),

where M (R) denotes the set of all probability measures on (R, B(R)). Equip M;(R)
with the Borel o-algebra generated by the total variation distance (see Definitions 2.2
and B.10 in the appendix).
For x = (21, ...,2,) € R" define the empirical measure P, € M;(R) by
N 1 <
W= Ntlre ), AcBE)
Let C denote the set of all cumulative distribution functions (c.d.f’s), and equip C with

the Borel o-algebra generated by the sup-norm on C, and define the empirical c.d.f.
F.ecC by

S|
Ingk

Il
—

Bot) = P((—o0,t]) = — S 1wy < t),  teR

(2

Lastly, consider the order statistics T'(X) = (X, ..., X)) as a (R", B(R")) valued

statistic.

A A

(a) Show that o(P) = o(F) = o(T).
(b) Show that the order statistics are complete.

(c) Conclude that P and F are complete sufficient statistics for P.
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In this chapter, we study the problem of estimation: constructing a decision rule
that approximates an unknown parameter or functional of the parameter based on
observed data. Recall from Chapter 1 that a statistical model is a family of probability
distributions P = {P : 6 € O} indexed by a parameter # in a parameter space ©.
Often, we wish to estimate either the parameter 6 itself or a functional of it, 8 — ¢(6).
An estimator is a decision rule 0 : X — ¢(©) that maps the observed data X to an
estimate §(X) of the target quantity. This means our decision space is the same as our
parameter space (or a function thereof, ¢(0)).

The central questions of this chapter are: what makes an estimator good, and
how do we construct estimators with desirable properties? And how do we compare
estimators? Intuitively, good performance means that when we observe data X ~ P,
the estimator §(X) is “close” to the true value ¢(6). To formalize this, we could equip
the target space ¢(©) with a metric distance d and define the loss as a function in terms
of this distance, for example L(§(X),0) = d(6(X), ¢(#))?. In this sense, specifying the
functional ¢ is part of specifying the loss and the decision space: it fixes what quantity
the estimator is judged against, and hence what counts as estimation error. Taking
the Borel g-algebra on ¢(0) induced by d ensures that loss functions and estimators
can be defined as measurable functions. In the common setting where ¢(0) < R¥, the

Euclidean metric is a natural choice.

Example 2.1 (Estimation (and prediction) in a linear model). Suppose we observe a

random vector Y in R™ generated from the linear model
P = {Nd(XﬁaOQIn) : (5702) € @}7

with fixed design X € R™*? (with X " X invertible) and parameter space © = R x (0, o0).

If we wish to estimate ¢(f) = 3, an estimator is any decision rule § : R* — RP?, e.g.
S(Y):=(XTX)'XTY.
A sensible loss function is the squared Euclidean distance:

L((8,0%),0) = |0 — BI*.

If instead we wish to predict the mean response at a known new covariate Z,c, € RP,

the target is the functional ¢(f) = z!. 3 € R. That means that our decision space is
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R, and as a loss function, we could consider
L<<ﬁ7 UQ)? 5) = |(5 - xIeWﬁ|'

O

However, estimation problems sometimes involve more abstract target spaces. For
example, the target of estimation could be itself the probability distribution generating
the data — i.e. when ¢(0) = P,. In this case, the loss function could be a metric on the
space of probability measures. A possible choice for such a metric is the total variation

distance.

Definition 2.2. The total variation distance between two probability measures P and

@ on a measurable space (X, 2") is defined as

drv (P, Q) = sup [P(A) — Q(A)].
AeXZ
The total variation metric allows us to study the parameter space where O is (a
subset of) the space of probability measures, equipped with the Borel sigma-algebra of
the total variation metric. Given a statistical model P = {Fy : 6 € ©}, we could take ¢

to be the map 6 — P, and the loss function to be the total variation distance:
L((S(X)v 0) = dTV(a(X)a PG)

For some models, various losses can be related to each other in a simple way. In
other cases, they do not. For example, when Py — ¢(#) does not identify the model,
we cannot generally hope that estimating the functional ¢(#) allows for an estimate of
Py. The example below illustrates that in estimation problems, we are often not trying
to estimate the entire distribution Py, but rather a lower-dimensional summary such
as the mean, variance, or quantile, depending on what we are interested in. Only in
special cases, these lower-dimensional summaries translate back to the data generating

process.

Example 2.3 (Estimating a functional vs. the distribution). We revisit Example 1.4
from Chapter 1. Consider two statistical models on (R, B(R)):

(i) P={Py:= N(0,1):0 e R}.

(ii) Q = {all probability measures on (R, B(R)) with variance at most 1}.

For the model P, it can be shown (see Exercise 2.18) that the total variation
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distance is bounded by the distance between the means for 6,6’ € R:
1 /
dry (Py, Py) < 5|9 —0'.

This implies that estimating the parameter 6 well (in Euclidean distance) automatically
ensures that we estimate the distribution P, well (in total variation distance).

For the model Q, the mean parameter ¢ : Q — {zdQ(z) does not identify the
distribution in the sense of Definition 1.5. Estimating the mean ¢(Q) = { 2dQ(z) is still
almost equally ‘doable’ as in the case of normals (see Exercise 77). However, estimating
the distribution ) € Q itself turns out to be much more difficult: it is impossible to find
a ‘good’ estimate of the distribution in total variation distance uniformly over Q, even
under repeated sampling (see Exercise 2.17). That is, for the model Q, estimating the

distribution ) € Q itself is a very different estimation problem compared to estimating

2dQ(x). 0

This example also motivates a useful (informal) taxonomy of estimation problems.
The labels parametric, semiparametric, and nonparametric are best thought of as
describing the complexity of the model in relation to the estimand: the same model
can lead to different types of problems depending on whether we aim to estimate a
low-dimensional functional (like a mean) or a high/infinite-dimensional object (like an

entire distribution).

o Parametric estimation: the model is indexed by a finite-dimensional parameter,
typically © < R?Y with fixed d, and the data-generating distribution is fully
determined (up to #). In Example 2.3(1), P = {N(0,1) : 0 € R} is a one-
dimensional parametric model. In such settings, estimating 6 is often closely
related to estimating Py itself because the parameter identifies the distribution

(and here even controls it in total variation).

e Semiparametric estimation: the model is infinite-dimensional, but the target
#(0) is finite-dimensional (typically in R* for fixed k). The remaining aspects of
the distribution act as an infinite-dimensional nuisance. In Example 2.3(ii), if
the goal is only to estimate the mean functional g(Q) = {2 dQ(z) € R, then we
are in this regime: many different () € Q share the same mean, yet the target

itself is one-dimensional.

« Nonparametric estimation: the model is infinite-dimensional (e.g. a large class
of distributions, densities, regression functions, etc.), and the target is typically
itself an infinite-dimensional object such as the distribution P, its CDF, or its
density. In Example 2.3(ii), if the goal is to estimate @ € Q (as a distribution),

then this is a nonparametric estimation problem.
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The example above illustrates that the labels parametric, semiparametric, and
nonparametric are best understood as describing an estimation problem—in particular,
the target g(6) and the loss function—and not only the “size” or complexity of the
model class. Moreover, these labels are only loose distinctions: different statistics books
(and different subfields) use them in slightly different and sometimes inconsistent ways.

There is also a fourth, even less sharply defined regime that we will encounter
throughout the chapter: high-dimensional estimation problems, where the parameter
is technically finite-dimensional (e.g. © < R?), but the dimension d is large relative to
the other relevant aspects of the problem (such as the sample size n) in a way that
drastically changes which decision rules are reasonable. In this sense, high-dimensional
problems often behave more like nonparametric problems than classical parametric
ones, despite having a finite-dimensional parameter space. We return to this theme in
Section 2.3.

Returning to the central question of this chapter: given a statistical model P, a
target quantity ¢(f) and a loss function L, what is a good estimator for ¢(#)? For
typical loss functions (e.g. if L is related to some distance metric) and a fixed 6, we
might observe that if we knew Py, the “best estimator” would simply be the constant
function §(z) = ¢(0) for all x. This estimator is measurable and achieves zero loss if ¢
is the parameter underlying the data-generating process. However, since inference of
is the whole point, this is not a sensible estimator. The challenge of formulating what
is ‘a good estimator’ is to construct a data-dependent rule that ‘performs well across
the parameter space’. There are multiple criteria for measuring what ‘performance

across the parameter space’ means, which we explore throughout this chapter.

2.1 Unbiasedness

Throughout this section, we consider a statistical model P = {Fp : § € O} and a

target quantity ¢ : © — RF. We will study estimators of ¢(#) satisfying the following
property.

Definition 2.4 (Unbiasedness). An estimator § : X — R¥ is an unbiased estimator of
¢(0) if for all 0 € ©,

Unbiasedness is an appealing property: on average, the estimator produces the
correct value. If we, or others, were to repeat the experiment many times, the average

of the estimates would converge to the true parameter value.

Example 2.5 (Averaging i.i.d. estimators). Suppose we have m independent replica-

tions of a study, yielding estimators 4y, ..., J,, of a parameter # € R. Assume these
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are independent and identically distributed with unit variance (i.e., Var(d;) = 1). A

natural estimator is the average:
m
3(X) == >14;
j=1

If the individual estimators are unbiased, then d(X) converges to 6 over repeat repli-
cations. However, if there is systematic bias (E[d;] # ), the convergence fails. See
Exercise 2.5. O

However, it does not guarantee that any single estimate is close to the true parameter.
A large variance implies that the estimator fluctuates significantly, making individual
estimates unreliable. By minimizing variance, we maximize the probability that the

estimator is close to the target ¢(0).

Definition 2.6. Let X and Y be random vectors in R¥ and R™, respectively, with
means pux = E[X] and py = E[Y]. The covariance matriz of X and Y is the k x m
matrix defined by

Cov(X,Y) = E[(X — ux)(Y — py) '].

The variance matriz (or simply variance) of a random vector X € R¥ is the k x k

covariance matrix of X with itself:
Var(X) = Cov(X, X) = E[(X — ux)(X — px)"].

For the Euclidean metric, it turns out that minimizing the variance across all
unbiased estimators is equivalent to minimizing the expected squared error of the

estimator.

Lemma 2.7 (Bias-Variance Decomposition). Let 6(X) be an estimator of ¢(0) with

finite second moments. Then,
Eg[6(X) — ¢(0)[* = |Eo[0(X)] — ¢(6)[* + Trace(Vary(d(X))). (2.1)

Proof. See Exercise 2.4. O]

The first term in (2.1) is called the (squared) bias of the estimator, and the second
term is the ‘variance term’ The lemma states that the expected squared error of any
estimator is the sum of the squared bias and the variance. For unbiased estimators, (the
trace of) the variance effectively measures the average squared Euclidean distance from
the true parameter value. This is one of the reasons to compare unbiased estimators
based on their variance. This leads us to the concept of a UMVUE.
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Definition 2.8. An estimator ¢ is a uniformly minimum variance unbiased estimator
(UMVUE) of ¢(9) if it is unbiased, i.e., Eg[6(X)] = ¢(8) for all § € ©, and if for any

other unbiased estimator ¢,
Varg(6(X)) < Vary(8'(X)) for all § € ©.

For a formal definition of the matrix ordering < (the Loewner order), see Defini-
tion C.10 in Appendix C. The notation Vary denotes the variance operator with respect
to the expectation operator E,.

Finding a UMVUE is a challenging problem in general. However, for certain models,
those where complete sufficient statistics exist, the UMVUE can be found using the

following theorem.

Theorem 2.9 (Lehmann-Scheffé). Let T' be a complete sufficient statistic for P =
{Py : 0 € ©}. If 6 is any unbiased estimator of ¢(6) with finite variance, then
IX) =E[d(X) | T(X)] is the a.s. unique UMVUE of ¢(6).

Proof. By sufficiency, 6(X) = E[do(X) | T] admits a version not depending on 6, so
it is a valid estimator. By the tower property, Eg[d(X)] = Eg[do(X)] = ¢(0), so 0 is
unbiased. For any v € R¥, the loss function L,(d,0) = (v (§ — ¢(0)))? is convex in 6.
By Rao-Blackwell (Theorem 1.43),

Eg[(v" (6(X) — ¢(6)))*] < Eq[ (v (90(X) — 6(6)))*]-
Since both estimators are unbiased, this gives
v! Varg(8) v < v’ Varg(dp) v for all v e R¥,

i.e., Vary(d) < Vary(dp) in the positive semidefinite ordering.
Now suppose ¢’ is any other unbiased estimator of ¢(#). Define ¢(T") = E[6'(X) |
T]—6(X). Then

Eo[t(T)] = ¢(0) — ¢(0) =0 for all 6 € ©.

By completeness, ¥(7') = 0 almost surely, so E[0'(X) | T| = 6(X) almost surely. By
Rao-Blackwell, Vary(d) < Varg(d’). Since ¢’ was arbitrary, § is UMV UE. O

The Lehmann-Scheffé theorem provides a strategy for finding a unique, best unbiased

estimator:

1. Start with an arbitrary unbiased estimator dy;

2. Find a complete sufficient statistic T';
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3. Apply the Rao-Blackwell theorem to obtain the UMVUE §(X) = E[dy(X) | T

This is sometimes called “Rao-Blackwellization”.

We illustrate the use of the Lehmann-Scheffé theorem with two examples below:
estimating the CDF of a distribution at a fixed point in a parametric setting and in a

semiparametric setting.

Example 2.10 (Normal mean with known variance). Consider the model P =
{N(0,0%)®" : g € R}, corresponding to observing Xy, ..., X, = N(0,02) =: Py, where
02 > 0 is known. The sample mean X is a complete sufficient statistic for 6 (see Exam-
ple 1.16 combined with Proposition 1.29). Suppose we want to estimate the CDF at a
point t € R, i.e., ¢(0) = Py((—0,t]). Consider the unbiased estimator do(X) = L{x,<g}-
Since X is complete sufficient, the UMVUE is given by §(X) = E[6o(X) | X] by the
Lehmann-Scheffé theorem.
We can compute the UMVUE explicitly (Exercise 2.2):

5(X)=®(\/Zt;X).

Example 2.11 (Estimating the cumulative distribution function). Consider observing

X, X, s P, where P is any probability distribution on R. The corresponding

statistical experiment is (R™, B(R)", P, P) where

O

P = {P : P is a probability distribution on R}.

Given P € P, let Fip be the cumulative distribution function of P: Fp(t) = P((—o0,t]).

To estimate ¢(P) = Fp(t) at a fixed point t € R, a natural estimator is the empirical

1 n
= ; Lix <t}

For a fixed ¢, the random variable Y; = 1{x,< is Bernoulli distributed with parameter
p= P(X; <t)= Fp(t). Thus,

distribution function:

i Lonpe(t) = Folt)

showing that 6(X) is an unbiased estimator for Fp(t). Its variance is given by

Varp(6 =) Zvarp —Fp( )(1 = Fp(t)).
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By Exercise 1.17, the order statistics 7'(X) = (X(1),..., X(n)) are a complete sufficient

statistic for this model. Furthermore,

1 & 1 &
Ep [n;]l{&@} | T<X)] = n; Jl{Xiélt}-

Hence, §(X) is the UMVUE for ¢(P) = Fp(t) by the Lehmann-Scheffé theorem. ¢

Returning briefly to our earlier discussion concerning parametric vs semiparametric
estimation problems, a further investigation the above examples reveal an important
phenomenon: in both problems, it can be shown that the accuracy of the estimator is
of the order 1/4/n: the rate as a function of the sample size at which we can expect the
estimator to be accurate is the same. However, the (in both cases optimall) variances
differ between the two models (see Exercise 2.2). This is expected: the parametric
model is more informative and allows us to estimate the parameter with more precision.
In the semiparametric model, we are paying a price for the flexibility of the model; its

infinite dimensional nature.

2.1.1 The Cramér-Rao lower bound

In some statistical models, a differentiable relationship between © and P allows us
to derive fundamental limits on estimation accuracy for smooth functionals of the
parameter. The key idea is that if the distribution P, changes smoothly with 6, we can
quantify how much information the data carries about the parameter.

Consider a model P = {F : # € ©} dominated by a measure pu with densities
pg = dPy/du, where © is an open subset of R?. If the map 0 — py(z) is differentiable

for each x, we can define the score function

So(r) = Vglogps(x).

Under regularity conditions that permit interchanging differentiation and integration,
the expected score is zero: Ey[Sy(X)] = 0. The Fisher information matriz is then

defined as the covariance of the score:
1(0) = Eg[So(X)Ss(X) ],
which (under regularity conditions) can equivalently be computed as
1(0) = —Eo[Vjlog ps(X)].
The Cramér-Rao lower bound states that the variance of any unbiased estimator of g(0)
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is at least Vg(0)"1(0)"'Vg(0). This result is fundamental: it shows that estimation
precision is governed by the Fisher information, which quantifies how sensitively the
distribution responds to changes in 6.

The classical approach requires verifying regularity conditions for each model—
conditions that ensure differentiation under the integral sign is valid. It turns out that
a weaker notion of differentiability “on average” suffices and leads to a cleaner and

much more general theory. This is the concept of differentiability in quadratic mean.

Definition 2.12 (Differentiability in Quadratic Mean). A statistical model {Fy : 0 € ©}
with densities py is differentiable in quadratic mean (DQM) at 0 if there exists a

measurable function Sy : X — R? such that

[ (Voweali) = V@) = ST Sulo0pu(@) ) dute) = o1112) o b

DQM implies that the Fisher information matrix I(0) = Eg[Sp(X)Sp(X)T] exists
and roughly speaking allows for exchange of differentiation and integration. It effectively
replaces the “standard” regularity conditions that we might be familiar with from e.g.

undergraduate textbooks on statistics.

Lemma 2.13. Let the model {Py : 0 € ©} be differentiable in quadratic mean at 6 with

score Sy. Then:

(i) The Fisher information 1(0) = Fy[SpS, | is well-defined with all entries finite.

(i) If T : X — R is a measurable function with T? uniformly integrable under Eqy
for all 0" in a neighborhood of 0, then W(0") = Eg|T| is differentiable at 6 with

Vi(0) = Ep[T - Sp].

Proof. Exercise 2.8. O]

The DQM condition allows us to differentiate expectations of statistics, which is
key to establishing a fundamental limit on the variance of any unbiased estimator. This
limit is determined by the Fisher information, quantifying the intuition that estimation
is harder when the distribution Py changes slowly with 6 (low information). This leads

us to the famous Cramér-Rao Lower Bound.

Theorem 2.14 (Cramér-Rao Lower Bound — Biased Case). Consider a model {Py :
0 € ©} that is DQM at 0 € © with positive definite Fisher information matriz 1(6). Let
§(X) be an RE-valued estimator that is uniformly square-integrable under Py for all ¢’
in a neighborhood of 0 and write 1¥(0) = Ey[5(X)] for the expectation of the estimator.
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It holds that
Varg(6(X)) = Vip(0)T1(0) ' Vi(9).

Proof. By definition, we have ¢(0) = Ey[6(X)] = (d(z)ps(z) du(x). Using Lemma
2.13, we have

Vi (0) = Eo[0(X)56(X)],

and
Eg[So(X)] = Eg[1 - Sy(X)] = V1 =0.

Combining these, we obtain
Vi) (0) = Covy(d(X), Sp(X)).

Now, for any constant vector a € R%, consider the scalar random variable Z = a'Sy(X).

The covariance between (X ) and Z is
Covg(6(X), Z) = Covg(0(X),a"Sp(X)) = a'Cove(§(X), Ss(X)) = a" Vip(6).
Applying the Cauchy-Schwarz inequality to the covariance squared, we have
(Covg(6(X), Z))? < Varg(d(X)) Vary(2).

Substituting the expressions for covariance and variance, noting that Varg(Z) =
Varg(a'Sy(X)) = a'I(0)a, we get

(a"V(0))* < Varg(6(X))(a"1(6)a).

This inequality holds for any vector a. To obtain the tightest bound, we choose
a = I(0)"'V(0). With this choice:

aTVH(0) = Vo(6) 1(9) " V(6)

and

a'I(0)a = V(0) 1(0) " 1(0)1(0)~ V() = V(0) ' 1(0) Vi (0).

The inequality becomes
(V(6) " 1(0)'V(6))* < Varg(3(X))(Ve(6) ' 1(8) ' V(8)).

Assuming V(0) "1(0)"*V(0) > 0 (otherwise the bound is trivial), we can multiply
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by the inverse on both sides to obtain
Varg(3(X)) = Vi (0)T1(0)"'V(0).

O

The bound in Theorem 2.14 applies to any estimator, regardless of whether it
is biased or unbiased. For unbiased estimators, the bound simplifies and takes a

particularly interpretable form.

Corollary 2.15. Assume the setting of Theorem 2.14. If 6(X) is an unbiased estimator
of ¢(0) in a neighborhood of 6 and ¢ : © — R? is differentiable, then

Varg(6(X)) = Vo(0) " 1(0)'V ().
If ¢ is the identity function, then this reduces to the familiar inequality:
Varg(6(X)) = 1(6)". (2.2)

Proof. Note that unbiasedness implies () = ¢(6). If ¢ is the identity function on R,
it follows that Vo(0) = 1. O

The following example shows that the requirement of unbiasedness in a neighborhood
of 6, is critical for the result of Corollary 2.15 to hold.

Example 2.16. Consider X ~ N(0,1;), 6 € R? and the estimator
0(X) =wh + (1 —w)X
for some w € [0, 1] and 6; € RY. Estimator is unbiased at 6;. However, its variance is
Vary, (6(X)) = (1 — w)?I,.

For w > 0, this is strictly smaller than the right-hand side of (2.2), which evaluates
to I(61)~' = I (check). Indeed, for w > 0, the estimator is not unbiased over any
neighborhood of #,. Setting w = 0 gives the UMVUE. O

If 6(X) is unbiased, the inequalities of Corollary 2.15 hold for all § € ©. For
unbiased estimators, the Cramér-Rao lower bound provides a target in terms of what
is the best possible variance to achieve. Clearly, if 6(X) is unbiased and attains the
Cramer-Rao lower bound, it is a UMVUE. The converse is not true in general: in

certain problems, the UMVUE might not attain the Cramér-Rao lower bound.
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However, in certain problems, attaining the Cramér-Rao lower bound is not only a
sufficient condition for the estimator to be UMVUE, but also a necessary condition.
The implication goes really far: it also tells us the form that our decision rule should
have, given that it is unbiased and attains the Cramér-Rao lower bound. This form is
affine function of the score. This insight will prove to be useful later when we study

asymptotic properties of maximum likelihood estimators in Part II of the course.

Proposition 2.17 (Attainment of the Cramér-Rao bound). Under the conditions of
the Cramér-Rao theorem, equality holds if and only if

§(X) = () + V() 1(0)7'Se(X) Py-a.s.

In particular, the bound is attained if and only if 6(X) is an affine function of the score.

Proof. Fix 6 and v € R¥. Consider the scalar estimator §,(X) = v'6(X) with mean
1,(0) = vT(0). Applying the (scalar) Cramér-Rao inequality to d, gives

Vary(5,(X)) > Ve, (0) 10) Vi (0) = o7 (Vo(0) 1(0) ' Vi(6) ).

Since this holds for all v, it is equivalent to the stated matrix inequality.

Moreover, in the scalar proof the inequality comes from Cauchy—-Schwarz applied to
Covg(0,(X),a’ Sp(X)) with the choice a = I(0)~'V1),(0). Equality in Cauchy—Schwarz
holds if and only if

6o(X) —1y(0) = a' Sp(X)  Ppas.

With a = I(0)~'V(6) v, this becomes
v (0(X) —¥(0) =0V 1(0)7'Se(X)  Ppas.

for every v € R¥, which implies the vector identity in the statement. The converse

direction is immediate by substitution. O

Let us consider what this result implies. For an unbiased estimator with 1(0) = ¢(0),

Proposition 2.17 tells us that attaining the bound requires
§(X) = () + Vo(0)TI(0)71Sp(X) Pyas.

At first glance, this seems problematic: the right-hand side depends on the unknown
parameter 0 through ¢(0), Vo(0), 1(0), and Sp(X). For the estimator to be a valid
statistic—a function of the data alone—these 6-dependent terms must combine in a

way that eliminates the dependence on 6. This places strong constraints on the model:
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only in special cases does such cancellation occur. Exponential families provide the

canonical example.

Example 2.18 (Some exponential families attain the bound naturally). Consider a

natural exponential family with density
po(x) = h(x)exp (OTT(m) — A(@)) ,

where 6 € © < R? is the natural parameter and A(f) is twice differentiable. The score
1s
So(X) = Vglogps(X) = T(X) — VA(0).

Since Ey[Se(X)] = 0, we have Ey[T(X)] = VA(A). The Fisher information is
1(0) = Covy(Sp(X)) = Cove(T(X)) = V>A(6).

Now consider estimating ¢(0) = VA(0) = Ep[T(X)] by the estimator §(X) = T'(X).

This estimator is unbiased, and satisfies the attainment condition:
3(X) = 9(0) = T(X) = VA()) = Sp(X) = 1()"'Ve(8) " Sp(X),

where the last equality uses Vi) (0) = V2A(6) = I(f). Thus, the sufficient statistic

T(X) achieves the Cramér-Rao lower bound for estimating its own expectation. ¢

2.2 Invariance

In Section 2.1.1, we saw that models with a differentiable structure allow us to derive
fundamental limits on estimation accuracy through the Fisher information. Another
type of structure that proves useful is that of symmetry: if transforming the data in a
certain way corresponds to a transformation of the parameter that leaves the model’s
form unchanged, we say the model is invariant under that transformation.

When the loss function respects the same symmetry, it is often natural to restrict
attention to decision rules that also respect it. The word “natural” here has both
technical and conceptual interpretations. On the technical side, invariance can simplify
the analysis: as we will see, equivariant estimators in invariant problems have constant
risk, reducing the comparison of decision rules to a single number. On the conceptual
side, invariance captures the intuition that our estimates should not depend on arbitrary
choices such as the coordinate system (rotation invariance) or unit of measurement
(scale invariance).

This section formalizes these ideas and illustrates them in classical location, location-
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scale, and covariance models. There is much more to say on this topic than fits into
this section. The interested reader is referred to Chapter 3 of Lehmann and Romano
2005, Chapter 6 of Lehmann and Casella 2006 and Berger 2013.

2.2.1 Invariant models
The idea of invariance, or that of symmetries generally, is closely related to the concept
of a group.
Definition 2.19. A group is a set G with an operation - : G x G — G such that
1. (a-b)-c=a-(b-c) for all a,b,c e G (associativity);
2. there exists e € G with e-a = a-e = a for all a € G (identity);

3. for each a € G there exists a™! € G with a-a™' =a™! - a = e (inverse).

Groups are common objects in mathematics, and many of the most important
groups in statistics are related to groups in mathematics that we are already familiar
with.

Example 2.20. e (Z,+ :(a,b) — a+b) is a group with identity 0 and inverse —a.
e (R.g, x : (a,b) — ab) is a group with identity 1 and inverse 1/a.
« GL(p) (invertible p x p matrices) is a group under matrix multiplication.

e The permutation group &,, acts on A" by permuting coordinates.

O

Definition 2.21 (Group action). A group G acts on a set A if there is amap Gx A — A,
written (g, x) — gz, such that ex = z and g(hz) = (gh)x for all g,h € G and x € A.

The action is transitive if for all x,y € A, there exists g € G such that gr = y.

In statistical models, we sometimes have actions on the sample space X and the
parameter space ©. Sometimes, actions on the parameter space have an ‘inverse’ action
on the sample space that ‘respects’ the data generating process: whether we act on the
data, or perform the same corresponding action on the parameter, the data generating

process remains the same.

Definition 2.22 (Equivariance of a model). Consider statistical experiment with
P = {P,: 0 € R} defined on a sample space (X, Z"). Let G act on X and O, such that

its action is measurable. The model P is equivariant under G if
P(A) = Py(g ' A) forallge G, 0O, Ae 2.
Equivalently: if X ~ B, then gX ~ Pg.
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One of the most important examples of an equivariant model is the location family.

Example 2.23 (Location family). Consider a statistical experiment (R?, B(R%), P, ©)
with parameter space © = R? where P is dominated with respect to the Lebesgue
measure, with Lebesgue density p(z|f) a.e. equal to f(z — 6) for some measurable
function f: R? — [0, 00).

The model P is equivariant under the group G = (R¢, +) acting on R? by translation,
i.e. gox = x +cfor all ce R? and z € RY.

Indeed, if X ~ Py, then X + ¢ ~ Py, since

Pyio(A) = JA flx—(0+c))dr = f Af(m —0)dr = Py(A—c¢).

where we used the change of variables y = x + ¢ and translation invariance of Lebesgue

measure. <>

Many common distributions are location families, such as the normal distribution,
Laplace distribution, Cauchy distribution, etc. Another important example of an

equivariant model is the scale family.

Example 2.24 (Scale family). Consider a statistical experiment (R~q, B(R~), P, ©)
with parameter space © = R.,, where P is dominated with respect to Lebesgue

measure on R. g, with density

oo o) =1 (2)

for some measurable function f : R.y — [0, 0) integrating to one.
The model P is equivariant under the multiplicative group G = (Rq, x) acting on

R-o by scaling: g.x = cx for ¢ > 0. Indeed, if X ~ P,, then ¢cX ~ P,.,, since

Pald) = | or(Z)do= [ 2r(2)ay= ot a),

Common examples include the exponential family Exp(1/0) and the chi-squared distri-

bution scaled by o2. O

Another canonical example of an equivariant model is the multivariate standard
normal distribution; which is spherically symmetric, on top of being a location and

scale family.

Example 2.25 (Spherically symmetric normal). Consider observing X ~ Ny(0, 0%1)
with § € R? and 0% > 0 known. The group G of d x d orthonormal matrices under

matrix multiplication acts on both R? and © = R? by matrix-vector multiplication:

gor = Q.
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The model is equivariant under this action. If X ~ Ny(0,021,), then

QX ~ Nd(Qea UZQ[dQT) = Nd(@@, UQId)?

using QQT = I;. Thus QX ~ Pgy, as required.

2.2.2 Invariance and estimation

For models that are equivariant under a group action, it is natural to consider decision
rules that respect the same symmetry. The intuition is straightforward: if the statistical
problem is unchanged by a transformation, the solution should transform accordingly.
Put differently, if two scientists analyze the same data but use different coordinate
systems—one rotated relative to the other, or one using meters while the other uses
feet—their estimates should be related by the same transformation. An estimator that
violates this principle would give answers that depend on arbitrary choices having
nothing to do with the data.

Suppose we are interested in estimating 6 € O, taking D = © (with some suitable
o-algebra). The action of G on © induces an action on D by gp(d) = gd for all g € G
and d € D. In some applications it would be unnatural for the loss function to depend
on the orientation in the parameter space for which the estimation error occurs. For
example, for a GPS system, the loss of predicting a certain location should not depend
on one’s initial orientation relative to the true location. This brings us to the concept
of invariant loss.

That is, if we decide d based on data X and the true state turns out to 6 (for
which we incur loss L(#, d)), this loss should be the same as someone who decides gp(d)
based on data gX and the true state turning out to be g6 (for which they incur loss
L(g8,g9p(d))). This motivates the following definition.

Definition 2.26 (Invariant loss). Consider a decision problem (X, 2", P,0, (D, 2), L).
Suppose G acts on X', O, and D, and these actions are measurable. Write gp for the
induced action on D.

A loss function L(6,d) is invariant under G if
L(g0,9pd) = L(0,d) forallge G, # €O, de D.

A decision problem is invariant under G if the model and loss function are invariant

under G.

Example 2.27 (Revisiting the normal location model). Recall the equivariant normal
location model from Example 2.25: X ~ Ny(6,021;) with § € R? and 02 > 0 known,
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with the group G of d x d orthonormal matrices under matrix multiplication acts on
both R? and © = R? by matrix-vector multiplication: goz = Q.

If we are interested in estimating #, we can consider the loss function L(6,d) =
160 —d|?, defined on R? x RY. This loss is invariant under G since Q6 — Qd|?* = |6 —d|?,

turning the corresponding decision problem into an invariant one. O

For an invariant decision problem, it can be natural to restrict attention to estimators
that respect the same symmetry. If the data X lead us to the estimate §(X), then
the transformed data gX should lead us to the correspondingly transformed estimate

gp0(X). This motivates the following definition.

Definition 2.28 (Equivariant decision rule). Consider a decision problem with decision
space (D, ). Suppose G acts on X', ©, and D, and these actions are measurable.

Write gp for the induced action on D. A decision rule § : X — D is equivariant if
d(gx) = gp d(x) forallge G, x e X.

Equivariant estimators in invariant problems have constant risk, which greatly

simplifies the task of finding optimal procedures.

Theorem 2.29. Assume G acts transitively on © (i.e. for all 0,0 € © there exists
g € G with 0 = g0). If the model P is equivariant, the loss is invariant, and ¢ is

equivariant, then the risk R(0,9) is constant in 0.

Proof. Fix 6y € ©. For any 6 = gf,, using model equivariance and then equivariance

and invariance,

(
00, 6(X))] = R(6o, 9). 0

If we are convinced that equivariant decision rules are the natural ones to consider
in an invariant problem, then the goal becomes finding the best among them. This
is formalized by the uniformly minimum risk equivariant estimator (UMREE), which
plays a role analogous to the UMV UE in the class of unbiased estimators. Theorem 2.29
shows that every equivariant estimator has constant risk, so comparing two equivariant

estimators reduces to comparing a single number rather than two functions on ©.

Definition 2.30 (Uniformly Minimum Risk Equivariant Estimator). Consider an

invariant decision problem: a model P = {F : € O} that is equivariant under G, and
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a loss function L that is invariant under G. An estimator 6* is a uniformly minimum
risk equivariant estimator (UMREE) if:

(i) 0* is equivariant: 0*(gz) = gp 6*(x) for all g € G and z € X, and

(ii) for any other equivariant estimator d,

R(0,0%) <R(6,9) for all 6 € ©.

We now apply the general theory to one of the most important invariant problems:
estimation in a location family under squared error loss. This setting illustrates how
the UMREE can be characterized explicitly as a Bayesian posterior mean under an
improper prior.

Consider observing X = (X, ..., X,,) with joint density [ [}, f(z; —0) with respect
to Lebesgue measure, where § € R? and z; € R%. The translation group G = (R?, +)
acts on the sample space R™ by g.xr = (1 +¢,...,7, + ¢) and on the parameter
space by ¢g.0 = 6 + c. Since Lebesgue measure is translation-invariant, the model is
equivariant: if X ~ Py, then X + ¢1 ~ Py_..

For squared error loss L(6, d) = || d—0]?, the induced action on decisions is g.d = d+c,

|2 = ||[d—@|?. An estimator ¢ is equivariant

and the loss is invariant since |[(d+c¢)—(0+c)
if and only if §(z + c1) = §(x) + ¢ for all c € R?. This is a substantial restriction: for
instance, the constant estimator §(z) = 0 is not equivariant, while the sample mean
and geometric median are.

Since G acts transitively on © = R? Theorem 2.29 implies that every equivariant
estimator has constant risk. The UMREE is therefore the equivariant estimator
minimizing R(fy, ) for any fixed 6y; taking 0y = 0 is conventional. The following

theorem identifies this optimal estimator.

Theorem 2.31 (Pitman estimator in R?). Let X = (X1,...,X,) with X; € R? have
joint density [ [, f(z; — 0) with respect to Lebesque measure on R™, where 6 € RY.
Under squared error loss L(0,0) = |6 — 0|?, the (Py-a.s. unique) UMREE is

fRd Hﬁf(xi —0)df

5*(1,) _ 1=1 ’

Ldﬁf(xi—e)de

=1

provided the integrals are finite.

Proof. The translation group G = (R%, +) acts on R™ by g.x = (z; +c,..., 7, +c) and
on © = R? by g.0 = 6 + c. Since Lebesgue measure on R? is translation-invariant, the

model is equivariant. The squared error loss is invariant since |§ +c— (04 ¢)|| = |§ — 9.
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By Theorem 2.29, every translation-equivariant estimator has constant risk, so it
suffices to minimize R(0,d) = Eo[|6(X)|?] over equivariant 4.

First, 0* is equivariant: substituting n = 60 — ¢,

_ Sean+ O TT; £ (i —n) dn

0 (xy+e ..y +0) = [ TL (o — ) = 6%(x) + c.
R4 7 2

Let ¢ be any other equivariant estimator and write h = 6 —¢*. Then h is translation-
invariant. We claim Eq[(0*(X), h(X))] = 0.
By definition, §* () minimizes 3, |0—d|* [ ], f(x;—0) df over d € R%. The first-order

condition gives

JRd((s*(x) — ) Hf(a:i —0)do = 0.

Taking the inner product with h(z), integrating over x under P,, and applying Fubini’s
theorem with translation invariance of h yields Eq[(§*(X), h(X))] = 0.
Finally,

Eol|6(X)[*] = Eo[0*(X) + A(X)]]
= Eo[ 0™ (X)[*] + 2Eo[(6* (X), h(X))] + Eo[ |2(X) ]
> Eo[ 0™ (X)[],

with equality if and only if A = 0 a.s., implying 0* is Fy-a.s. unique. O

The Pitman estimator admits an elegant Bayesian interpretation: it is the ‘posterior
mean’ under the ‘uniform prior’ 7(6)ccl on RY. Although this prior is improper (it
does not integrate to a finite value), the posterior is proper whenever the likelihood is
integrable, and the resulting estimator is well-defined. The uniform prior is the right
Haar measure for the translation group—the unique (up to scale) measure on R? that
is invariant under the group action — explored in more generality in Section 2.2.3.

We now illustrate the Pitman estimator in two classical location families.

Example 2.32 (Normal location). For X; ™ Ny(0,0%1;) with 0% known, the joint
density is proportional to exp(—55 Y., |; — 0[?). Completing the square in 6, the
Pitman estimator evaluates to 0*(X) = X, which coincides with both the MLE and
the UMVUE. O

Example 2.33 (Uniform location). For X; ¢ Uniform(6,6 + 1), the joint density
is [[; Lio<a <041} = Lix,, -1<0<X}- This is constant (equal to 1) on the interval
[ X — 1, X(1y] and zero elsewhere. The Pitman estimator is therefore the midpoint of

this interval:
X(l) + X(n) -1

2

5*(X) =
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This differs from the MLE, which is any point in [X(,) — 1, X(1)] (conventionally taken
as 0 = X)) —1). The Pitman estimator uses information from both extremes, while
the MLE uses only one. O

These examples highlight that the Pitman estimator may or may not coincide with
other familiar estimators, depending on the model. For the Cauchy location family,

the Pitman estimator takes a more complex form; see Exercise 2.11.

Remark 2.34. The concept of UMREE differs from the concept of UMVUE in that the
latter is defined in the context of unbiased estimators and their variance, whilst the
UMREE is defined in the context of equivariant estimators and a specific loss function.
For different loss functions, we obtain different UMREE’s.

2.2.3 & Haar measures and the general UMREE construction

The Pitman estimator for location families relied on the fact that Lebesgue measure
is translation-invariant. This observation generalizes: for any locally compact group,
there exists a canonical “invariant measure” called the Haar measure, which allows us

to construct best equivariant estimators via the same ‘Bayesian recipe’.

Definition 2.35 (Haar measure). Let G be a locally compact topological group. A

left Haar measure on GG is a nonzero Borel measure v, satisfying
vr(gA) = v (A) for all g € G and all Borel sets A < G.

A right Haar measure vy satisfies vg(Ag) = vg(A) for all g € G and Borel A < G.

Equivalently, in terms of integrals: vy, is left-invariant if

J f(gh)dvi(h) = f f(h)dvy(h) for all g € G and integrable f.
G G

and similarly for right invariance.

Theorem 2.36 (Haar, 1933). Let G be a locally compact topological group. Then:

(i) A right Haar measure exists.

(i) Any two right Haar measures differ by a positive multiplicative constant.

The analogous statements hold for left Haar measures.

The proof of existence is nontrivial and relies on techniques from functional analysis;
see Folland 2016 for a complete treatment. For our purposes, the key point is that
Haar measures exist and are essentially unique, so they provide a canonical choice of

“uniform” measure on any group.
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Example 2.37 (Common Haar measures). (i) Translation group G = (R%, +):
Lebesgue measure df is Haar (both left and right as the group is abelian).

(ii) Multiplicative group G = (R, x): The measure dv(c) = do/o is both left
and right Haar.

(iii) Location-scale group G = {(a,b) : a > 0,b € R} with operation (aq,b;) -
(ag,bs) = (ayag, aiby + by): The left Haar measure is da db/a?, and the right Haar

measure is da db/a.

(iv) Orthogonal group G = O(d): Since O(d) is compact, the Haar measure is finite
and can be normalized to a probability measure (the “uniform distribution” on

O(d)).

(v) General linear group G = GL(p): The left and right Haar measures are
dv(A) = |det A|7P dA, where dA denotes Lebesgue measure on RP*?.

O

A group G is called unimodular if its left and right Haar measures coincide. Com-
pact groups and abelian groups are all unimodular. The location-scale group in
Example 2.37(iii) is a standard example of a non-unimodular group.

When a group G acts transitively on a parameter space ©, a Haar measure on G
induces a natural “uniform” measure on © by pushing it forward through the orbit
map. Concretely, fix a reference point 6y € © and define 7 : G — O by 7(g) = gbp; then
the induced measure on © is the push-forward 74v given by 74v(A) = v(77(A)) for
measurable A € © (and we often denote 74v simply by v). This measure is invariant
under the group action, and different choices of 8y change it only by a multiplicative
constant.

We now present the general recipe for constructing best equivariant estimators

using Haar measures.

Theorem 2.38 (UMREE via Haar measure). Consider an invariant decision problem
with model P = {Py : 6 € O} equivariant under a locally compact group G that acts
transitively on ©. Let L(0,d) be an invariant loss function, and let v denote the right
Haar measure on G, and consider the induced measure (also denoted v) on © via the
group action.

Define the generalized Bayes estimator

5*(2) = argming f L(6. d) p(]6) v (6),

provided the integral is finite. Then 0* is equivariant, and if it exists, it is the UMREE.
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Proof. See Berger 2013, Chapter 6. [

Given an invariant decision problem:

1. Identify the group G under which the model is equivariant and the loss is

invariant.
2. Verify transitivity: Check that G acts transitively on ©.

3. Compute the right Haar measure v on G (or equivalently, on © via the

action).

4. Form the ‘generalized Bayes’ estimator using v as an improper prior:
5 () — argmindepf L(6, d) p(x]6) du(0).
e

If the latter integral is finite, §* is the UMREE.

2.3 Admissibility

The idea behind admissibility is simple: we should not use a decision rule if another
rule is strictly better. The idea behind admissibility is simple: we wish to only consider

decision rules that are not strictly dominated by some other decision rule.

Definition 2.39. A decision rule § is admissible if there exists no other estimator ¢’

such that
1. R(6,¢") < R(6,0) for all § € ©, and
2. R(6,0") < R(0,0) for at least one 6 € ©.
If such a ¢ exists, we say that 0 is inadmissible and that &' dominates §.
Admissibility captures a minimal requirement: we should reject any decision rule
that is strictly dominated by another. Considering admissibility as a criterion leads
to some surprising facts and insights. Perhaps one of the most impactful insights is

the so-called Stein’s shrinkage phenomenon, which has shaped the way we think about

estimation in high-dimensional models.

2.3.1 Stein’s shrinkage phenomenon

Consider the normal means model where we observe X ~ Ny(6,0%1;), for some d € N
and o > 0, and the aim is to estimate the mean #. In the case d = 1 it seems rather

clear that if we do not know anything about the parameter 6, we can not do much
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better than estimating it by the observation X. Proving this rigorously is actually not
completely trivial, see Exercise 2.12.

For larger d it is in fact also not immediately clear whether if we assume no
further structure on 6, we can do better than simply using the maximum likelihood
estimator dype(X) = X. Clearly, X is a sufficient statistic and moreover a complete
one (Example 1.31). It is unbiased over R%, and hence it is the UMVUE. Furthermore,
it has invariance properties both in terms of location-shifts and rotations; it is the
UMREE for the normal location model with Euclidian loss. It turns out, however, that
it is possible to perform strictly better, in the sense of expected quadratic error.

To get a first indication of this fact, note that for any estimator § with a finite

covariance we have the bias-variance decomposition (Lemma 2.7)
Eo6(X) — 0]* = |Egd(X) — 0] + Tr Coved(X).

If we apply this to §.(X) = ¢X we find that Ep|d.(X) — 0|* = (c — 1)?||0|*> + *o?d,

which, for given 6, is minimal for ¢ equal to

161

TP + o2d’

and the minimal value is

2 2 2
o o-d|f] 191 2
E9H506(X> _QH = HQHQ + o2d - ”9“2 _’_Usz@H(SMLE(X) _QH .

Since cy < 1, this indicates that it might be advantageous to shrink the estimator X
towards 0, that is, to multiply it by a factor strictly smaller than 1. Since ¢y depends
on the unknown parameter #, one might argue that this is not a sensible estimator.
However, it turns out that for d > 3, we can shrink by an appropriate data-dependent
constant that leads to an estimator with an expected squared error that is strictly
smaller than that of the MLE for all 6 € R%.

Theorem 2.40 (James-Stein). Define

35 = (1- W) X

For d = 3, we have Eg|6;5(X) — 0|? < Eg|6pre(X) — 0|2 for all § € RY.

Proof. For the bias and variance of the ith component of the JS estimator we have

Xi
| X172

E¢8354(X) — 0; = 0*(d — 2)Ey
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and

X; X? 0;X;
Varpdys(X) = o + o*(d — 2)*Varg——— — 20%(d — 2) (Eg L — By ) ,
| X2 DY P
respectively. (Note that since Eg1/|| X |? is finite if and only if d > p, all expectations
here are finite for d > 3. See Exercise 2.13.) It follows that the mean squared error of

the estimator is given by

1 Xi(X; — 6))
od + o*(d — 2)°E, —20%(d - 2) Fy 2
| X Z | X

(check!). By Lemma 2.41 below,

Xz(Xz - 0,) O'2 0'2)(»2
E =E —9E,—%.
TIX X X

Hence, the mean squared error (MSE) Eyl|dy5(X) — 6[* equals

1

o?d — o*(d — 2)*Ey :
| X172

Since the MSE of the MLE dyrg(X) = X equals do?, this completes the proof. O]

The key tool used in the proof above is Stein’s lemma, which provides a useful

identity for expectations involving Gaussian random variables.

Lemma 2.41. Let X ~ Ny(0,1;) and let f : R — R be an absolutely continuous (in
each coordinate a.e.) function such that By|(0f/0x;)(X)| < o fori=1,...,d. Then

fori=1,...,d,
af
(31'2'

Proof. Integration by parts, see Exercise 2.14. O

Eo(X; — 0;) f(X) = Ey

(X).

The James-Stein theorem gives a number of very interesting insights in statistics for
‘high-dimensional’ models. It shows that by shrinking the MLE towards zero, thereby
reducing the variance at the cost of increasing the bias, we obtain an estimator with a
strictly better risk Eq|6(X) — 6]?. Moreover, although the observed X; are independent
by assumption, the shrinkage factor depends on all the observations. Hence, to estimate
the ith component 6;, we do not only use the information in X, but we also borrow
strength from the other observations, even though they are independent coordinate
wise.

One argument that Stein (1956) used to intuitively justify the concept of shrinkage
is the observation that if X ~ Ny(6, 1;), then by the law of large numbers it holds for
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large d that | X|? ~ |6]* + d. So the norm of the MLE X is typically substantially
larger than the norm of the parameter 6 it is supposed to estimate. Therefore, it may
be beneficial to shrink the vector X so that the norm is reduced.

Alternatively, we may argue that shrinking reduces the contributions of outliers, i.e.
relatively large observations X;, on the squared estimation error. This possibly comes
at the cost of increasing the error made in the other coordinates, but the net effect
is that shrinking improves the total squared error |[d;5(X) — 60| of the estimator on
average. Observe that this reasoning indicates that it is essential that we assess the
quality of the estimator using a norm that simultaneously takes all coordinates of 0
into account. This allows us to trade off gains in one coordinate with losses in others.

The James-Stein theorem can be generalized in many directions, for instance away
from the normal distribution with unit variance, using other norms, other statistical
models, et cetera. The precise form of the shrinking is not crucial either. Shrinking
towards a fixed point v € R? other than 0 works just as well for instance (see Exercise
2.15). The general message is always that in high-dimensional settings it is typically
advantageous to somehow reduce the variance by shrinking, or otherwise regularizing.
We explore this further in the next section.

Theorem 2.40 shows that for d = 3, the MLE dypg(X) = X is inadmissible in the
model X ~ Ny(0,1;), with respect to the squared Euclidean risk. By definition, this
means that there exists another estimator ¢ such that Ey|d(X)—0|? < Eg||onre(X)—0)|?
for all € R?, with strict inequality for at least one # € R?. The theorem asserts that
the James-Stein estimator is such an estimator. It can be shown however that the
James-Stein estimator itself is inadmissible as well. For example the positive part Stein

estimator d_o
) +(X)=<1—_ ) X
s 1X12 ) .

is an estimator with strictly smaller risk for all # € R?. See for instance Section 3.4 of
Tsybakov (2009). Unfortunately, d;q+ is not admissible either. It turns out that finding
an admissible estimator is easy if we take a Bayesian approach — both in terms of its

construction and in terms of verifying its admissibility — we will discuss this in Chapter
4.

2.3.2 Bias-variance trade-off

The Stein-shrinkage phenomenon demonstrates that in high-dimensional settings, trad-
ing bias for variance can yield strict improvements over the best unbiased estimator.
This raises a natural question: how far can we push this trade-off? Can we achieve arbi-
trarily good performance at a particular parameter value by accepting bias elsewhere?

In Example 2.16, we saw an estimator that achieves variance strictly below the
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Cramér-Rao bound at a specific point 6; by being unbiased only at that point rather
than in a neighborhood. Taken to the extreme, the ‘guesstimator’ 6(X) = 6; is
admissible—it achieves a risk at #; which no other estimator can beat. Of course, this
estimator performs terribly elsewhere in the parameter space. Intuitively, there is a
‘no-free-lunch’ principle at play: exceptional performance at one parameter value must
come at the cost of degraded performance elsewhere.

The following example demonstrates this phenomenon concretely: a pretest estima-
tor that achieves dramatically reduced risk at § = 0 suffers substantially inflated risk

at nearby parameter values.

Example 2.42 (Test first, then estimate). Let X ~ N(6,0?) and consider squared
error loss. The MLE dypg(X) = X has constant risk R(6, d\g) = 0.
Fix t > 0 and define the pretest (hard-threshold) estimator

0, |X]|<t,

0(X) =
X, [X]|>t.

At 6 = 0, writing Z ~ N(0,1) and taking o = 1 for simplicity,
R(0,6,) = E[Z*1{|Z] > t}] = 2(te(t) + ®(—t)),

so for instance ¢t = 3 gives R(0,d3) ~ 0.029. We know from the fact that the MLE
is admissible in this setting (Exercise 2.12) that there must be some 6 such that
R(0,03) > R(f,X). This is indeed the case: R(2,d3) ~ 3.766 > 1. For |#| — oo, the
R(0,63) approaches that of R(#, X). The cost for performance at § = 0 is paid for by

a worse performance ‘nearby’ 6 = 0. O

Example 2.42 suggests that dramatic gains at one parameter value force losses
nearby. Can we quantify this trade-off? The Cramér-Rao bound provides one such
tool, but it requires differentiability of the model and is most informative for unbiased
estimators. For biased estimators, or for models lacking smooth structure, we need a
more general approach.

Understanding this cost is not merely of theoretical interest. Later in this chapter,
we will encounter models where trading bias for variance is not optional but necessary—
unbiased estimators may not exist, or may perform poorly. To navigate such settings,
we need tools to characterize the fundamental limitations on estimation.

The constraint risk inequality offers exactly this. The idea is simple: if two
distributions Py and P, are ‘similar’, yet the parameters f and g are far apart, then no
estimator can perform well at both. An estimator that gets close to f under Py will

tend to be far from g under P, and vice versa.
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To make this precise, we need to quantify two notions of distance: distance between
parameters and similarity between distributions. For parameters, we use a (semi-)metric

d on ©. For distributions, we use the Bhattacharyya coefficient

p(Py, Py) = f /P Dy dp,

which measures the overlap between two densities. Geometrically, p(Pf, P,) is the cosine
of the angle between ,/p; and ,/p, viewed as unit vectors in L?(u). This geometric
viewpoint on the space of densities has (implicitly) already appeared in our discussion

of differentiability in quadratic mean.

Lemma 2.43 (Constraint Risk Inequality). Let (©,d) be a (semi-)metric space and
let Py, P, be probability measures on (X, Z") dominated by a common measure p, with

densities py and p,. For any estimator 6 : X — © and any f,g € O,

VEd(, £ +\/E,d(5.9)* = d(f.9) - p(Py. F).

Proof. By the triangle inequality, for all x € X,
d(f,0(x)) +d(0(z), g) = d(f,9).
Multiplying both sides by +/ps(x)py(x) and integrating with respect to p gives

fd(ﬂ 0)\/Ds Pg dpt + Jd(& 9INDPsPgdp = d(f, g) - p(Py, Py).

For the first term, the Cauchy-Schwarz inequality yields

Jd(f, 0)/Pr - /Py dpp < \/Jd(f, 6)%pydp - \/fpg dp = /Ezd(f,0)%.

The same argument applied to the second term completes the proof. O

The constraint risk inequality reveals a fundamental tension in estimation. The
right-hand side, d(f, g) - p(Py, P;), captures the difficulty of the estimation problem
between f and g: it is large when the parameters are far apart (large d(f,g)) vet
the distributions are similar (large p). When this product is large, the sum of the
root-MSEs at f and g must also be large—no estimator can perform well at both.

The bound is most informative when p(Py, P,) is not too small. If P; and P, are
nearly orthogonal (p ~ 0), the bound becomes vacuous; but this is unsurprising, since
very different distributions are easy to distinguish. The interesting regime is when

statistical similarity coexists with parameter separation.
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We apply the constraint risk inequality in more complicated settings in Section 2.4.1,

but for now let us illustrate it in a model where the Cramér-Rao bound does not apply.

Example 2.44. Let X,,..., X, < Uniform(0, 0) for 6 > 0. We use Lemma 2.43
to show that the 6%/n MSE achieved by the unbiased estimator ”THX(R) cannot be
improved by allowing an estimator to be biased.

For 6; < 65, the densities pg, = 67 '1[9,] and pg, = 63 ' 1[g4,] overlap only on [0, 61],

SO
p(Pay, Pa,) ﬁl i =[O
T =
015 92 0,0, 0,
For the product measure of n observations, p(Pb,1 ,P = (0,/65)"?. Lemma 2.43

then gives, for any estimator 9,

9 n/2
VEg, [0 — 012 + A/ Eg, |0 — 0s]2 = (05 — 6,) <91>
2

Writing 0, = 6, + € for small € > 0, the right-hand side is approximately e - e="</(201),
For any € € [61/n,30,/n], this quantity is at least of order #;/n. In particular, for any
estimator § and any 6, € [0; + 61/n,0; + 30 /n], either Eg, |6 — 61| or Eg,|d — O]* must
be at least of order 6%/n?.

Since the above recipe works for arbitrary 6y, this rules out estimators that attain
MSE’s of a smaller order than 6?/n across the parameter space, no matter how large

or small n and 0 are.

O

2.4 Minimax paradigms

Admissibility is a minimal requirement: it rules out estimators that are uniformly
dominated, but little else. The guesstimator §(X) = 6, is admissible—no estimator can
beat it at 6;—yet it is clearly unsatisfactory. Admissibility tells us which estimators to
avoid, but does not prescribe how to choose among the many that remain.

The constraint risk inequality shows that trade-offs across the parameter space
are unavoidable: exceptional performance at one parameter value must be paid for
elsewhere. But how should we navigate these trade-offs?

The minimax paradigm takes the pessimist’s view: assume the worst and optimize
accordingly. Rather than asking “is there any 6 where this estimator is dominated?”
(admissibility), we ask “what is the largest risk this estimator can incur?” and seek
to minimize this worst-case risk. Where admissibility is permissive—accepting any
estimator that is not uniformly beaten—minimaxity is demanding: it insists on the

best possible guarantee against the least favorable parameter value.
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Definition 2.45 (Minimax risk and minimax estimator). Consider a decision problem
(X, Z2°,P,0,(D,2), L) and let C denote the class of all (possibly randomized) decision
rules 6 : X — D.

The minimax risk is defined as

* . s
R* := }SIE%%ESR(H,(S).

A decision rule 6* is called minimaz if it achieves the minimax risk:

sup R(0,0") = R*.
0O

The quantity supg.g R(0,9) is called the mazimum risk (or worst-case risk) of ¢.

The minimax criterion can be interpreted as a two-player zero-sum game. In an

estimation problem, the statistician chooses an estimator §, and then “nature” (or an

adversary) chooses the parameter # to maximize the risk. The minimax estimator is the

statistician’s optimal strategy in this game, guaranteeing the best possible worst-case

performance.

Remark 2.46 (Pessimism or robustness?). The minimax approach is sometimes criticized

as overly pessimistic (or overly conservative): why should we optimize for the worst

case when it may rarely occur? However, this perspective has several compelling

justifications:

(i)

(i)

(iii)

(iv)

Robustness: The minimax estimator provides a strong statistical guarantee—its

risk never exceeds R*, regardless of the true 6.

Ruling out super-efficiency: As we saw in Example 2.42, achieving exceptionally
low risk at some 6 values necessarily inflates risk elsewhere (cf. the constraint
risk inequality). Minimax estimation explicitly penalizes such greedy trade-
offs, forcing estimators that do not sacrifice worst-case performance for gains at

favorable parameter values.

Unknown or adversarial settings: In some applications, # may be chosen by an
adversary (e.g., in game theory or robust statistics) or may represent a “hard”

instance. The minimax estimator is natural in such settings.

Submodel flexibility: Nothing prevents us from considering minimax risk over a
subset ©' < ©:

sup R(6,9) < sup R(6, ) (2.3)
6ee’ 6c0

This allows us to calibrate our pessimism to the problem at hand. By considering

various subsets ©’, we can study how the difficulty of estimation depends on the
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region of the parameter space. Comparing minimax risks across nested subsets
reveals which parts of the parameter space drive the difficulty of the problem.
For certain models, the minimax risk is only non-trivial for such restriction
— for example the uniform distribution studied in Example 2.44. Indeed, in

example shows infs sup,y.e R(6,0) = o0 an iid sample of size n from Uniform|0, 6],
6e© =(0,00).

Restriction to estimator classes: Rather than optimizing over all decision rules
C, we may restrict to a subclass ' < C—for instance, unbiased estimators,

equivariant estimators, or linear estimators. This yields

inf sup R(6,0) < inf sup R(0,9).
0eC 9O 0eC’ pec

The UMVUE and UMREE can be viewed through this lens: they are minimax

within their respective estimator classes.

Finding minimax estimators and determining the minimax risk is generally difficult:

the definition involves an infimum over all estimators and a supremum over the

parameter space, neither of which admits a direct computation in most problems. We

now present several tools that simplify this task in structured settings.

Our first tool connects back to the theory of equivariant estimation developed in

Section 2.2. Recall that in invariant decision problems—where both the model and loss

respect a group symmetry—equivariant estimators have constant risk (Theorem 2.29).

This

dramatically simplifies the minimax problem: among estimators with constant

risk, the one with the smallest risk is automatically minimax.

Theorem 2.47 (Hunt-Stein for compact groups). Consider a decision problem where

a locally compact abelian group G acts on X, ©, and D = ©. Assume:

(i)
(i)
(ii)

(D).

the action of G on © is transitive,
the model is equivariant under G,

the loss L is invariant under G and d — L(0,d) is convez for all .

Then the UMREE 6* is minimaz.

Let 6* be best equivariant with constant risk r*. Let v be the Haar measure on G,

and let G; < Gy < - -+ be an increasing sequence of compact sets with 0 < v(G,,) < «©
and | J, G, = G. For any estimator §, define

) = gy | o7t dvto)
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Since v, :=v(-nG,,)/v(G,) is a probability measure, convexity and Jensen’s inequality

give
_ 1 .
L) < g | 10,07 0(gm) dvlg)

Taking expectations and using invariance of the loss and equivariance of the model,

R(0,6,) <

v(G,) Ln R(g0, ) dv(g) < sup R(¢',9).

For abelian G, the sequence 4, converges to an equivariant estimator ¢ satisfying

*

the same risk bound (Exercise 2.19). Since ¢ is equivariant, R(#,5) = r*. Hence

supy R(6,0) = r* for all d, so §* is minimax. O

We now apply the Hunt-Stein theorem to determine the minimax risk in the Gaussian
location model, and examine how this interacts with the James-Stein phenomenon

from Section 2.3.1.

Example 2.48. Consider X ~ Ny(6,0%1;) with § € R? under squared error loss
L(6,58) = |6 — 6|?. This is a location family: the translation group G = (R%, +) acts on
X =R?%and © = R? by g.(z) = x + ¢, the model is equivariant, the loss is invariant,
and G is locally compact abelian.

By Example 2.32, the (UMREE) Pitman estimator is 6*(X) = X. It has constant
risk R(6,6*) = Ey| X — 0||* = do?. By the Hunt-Stein theorem, ¢* is minimax, so the
minimax risk for the estimation problem of estimating 0 € R? is do?.

For d = 3, Theorem 2.40 shows that the James-Stein estimator satisfies
R(0,655) = do? — (d — 2)*0' e[| X|7?] < do® for all € R%.

Thus the James-Stein estimator is also minimax. As |#| — oo, the correction term
vanishes and R(6, d;5) — do?, so supy R(6, d;5) = do?.

The moral is that minimaxity and admissibility are complementary criteria. We
now have two minimax estimators: the UMVUE/UMREE/MLE and the James-Stein
estimator. In high dimensions, the minimax criterion alone does not distinguish between
X and d;s—both achieve the same worst-case risk. Admissibility could break the tie:
among minimax estimators, we might prefer those that are not dominated. Morover,
for any bounded subset ©' < O, supye R(0,d15) < supgee R(0,0): if we are even
slightly more optimistic than worst case across the entire parameter space, we prefer

the James-Stein estimator. O

Despite appearing to be opposing viewpoints, admissibility and minimaxity are not

incompatible. In fact, minimaxity can imply admissibility under the right conditions.
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Theorem 2.49 (Unique minimax implies admissible). If 6* is the unique minimaz

estimator, then 6* is admissible.

Proof. Suppose 0* is unique minimax. If ¢’ is any other estimator, then by uniqueness,
sup R(6,0%) < sup R(6,0").
0 0

This implies there exists some 6y € © such that R(6y,d*) < R(6y,0’), so ¢’ does not
dominate §*. Since ¢’ was arbitrary, 0* is admissible.

Alternatively, suppose for contradiction that 0* is inadmissible, so some ¢’ dominates
it: R(0,0") < R(#,0*) for all 8, with strict inequality for at least one #. Then

sup R(0,d") < sup R(,0%) = R,
6 6

so 0’ is also minimax—contradicting the uniqueness of 0*. O]

As Example 2.48 illustrates, uniqueness often fails in simple settings: both the
MLE and James-Stein estimator are minimax for the Gaussian location model when
d = 3. When multiple minimax estimators exist, admissibility provides a criterion for
choosing among them.

We now turn to another tool for establishing minimaxity: the submodel flexibility
noted in (2.3). If we can identify a submodel Py < P that captures the “hardest” part

of the problem, then finding the minimax estimator over P, suffices.

Lemma 2.50. If ¢ is minimax for 6 under P € Py < P and

sup R(P,6) = sup R(P,§),

PePy PeP
then ¢ is minimax for 0 under P € P.

Proof. For any other estimator ¢,

sup R(P,¢") = sup R(P,d") = sup R(P,d) = sup R(P, ).
PeP PePy PePy PeP

]

We illustrate the power of this lemma by reducing a vast nonparametric problem to

the Gaussian location model, where the Hunt-Stein theorem applies.

Example 2.51 (Population mean with bounded variance). Consider the nonparametric

model
P = {P®" : P probability measure on (R, B(R)) with Varp(X) < M}
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for some known M > 0. We wish to estimate ¢(P) = Ep[X] under squared error loss.
The sample mean has risk R(P, X) = Varp(X)/n < M/n, with equality when
Varp(X) = M. To show X is minimax, consider the Gaussian submodel Py, =
{N(H,M)®" : § € R}. This is a location family, so by the Hunt-Stein theorem, X is
minimax over Py with constant risk M /n.
Since Py < P and X achieves its maximum risk M /n on the submodel Py,

Lemma 2.50 implies that X is minimax over all of P. O

2.4.1 Minimax rates

For some models, like the Gaussian location model studied in Example 2.48, the minimax
risk is relatively easy to compute exactly in terms of various problem characteristics,

such as dimension, variance, or sample size. Let us summarize the findings thus far.

Example 2.52 (Minimax rate for the Gaussian location model). Consider the family of
Gaussian location estimation problems indexed by i = (n,d,0?) € N x N x (0,00). For
cach i = (n,d,02), we observe X1,..., X, "¢ Ny(0,0%I,) and wish to estimate 6 € R¢
under squared error loss L;(0,0) = |6 — 6.

From Example 2.48, the minimax risk for a single observation (n = 1) is do?. For n
i.i.d. observations, it suffices to consider the sufficient statistic X ~ Nq(6, 0%14/n) (by
Rao-Blackwell, Theorem 1.43), so rescaling gives minimax risk

2
pe o, do”
n,d,o n

We can extract rate information by examining how the risk scales with each character-
istic; how much difficult does the problem become when we increase e.g. dimension,

variance or how much easier it becomes when we increase the sample size. O

When the exact minimax risk is difficult to compute, we often settle for characterizing
its rate—how the minimax risk scales with problem characteristics. This coarser lens is
powerful: it allows us to compare the difficulty of different estimation problems and to

identify which estimators are “rate-optimal” without pinning down exact constants.

Definition 2.53. Consider a collection of decision problems, indexed by i € I, given
by the tuple (X;, 23, P;, ©4, (Di, Z;), L;) with risk function R;. The minimaz rate is a

function r : I — R such that

c,r (1) < inf sup R;(0,0) < Cyr (i)
5 geo,

for some constants c,, Cy > 0 and for all 7 € I.
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Knowledge of the exact minimax risk immediately yields the rate: in Example 2.52,
the minimax rate is r(n,d, %) = do?/n with constants ¢, = C, = 1. More often,
exact constants are intractable but the rate remains accessible. Proving a minimax
rate requires two ingredients: an upper bound (exhibiting an estimator achieving risk
O(r(i))) and a lower bound (showing no estimator can do better than (r(7))).

In many nonparametric problems, achieving the optimal rate requires carefully
balancing bias and variance—neither the unbiased estimator nor the lowest-variance
estimator is rate-optimal. The minimax rate framework helps identify the correct
trade-off, even when exact constants remain elusive. We illustrate with a classical
nonparametric model where the exact minimax risk is unknown, but the rate can be
determined.

Consider observing Xi,..., X, id f where f is an unknown probability density
on [0,1]. Rather than estimating the entire density, we focus on a simpler target:
evaluating f at a fixed point z¢ € (0, 1).

Without restrictions on f, this problem is hopeless—the density could have arbitrary

local behavior near xg. We therefore assume f belongs to a Hdlder smoothness class.
For 8 > 0 and M > 0, define

Fp(M) = {f [0,1] = Ry Llf =1 |f®(@) = fOy)] < Mz —y|* for all 2,y € [0, 1]},

where k = || is the number of derivatives and o = § — k € [0,1) controls the
smoothness of the kth derivative. The case = 1 corresponds to Lipschitz densities;
[ = 2 requires a Lipschitz first derivative; and so on. Larger  means smoother
densities, which should make estimation easier.

Formally, the statistical model is P = {PF" : f € Fg(M)}, where Py denotes the
distribution on [0, 1] wit Lebesgue density f.

Consider the family of estimation problems indexed by i = (n, ) € N x (0, ), with
parameter space ©; = Fz(M) for fixed M > 0, and loss L;(f,8) = (6 — f(z0))*

We are interested in determining the minimax rate for the minimax risk

Riy=inf sup Ef(6— f(zo)?]
feFs(M)

First interesting observation: the problem has no unbiased estimator.

Proposition 2.54. Consider the decision problem corresponding to estimating f(xo)
for a fized xo € (0,1) on the basis of n i.i.d. observations X1,..., X, ~ f(x)dx from

[ € Fs(M). For any sample size n = 1, there is no unbiased estimator of f(xo).

Proof. Exercise 2.22. O
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Since no unbiased estimator exists, we must navigate the bias-variance trade-off.
The minimax rate framework tells us how to do this optimally.

If f were constant in a neighborhood of z, then the probability that X; falls in an
interval [zg — h, zg + h] would be approximately 2h - f(xg). Counting observations in
this interval and dividing by 2nh would give an unbiased estimator. Of course, f is
not constant, so this procedure introduces bias—but if f is smooth and A is small, the
bias should be small.

This reasoning leads to the kernel density estimator

0= ()

where K : R — R is a kernel function satisfying { K = 1, and h > 0 is the bandwidth.
The simplest choice is the box kernel K (u) = $14<1}, which recovers the histogram-
style estimator described above. Smoother kernels (e.g., the ‘Gaussian kernel’ K (u) =
\/#2—”6’“2/ %) yield smoother estimates but the same asymptotic behavior.

The bandwidth A controls the bias-variance trade-off. A small h means we average
over a narrow window, capturing local behavior but using few observations—low bias,
high variance. A large h averages over many observations but blurs local structure—low
variance, high bias.

To quantify this, we analyze the bias and variance separately. For the bias, Taylor

expansion of f around zy combined with the Hélder condition yields (see Exercise 2.20)

B[ fi(z0)] — f(zo)| < C1A°

for a constant C; depending on M and K. The smoothness [ determines how quickly the
bias vanishes as h — 0: smoother densities have smaller bias for the same bandwidth.

For the variance, each summand +K(£:-%) has magnitude of order 1/h and is
nonzero with probability of order h. ThlS gives (see again Exercise 2.20)

Vary(fulao) < 2

for a constant Cy. The variance decreases with n (more observations) and increases as
h — 0 (narrower window).

By Lemma 2.7, we obtain

G
nh’

A

Ef[(fn(20) — f(z0))?] < C2h* +

This expression captures the bias-variance trade-off: as h decreases, the first term

shrinks but the second grows. The optimal bandwidth A* minimizes the sum by
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balancing the two terms. Setting h?® = 1/(nh) and solving yields

B — g 1/28+1)
Substituting back, both the squared bias and the variance are of order n=2%/(25+1)
giving

sup B s[(fux (o) — flx0))?] < n~ /5D,
feFs(M)

This establishes an upper bound on the minimax risk: there exists an estima-
tor achieving rate n=2%/#+1)  But is this the best possible? Perhaps a cleverer
construction—something other than kernel estimation—could achieve a faster rate. To
rule this out, we need a lower bound showing that no estimator, however ingenious,
can do better.

The constraint risk inequality (Lemma 2.43) is the key tool. Recall the intuition:
if two parameter values fy and f; generate statistically similar distributions yet have
well-separated values of the target functional f(z¢), then no estimator can perform
well at both. The product |fi(xo) — fo(ao)| - p(PE", PP") measures this tension, and
the constraint risk inequality converts it into a lower bound on the worst-case risk.

We construct a pair of densities that are hard to distinguish. Let fy = 1 be the

uniform density on [0, 1], and let

f1:1+6¢h7

where 1)y, is a smooth bump function centered at zy with support of width A, normalized
so that {4y, = 0 (ensuring f; integrates to one) and scaled so that both fy and f; lie in
F5(M). The Hélder constraint forces the bump to have height at most of order h%: a
taller bump would violate the smoothness condition. Thus |fi(zo) — fo(zo)| = eh®.
How similar are the distributions P]%” and Pﬁ"? The Bhattacharyya coefficient
satisfies (Exercise 2.21)
p(PE", PP") = (1 —c'€h)"

for a constant ¢ > 0. For small enough peturbations, the distributions remain close
(Bhattacharyya coefficient near 1) — provided ne?h < 1; they become distinguishable
when ne?h » 1. This reflects the intuition that n observations, each falling in the bump
region with probability h, provide roughly nh “effective observations” for detecting a
perturbation of size e.

Applying Lemma 2.43:

\/Efo(5 — fo(wo))? + \/Ef1(5 — fi(20))? = | fi(x0) — folzo)| - p(PE", PE").
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The left-hand side is bounded by 2/sup; E;[(0 — f(x0))?]. Consequently, the worst-
case risk of any estimator ¢ is bounded below by the square of the right-hand side. The

right-hand side is of order eh”® when ne?h < 1. Choosing € as large as possible subject

to this constraint gives ¢ = (nh)~"/2, and hence the minimax risk satisfies
h26 hQB—l
R, 2 éh% = — =
™ nh n

This bound holds for any & > 0. Optimizing over h—choosing h to maximize the lower

bound—yields h = n~Y#*+1 and substituting gives

inf sup E;[(6 — f(x0))?] 2 n /D),
0 feFs(M)
Combining the upper and lower bounds, we conclude that the minimax rate for
estimating f(zo) over the Holder class Fg(M) is
R* p - n—26/(2,3+1).
The kernel density estimator with optimally chosen bandwidth is rate-optimal: no

estimator can achieve a faster rate, and the bias-variance trade-off we identified is

indeed the correct one.

Remark 2.55 (CDF vs density estimation). The contrast with CDF estimation (Exam-
ple 2.11) is instructive. The empirical CDF F,(t) = 1 37" I¢x,<y is unbiased for F(t)

T on
12 Why is density estimation so much harder?

and achieves the parametric rate n~

Geometrically, the CDF integrates the density up to ¢, averaging over a macroscopic
region. This averaging stabilizes estimation: whether or not X; falls below ¢ is
informative about F'(t) regardless of the local shape of f. The density at a point,
however, describes infinitesimal behavior—how much probability mass is packed into
an arbitrarily small neighborhood of xy. No finite sample can resolve infinitesimal
structure without assumptions, which is why smoothness (the Holder condition) is

essential and why the rate n=2%/#+1) is slower than n~'/? for any finite 3.
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Exercises

FExercise 2.1 (UMVUE for the mean). Consider the (nonparametric) model correspond-
ing to observing Xi,..., X, i.i.d. from an unknown distribution P on (R, B(R)) with

finite variance. We wish to estimate the population mean ¢(P) = Ep[X;].

(a) Show that the sample mean X,, = 1 3" | X; is the UMVUE for ¢(P) = Ep[X1].
You may use the result from Exercise 1.17 that the order statistics are a complete

sufficient statistic for this model.

(b) Show that the sample variance 5* = -1 37" | (X; — X,,)? is the UMVUE for the

-1
population variance o?(P) = Varp(X}).

Ezercise 2.2 (UMVUE for the CDF in the normal mean model). Consider a statistical
model corresponding to X1, ..., X, " N(6,02), 6 € R unknown, known variance 2 > 0.
We wish to estimate the CDF at a fixed point ¢, i.e., ¢p(0) = ®((t — 0)/0).

(a) Show that the UMVUE for ¢(0) is given by

t—X
e

(b) Compare the variance of §(X) with the variance of the empirical CDF F),(t) =
%2?21 Iix,< of Example 2.11. Which one is smaller and why?

Ezercise 2.3 (Linear model). Let Y ~ N, (X3, 021,) for unknown § € R? and o2 > 0,

where X € R"*P has full column rank.
(a) Show that (Bors, s2), where Bors = (XTX)'XTY and % = n—ipHY — XBows|?,

is a complete sufficient statistic for (3, c?).
(b) Conclude that BOLS is the UMVUE for £.

(c¢) Recall that the Gauss-Markov theorem states that Bors is the Best Linear
Unbiased Estimator (BLUE) regardless of the distribution of Y, as long as it has
mean X 3 and covariance o21,,. How does the UMVUE property under normality
relate to the BLUE property?

Ezxercise 2.4 (Bias-Variance Decomposition). Prove Lemma 2.7.
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FEzercise 2.5 (Consistency and Bias). Let 01,05, ... be iid. random vectors in R? with
finite covariance matrix ¥ and mean vector y. Consider ‘the estimator’ 6, = — Dije éj
of 0 € RY. Show that E[|f,, — 0||2] — 0 if and only if E[d;] = 6.

FEzercise 2.6 (Uncorrelated with 0-unbiased estimators). Let §(X) have finite variance.
Show that a necessary and sufficient condition for ¢ to be the UMVUE of its expectation
g(0) = Eg[0(X)] is that Covy(d(X),U(X)) = 0 for all # € © and all statistics U such
that Ey[U(X)] =0 for all § € © (i.e., U is an unbiased estimator of zero).

Ezercise 2.7 (Cramer-Rao Lower Bounds). (a) Let X1,..., X, "¢ N(6,0?) with known
variance 0% > (0. Compute the Cramer-Rao lower bound for the variance of any

unbiased estimator of 6 € R.

(b) Let X1, ..., X, * Bernoulli(p) for p € (0,1). Derive the Cramer-Rao lower bound
for the variance of any unbiased estimator of p. What is the noticeable difference

compared to the normal distribution case? What is the worst-case lower bound
(over pe (0,1))7

Ezercise 2.8 (DQM implications). The aim is to prove Lemma 2.13. Throughout, let p

be a dominating measure for the model with densities py = dPy/dp.

(a) Show that /pg, /Po+n € L*(11), and conclude that Aj, := \/pgsn — /Do € L*(10).

(b) Using part (a) and the fact that L?(u) is a vector space, conclude that h'Sy./pg €
L?(p) for all sufficiently small h and hence () = Ey[SpS, | has all entries finite.

(c) Using the algebraic identity a—b = (yv/a—v/b)(y/a++/b) and the DQM expansion,
show that
Porn — Do = h' Sgps + T,

where 7, is a remainder term that you should specify explicitly in terms of
T = \/Po+h — /Do — 50" Sor/Pe.

(d) Let T : X — R satisfy Fy[T?] < oo. Show that the contribution of the remainder
term to ¥ (0 + h) — 1 (0) is negligible:

f T(a)in(z) du(z) = o |h).

Hint: Use the Cauchy-Schwarz inequality and the bound |72, = o(|A])).

(e) Combine the results of parts (c¢) and (d) to conclude that if Ey[T?] < oo for
all @ in a neighborhood of 6, then (0') = Ey[T] is differentiable at 6 with
Vip(0) = Ep[T - Sp]-
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FEzercise 2.9 (Covariance matrix estimation as an invariant decision problem). Let
Xi,..., X, X N,(0,%) with ¥ positive definite, so the sufficient statistic is S =
S X X;" ~ Wishart,(n,X). The parameter space is © = S, the set of p x p
positive definite matrices.

Consider the general linear group G = GL(p) acting on data by ga(X1,...,X,) as
(A, X;) — AX; (equivalently, gaS = ASAT) and on parameters by g4> = ALAT.

(a) Show that the model is equivariant under this group action.

(b) The squared Frobenius loss L(3,d) = |6 — 3|%, where |M|p = /Tr(MTM) is
the Frobenius norm, is not invariant under this action. Verify this by finding
matrices A, ¥, and ¢ such that L(AX AT, ASAT) # L(X, ).

(c¢) The Stein loss is defined as
Ls(2,0) = Tr(0%7) — log[6%71 — p.

Show that Stein loss is invariant under the action of GL(p).

Ezercise 2.10 (Pitman estimator for a scale family). Let X, ..., X, "¢ Exp(o) with

density f(x | o) = %e*x/" for x > 0 and o > 0. We wish to estimate o under the

o~ (2-1)'

(a) Verify that this loss is invariant under the multiplicative group G = (R~g, x)

scale-invariant loss

acting by g.c = co and g.0 = 0.

(b) Show that an UMREE estimator is of the form 0*(z) = a), , z; for some
constant a > 0. Hint: Consider an equivariant estimator 0(cx) = ¢d(x) and its

Rao-Blackwellization §* = E,[0(X) | X], where X =n~1 3" | X,

(¢) Find the UMREE by minimizing R(1,6*) in a > 0. Hint: If X; * Exp(1), then
>, X; ~ Gamma(n, 1).

FEzercise 2.11 (Pitman estimator for the Cauchy location family). Let Xq,..., X, Y
Cauchy (6, 1) with density
1

f(x—@)=ﬂ<1+(x_6)2), reR, feR.

(a) Write down the Pitman estimator for § under squared error loss.
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(b) For n = 2, show that the Pitman estimator can be written as

X +X, 1
§H(X, Xp) = 222 -

2 2

o (555)

for some odd function g : R — R, and reason that g = 0.
Hint: Use the substitution n = 6 — % and let u = %
(c¢) For n = 3, show that as x3 — oo with xq, s fixed, the Pitman estimator satisfies

+
5*(1'1,332,1)3) - o 2 xz'

Interpret this result.

Ezercise 2.12 (Admissibility of the MLE in the normal mean model for d = 1). For
d =1 and d = 2 the MLE X is admissible in the model X ~ Ny(6, ). This exercise
deals with the case d = 1. So we assume that X ~ N(6,1). The goal is to prove that
there exists no other estimator  such that Ep(d — 0)2 < Ey(X — 0) for all 6 € R, with
strict inequality for some 6 € R.

For 7 > 0, consider the N (0, 7) prior on the parameter §. Denote the corresponding

prior density by 7.

(i) Show that if an estimator § as described above would exist, then there would
exist an € > 0 and 0y < #; such that

01

= JEQ«Q )2 (0) d > sf .(0) do.

0o

(ii) Let 0, be the posterior mean corresponding to the prior 7. Compute the

corresponding Bayes risk
JEg(éT — 60)*7.(6) db.

You may use without proof that the posterior mean minimizes this integrated

risk among all estimators.

(ili) Using the results of (i) and (i), show that if an estimator § as described above
would exist, then A
1—(Ey(0—0)*m.(0)do
1— ( Ey(0, — 02m,(0)d0

as 7 — 00. Derive a contradiction.
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Remark 2.56. Admissibility of the MLE in the case d = 2 can also be proved using
this approach via the Bayes risk. The analysis is more involved however, since using

conjugate Gaussian priors as in the case d = 1 does not work. See Problem 4.5 on p.
398 of Lehmann and Casella (1998).

Ezercise 2.13 (Negative moments of the multivariate Gaussian). Let X ~ N4(0, 7).
Show that E(1/|X|?) < oo if and only if d > p.

Exercise 2.14 (Proof of the James-Stein lemma). Prove Lemma 2.41.

Ezercise 2.15 (Shrinking towards another point). Let X ~ Ny(6,1) and v € R%. Define

the estimator

- d—2
QJS:U“F (1_||X—U||2> (X—U).

Prove that for d > 3, this estimator also satisfies Ey|0y5 — 0] < Ep|fywe — 0] for all
0 e R%.

Ezercise 2.16 (Oracle version of James-Stein). Use the expression for the risk of the

James-Stein estimator to prove that if X ~ N(,0%I), then for every § € R? and d > 3,
Ey|fys — 0] < 40% + inf ByllcX —6]°.
ce

This is a so-called oracle inequality that asserts that up to a constant, the risk of the
James-Stein estimator is as good as the risk that could be achieved by an oracle that

may use its knowledge of the true parameter 6 to choose the degree of shrinking.

Ezercise 2.17 (Estimating the distribution is hard). Let P be the set of all probability
measures on (R, B(R)) with variance bounded by o, This exercise shows that estimating
the distribution P itself in total variation distance is impossible with uniform control

over P.
Let Py = N(0,1). For M > 1, define the mixture distribution

Py = (1 - Alf) N(0,1) + Al/[N(MQ, 1).

(a) Verify that Py, Py € P for all M > 1.

(b) Show that dTv(Po, PM) —1as M — oo.

Hint: Consider the event Ay = {x : ©* > M?/2} and compute Py(Ay) and
Pr(App).
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(c) Let P®" denote the n-fold product measure corresponding to n i.i.d. draws from
P. Show that for any fixed n,

dry (P, PY") — 0 as M — oo.

Hint: Let N be the number of samples from the N(M? 1) component. Show that
P (N =0) — 1 as M — o, and that conditionally on N = 0, the two product

measures coincide.

(d) Conclude that for any estimator P, : R” — P and any sample size n,

sup Ep[dTV(ﬁn, P)] =
PeP

DO | —

Hint: Use Le Cam’s method: for any estimator and any pair of distributions

PJ Q?

Epldrv(P,, P)] + Egldry(Pn, Q)] = dpy (P, Q) (1 — dpy (P2, Q%)).

Exercise 2.18. Let Py = N(0,0?%) and Py = N(¢',0%) be two univariate normal distri-

butions with the same variance. Show that
drv(Py, Py) < ——|0— 0]
TV L0140 )= 2% .

Hint: Use Pinsker’s inequality, which relates total variation distance to Kullback-Leibler
divergence: dry (P, Q) < 4/3Dk1(P|Q).

FEzercise 2.19 (#). This exercise completes the proof of the Hunt-Stein theorem. Let
G be a locally compact abelian group with Fglner sequence {G,}, and let 6, be the
partial group averages defined in the proof of Theorem 2.47.

(a) Show that 4, is asymptotically equivariant: for all h e G,
Eg[ 6, (hX) — hén(X)|I> - 0 asn — 0.

Hint: Express the difference as integrals over G, AhG,, and use the Fglner prop-
erty.

(b) Let 7* be the constant risk of the UMREE. Show that lim inf,, R(6,4,) = r*.

Hint: If R(6, 5,%) < r* — e along a subsequence, use a compactness argument to

extract a limit that is equivariant with risk strictly below r*, contradicting the
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definition of the UMREE.

FExercise 2.20 (Kernel density estimation bounds). Consider the kernel density estimator
Fulzo) = LS K (%520 for a density f € Fg(L) at a point . Assume the kernel
K satisfies { K(u)du = 1, {|ul?|K(u)|du < o0, and {w/ K (u)du = 0 for all integers
1<7<pB.

(a) Show that the bias is bounded by

B¢ [ fu(wo)] — flzo)| < C1A7,

where (' depends on L and K.

(b) Show that the variance is bounded by

R C,

Var(fn(20)) < o

where Cy depends on | K|, (or |K|3) and f(xq) (or ||f]ew)-

Ezercise 2.21 (Bhattacharyya affinity under perturbation). Let Pj, be the uniform
distribution on [0, 1] (density fo = 1) and let Py, have density fi(z) = 1 + ey (),
where 1y, (z) = ¥((x — 0)/h) for a function ) supported on [—1/2,1/2] with {¢ =0
and bounded magnitude. Assume |y, (x)| < 1/2 so that f; is a valid density.

Show that the Bhattacharyya affinity between the product measures satisfies

p(PE", PP") = 1 — cné’h

for some constant ¢ > 0 depending on .

Ezercise 2.22 (Non-existence of unbiased density estimators). Let F be the class of
Lipschitz densities on [0, 1]. We wish to show that for any fixed zy € (0,1) and any
sample size n > 1, there is no unbiased estimator of f(zy).

Proceed by contradiction: Suppose 6(Xj,...,X,) is an unbiased estimator, i.e.,
Ef[6] = f(xo) for all fe F.

(a) Fix fo € F. Consider perturbations f. = fo + €g where g is Lipschitz, supported
on an interval [a,b] < [0,1] not containing z,, and satisfies { g = 0. Show that

the unbiasedness condition implies

[ gt dt = 0,

0
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where fg, (t) = §j o1 0t 22, -, 20) [ 172, folz) dz;.

(b) Use the result from (a) to show that hg, () must be constant for almost every

t € [0, 1]\{zo}-.
(c) Show that this constant must be fo(x).

(d) Deduce that for any fixed t # ¢, the function &;(za, ..., x,) = 0(t,x9,...,2,) is
an unbiased estimator of f(z() based on n — 1 observations. Explain why this

leads to a contradiction.
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A Metric Spaces

A.1 Metrics

Definition A.1 (Metric). Let X be a set. A metric on X is a functiond : X x X - R
such that for all x,y, z € X:

(i) d(x,y) = 0 (non-negativity);
(if) d(z,y)
(iii) d(z,y)
) d(z, 2)

d(z,y) = 0 if and only if z = y (identity of indiscernibles);
= d(y, z) (symmetry);
< d(z,y) +d(y, z) (triangle inequality).

(iv) d(z, 2

Definition A.2 (Metric Space). A metric space is a pair (X,d), where X is a set and

d is a metric on X.

Example A.3 (Euclidean Space). Let X = R". The Euclidean metric is defined by

d(z,y) = o —ylo = 4 | D (@i —v:)*
i=1

Then (R",d) is a metric space. O

Example A.4 (Function Space). Let X = C[0, 1], the set of continuous real-valued

functions on the interval [0, 1]. The supremum metric (or uniform metric) is defined by

d(f,g) = sup |f(t) —g(1)].

te[0,1]

Then (C[0,1],d) is a metric space. O

A.2 Topology

Definition A.5 (Open Ball). Let (X, d) be a metric space. The open ball of radius

r > (0 centered at x € X is the set
B.(x) ={ye X : d(x,y) <r}.

Definition A.6 (Open Set in Metric Spaces). A subset U < X is called open if for
every x € U, there exists an € > 0 such that B.(z) < U.
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Definition A.7 (Closed Set). A subset F' € X is closed if its complement X\F' is

open.

Definition A.8 (Closure). The closure of a subset A € X, denoted A, is the intersection

of all closed sets containing A. It is the smallest closed set containing A.

Definition A.9 (Neighborhood). A subset N € X is called a neighborhood of a point
xr € X if there exists an open set U such that x € U < N. Equivalently, N is a
neighborhood of z if there exists an € > 0 such that B.(z) < N.

Proposition A.10. Let (X,d) be a metric space. The collection T of open sets in X
(as defined in Definition A.6) satisfies the following properties:

(i) eT and X € T;
(ii) The union of any collection of open sets is open;,

(7ii) The intersection of any finite collection of open sets is open.

Definition A.11 (Continuous Function). Let (X, dx) and (Y, dy) be metric spaces. A
function f : X — Y is continuous at a point x € X if for every € > 0, there exists a
d > 0 such that dx(x,y) < ¢ implies dy (f(z), f(y)) < e. The function f is continuous

if it is continuous at every point in X.

Proposition A.12. Let (X,dx) and (Y,dy) be metric spaces. A function f: X —Y
is continuous if and only if for every open set V =Y, the preimage f~Y(V) is open in
X.

Proposition A.12 reveals that continuity can be characterized entirely in terms of

open sets, without explicit reference to the underlying metric.

Definition A.13 (Topology Generated by a Metric). The collection of all open sets in
a metric space (X, d) forms a topology on X, called the topology induced by the metric
d.

This motivates the generalization of continuity in metric spaces to spaces where
only the notion of “openness” is defined, which leads to the definition of a topological
space. It turns out that the properties of Proposition A.10 are precisely the properties

needed to have things function the way they do for metrics.

Definition A.14 (Topology). A topology on a set X is a collection T of subsets of X
satisfying:
(i) geT and X € T;

(ii) The union of any collection of sets in 7 is in T;
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(iii) The intersection of any finite collection of sets in 7 is in 7.

The pair (X, T) is called a topological space. The elements of T are called open sets.

Remark A.15. Every metric induces a topology, but not every topology arises from a

metric. A topological space whose topology is induced by a metric is called metrizable.

Definition A.16 (Separable Space). A topological space X is called separable if it
contains a countable dense subset. That is, there exists a countable set D < X such

that D = X.

Definition A.17 (Polish Space). A topological space X is called a Polish space if it
is separable and completely metrizable. That is, there exists a metric d on X which

induces the topology of X such that (X,d) is a complete metric space.

A.3 Compactness

Definition A.18 (Bounded Set). A subset A of a metric space (X,d) is bounded if
there exists © € X and R > 0 such that A < Bgr(z).

Definition A.19 (Compactness). A subset K of a topological space X is compact if
every open cover of K has a finite subcover. That is, if K <  J,.; U; where each U; is
open, then there exists a finite subset J < I such that K < UjeJ U;.

Definition A.20 (Sequential Compactness). A subset K of a metric space is sequen-
tially compact if every sequence in K has a convergent subsequence whose limit belongs
to K.

In metric spaces, compactness and sequential compactness are equivalent.

Definition A.21 (Locally Compact Space). A topological space X is locally compact
if every point z € X has a compact neighborhood. That is, for every x € X, there

exists an open set U containing x such that U is compact.

Example A.22 (Euclidean space is locally compact). The space R? with the Euclidean
topology is locally compact. For any x € R%, the open ball B;(x) has closure B;(z)
equal to the closed ball {y : ||y —z|| < 1}, which is compact by the Heine-Borel theorem.

More generally, any open or closed subset of R? is locally compact. Compact spaces

are trivially locally compact. O

Definition A.23 (Limit Point). A point x € X is a limit point (or accumulation point)

of a set A if every open neighborhood of z contains a point of A distinct from =x.
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Definition A.24 (Generated Topology). Let X be a set and S be a collection of
subsets of X. The topology generated by S is the smallest topology on X containing S.
It consists of all arbitrary unions of finite intersections of elements of S. The elements

of § are called a subbasis for the topology.

Example A.25 (Standard Topology on R). Let X = R. The standard topology on R
is the topology generated by the collection of all open intervals (a,b). In fact, this is
the same as the topology induced by the Euclidean metric d(x,y) = |z — y. O

Example A.26 (Topology of Pointwise Convergence). Let X be the set of all functions
f:[0,1] - R. The topology of pointwise convergence is the topology generated by
sets of the form

Stap ={feX ra< f(t) <b}

where t € [0, 1] and a < b are real numbers. Convergence in this topology corresponds
exactly to pointwise convergence: a sequence f,, — f if and only if f,(t) — f(t) for all
te[0,1]. O
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B Measure Theory

B.1 Measure and Probability

The foundational concept in measure theory is the sigma-algebra, which defines the

collection of subsets to which we can assign a measure.

Definition B.1. A c-algebra F on a set 2 is a collection of subsets of €2 that satisfies

the following properties:
(i) geF
(ii) If Ae F, then A°e F
(111) If Al, AQ, ... € F, then U:C=1 Az e F

Once we have a g-algebra, we can define a measure, which generalizes the concepts

of length, area, and probability.

Definition B.2. Consider a measurable space (£, F). A measure pu on a o-algebra F
is a function that assigns a non-negative real number to each set in F and satisfies the

following properties:
L () =0
2. If Ay, Ay, ... € F are disjoint, then pu(|J;2, Ai) = Doy p(4)
If u(2) < oo, then p is called a finite measure. If in addition u(Q2) = 1, then p is a

probability measure.

These components form the standard objects of study in measure theory.

Definition B.3. A pair (€2, F) consisting of a set 2 and a o-algebra F is called a
measurable space. A triple (Q, F, u) consisting of a measurable space and a measure u
is called a measure space. If p is a probability measure, the triple is called a probability

space.

Many important measures are not finite, but satisfy a weaker condition called

o-finiteness.

Definition B.4. A measure p on (2, F) is called o-finite if there exists a sequence of
sets Ay, Ag, ... € F such that [ JiZ, A; = Q and u(4;) < oo for all i.

A simple example of a measure that can be finite or o-finite is the counting measure.
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Example B.5 (Counting Measure). Let { be a countable set and F = 2. The
counting measure p is defined by u(A) = |A| (the number of elements in A) for any

A < Q. This measure is o-finite since €2 is countable (take A; = {w;}). O

Measures are often defined on a smaller class of sets (like intervals in R) and then
extended to the full o-algebra. Carathéodory’s Extension Theorem guarantees that

this extension is unique for o-finite measures.

Theorem B.6 (Uniqueness of Measure Extension). Let A be a collection of subsets

of Q that is closed under finite intersections (a m-system) and generates the o-algebra
F =0o(A). If two measures n and v on (2, F) agree on A (i.e., u(A) = v(A) for all
Ae A), and they are o-finite on A, then = v on F.

Measures also behave continuously with respect to increasing or decreasing sequences

of sets.

Proposition B.7. Let u be a measure on (2, F).

1. (Continuity from below) If Ay € Ay € --- is an increasing sequence of sets
in F and A =\J_, A,, then

p(A) = lim p(Ay).

n—aoo0

2. (Continuity from above) If Ay 2 Ay 2 -+ is a decreasing sequence of sets in
F with p(Ay) < o0 and A = (), An, then

p(A) = lim p(Ay).

n—0o0

We now turn to the functions between measurable spaces, which must preserve the

measurable structure.

Definition B.8. Let (€2, F) and (5, G) be measurable spaces. A function f:Q — S is
measurable (or F/G-measurable) if for every B € G, the preimage f~!(B) € F.

That is, f is measurable if
f'B)={weQ: f(weBleF foral Beg.

Conversely, any function induces a g-algebra on its domain.

Definition B.9. Let (Q, F) and (S, G) be measurable spaces, and let f : Q@ — S be a
measurable function. The o-algebra generated by f, denoted by o(f), is the collection

of all preimages of sets in G:

o(f)={f"'(B): Beg}.
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This is the smallest o-algebra on 2 with respect to which f is measurable. Note that

o(f) € F since f is measurable.

Definition B.10. The Borel o-algebra on a topological space (X, T), denoted by
B(X), is the o-algebra generated by the open sets 7. In particular, if (X, d) is a metric
space, B(X) is generated by the open balls.

If (X,B(X)) and (Y,B(Y)) are two measurable spaces equipped with their Borel
o-algebras, then any continuous function f : X — Y is measurable.

For X =R, B(R) is the o-algebra generated by the collection of all open intervals
in R. Sets in B(R) are called Borel sets. This is the standard o-algebra used when the
sample space is R (or RY).

On the real line, the most important measure is the one that assigns lengths to

intervals.

Definition B.11 (Lebesgue Measure). The Lebesgue measure A on (R, B(R)) is the

unique measure satisfying A((a,b]) = b — a for all intervals (a, b].

The Lebesgue measure is o-finite since R = | J"_, (—n, n].

Measurable functions are closed under various operations.

Proposition B.12. Let (2, F), (5,G), and (T, H) be measurable spaces.
1. (Composition) If f : Q — S is F/G-measurable and g : S — T is G/H-

measurable, then the composition go f: Q — T is F/H-measurable.

A measurable function can be used to transport a measure from its domain to its

codomain.

Definition B.13 (Push-forward Measure). Let (€2, F, 1) be a measure space, (S,G) a
measurable space, and T": () — S a measurable function. The push-forward measure of

p by T, denoted u” (or sometimes Ty or proT~1), is the measure on (S, G) defined by
pt(B) = u(T~*(B)) forall Beg.

Intuitively, u” describes the distribution of the random element T'(w) when w is

distributed according to .

The relationship between integrals under the original and push-forward measures is

given by the change of variables formula.

Theorem B.14 (Change of Variables Formula). Let T : (Q, F, u) — (S,G) be measur-
able. For any measurable function g : S — R, g is integrable with respect to u’ if and

only if g o T is integrable with respect to u, and

f o(y) du" () = f 9(T(w)) du(w).
S Q
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Definition B.15 (Equivalence Relation). An equivalence relation ~ on a set X is a

binary relation that satisfies three properties for all a,b,c e X:
1. Reflexivity: a ~ a.
2. Symmetry: If a ~ b, then b ~ a.

3. Transitivity: If a ~ b and b ~ ¢, then a ~ c.

Given an equivalence relation ~ on a set X, the equivalence class of an element x € X,

denoted [z], is the set of all elements in X equivalent to x:

o] = {ye X 1y~

The set of all equivalence classes is called the quotient set and denoted by X/ ~.
Equivalence relations allow us to define measurable structures on quotient spaces.

Definition B.16 (Quotient o-algebra). Let (X, ) be a measurable space and ~ an
equivalence relation on X. The quotient o-algebra on the quotient space X/ ~, denoted
by ¥/ ~, is defined as

S/~={Bc X/~ |7'(B)ex},

where 7 : X — X/ ~ is the canonical projection map m(x) = [z].

This is the largest o-algebra on X/ ~ making the projection m measurable.

B.2 Integration

B.2.1 The Standard Machinery

A common strategy in measure theory to prove a property p for all measurable functions
is the so-called “standard machine” or “approximation by simple functions”. The steps
are typically:

1. Indicator Functions: Prove that p holds for indicator functions 14 for all

measurable sets A.
2. Simple Functions: Extend the result to non-negative simple functions s =
Do, ¢ila, by linearity.

3. Non-negative Measurable Functions: Use the fact that any non-negative
measurable function f is the limit of an increasing sequence of non-negative
simple functions s, 1 f. Prove that p is preserved under this limit (often using

the Monotone Convergence Theorem).

v2025.0.3 — This is a draft — use at your own risk



B.2. Integration 132

4. General Measurable Functions: For a general measurable function f, write
f=f"—f" where ff = max(f,0) and f~ = max(—f,0). Extend the result by

linearity, provided integrability conditions are met.

Key theorems supporting this machinery include:

Theorem B.17 (Monotone Class Theorem). Let A be an algebra of sets generating
a o-algebra F. Let M be a collection of subsets of Q0 that is a monotone class (i.e.,

closed under countable increasing unions and countable decreasing intersections). If

A M, then F € M.

Theorem B.18 (Monotone Convergence Theorem). If {f,} is a sequence of non-

negative measurable functions such that f, 1 f pointwise, then

timy | fud = | 7

Lemma B.19 (Fatou’s Lemma). If {f.} is a sequence of non-negative measurable

functions, then
Jliﬁiﬁgf frndp < lir{giogfffn dpu.

Theorem B.20 (Dominated Convergence Theorem). Let {f,} be a sequence of mea-
surable functions converging pointwise to f. If there exists an integrable function g

such that |f,| < g for all n, then f is integrable and

timy | fud = | 7

The condition of a single dominating function in the DCT can be relaxed to uniform
integrability, which controls the integrals of the sequence uniformly over sets of small

measure.

Definition B.21 (Uniform Integrability). Let (2, F, 1) be a measure space. A collec-

tion of measurable functions {f;}.; is called uniformly integrable if

lim supj | fil du = 0.
{Ifal>M?}

M- er

Equivalently, for every ¢ > 0, there exists M > 0 such that

wl i<
€l J{|fil>M}

When g is a finite measure, uniform integrability admits an equivalent characteriza-

tion in terms of sets of small measure.
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Proposition B.22. Let (2, F, ) be a finite measure space. A collection { f;}icr of

integrable functions is uniformly integrable if and only if:

1. supye; § | fil du < o, and

2. for every e > 0, there exists 6 > 0 such that for all A € F with u(A) < 4,

sup [ [fild <.
A

iel

Uniform integrability provides a necessary and sufficient condition for L' conver-

gence.

Theorem B.23 (Vitali Convergence Theorem). Let (2, F, i) be a finite measure space
and let {f,} be a sequence of integrable functions converging in measure to f. Then

fn — fin LY(u) if and only if {f.} is uniformly integrable.

B.2.2 Function spaces

Definition B.24 (L? spaces). Let (€2, F, 1) be a measure space. For 1 < p < o, let
LP(Q, F, p) denote the set of all measurable functions f : Q@ — R such that

1/p
£l = ( Llfl”du> <.

Similarly, £7(£2, F, u) consists of all essentially bounded measurable functions, i.e.,
those for which there exists a constant C' such that |f(w)| < C for almost all w. The

essential supremum is defined as:
[flloo :=inf{C = 0:|f(w)| < C for p-almost all w}.

The quantity | - |, satisfies most properties of a norm (non-negativity, homogeneity,
triangle inequality), but it is only a semi-norm on LP, because | f|, = 0 implies f =0
only almost everywhere (not everywhere). To obtain a Banach space, we must identify

functions that are equal almost everywhere.

Definition B.25 (L? spaces). We define an equivalence relation ~ on £ by f ~ g
if and only if f = ¢ p-almost everywhere. The LP space is the quotient space of

equivalence classes:
L2(Q, Fyp) i= £, Fopi)/ ~ .

Elements of L? are equivalence classes [ f], but it is standard practice to abuse notation

and refer to them as functions f.
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Equipped with the norm |[f]|, := | f|,, the space L becomes a Banach space (a

complete normed vector space).

Important special cases include:

o LP(R?): When Q = R? equipped with the Lebesgue measure.

o LP([0,1]): The space of functions on the unit interval square-integrable with

respect to Lebesgue measure. This is a standard setting for functional analysis.

o (P: When p is the counting measure on N, the space is the set of sequences (z,)
with Y |z, [P < oo.

e L*(u): For p = 2, the space is a Hilbert space with inner product (f, g) = { fg dp.

B.2.3 Change of measure

Let 1 be a measure on (2, F) and let f : Q — [0, 0] be a non-negative measurable

function. We can define a new measure v on (2, F) by setting
v(A) = J fdu forall Ae F.
A

It is a standard exercise in measure theory to verify that v indeed satisfies the properties

of a measure.

Definition B.26 (Probability Density). If the function f is non-negative and the
induced measure v satisfies v(2) = 1 (i.e., v is a probability measure), then f is called

a probability density of v with respect to the reference measure p.

The relationship between v and p constructed above implies a specific property

called absolute continuity.

Definition B.27 (Absolute Continuity). Let v and p be two measures on a measurable
space (2, F). We say v is absolutely continuous with respect to p (denoted v « p) if
for all Ae F,

wA) =0 = rv(A) =0.

The fundamental result connecting these concepts is the Radon-Nikodym theorem,
which states that under mild conditions, absolute continuity is sufficient to guarantee

the existence of a density.

Theorem B.28 (Radon-Nikodym Theorem). Let v and p be two measures on a

measurable space (0, F), and assume that p is o-finite. If v < u, then there exists a
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non-negative measurable function f: Q — [0,00) such that for all A€ F,

v(A) = j fdu.
A
The function f is unique up to a set of p-measure zero. We call f the Radon-Nikodym
derivative or density of v with respect to u, and denote it by f = g—;.

The next theorem provides a characterization of sufficient statistics (Definition 1.9).
The theorem provides the measure-theoretic foundation for the Factorization Theorem
(Theorem 1.12) encountered in the main text. Its proof is quite involved and is omitted

here, but one can find it in Halmos and Savage 1949.

Theorem B.29 (Halmos—Savage). Let P be a family of probability measures dominated
by a o-finite measure. A statistic T is sufficient for P if and only if for all P,Q € P,
the likelihood ratio dP/d(Q) admits a o(T)-measurable version.

B.3 Joint distributions

B.3.1 Product measures and independence

Given two measurable spaces (€21, F1) and (2, F2), the product o-algebra, denoted
F1®F>, is the o-algebra on {2, x €25 generated by the collection of measurable rectangles
{Ax B:Ae Fi,Be F}.

If 17 and po are o-finite measures on (€, F;) and (€y, F5) respectively, there exists

a unique measure p = 1 ® 2 on the product space such that
(A x B) = pu1(A)ua(B) for all Ae Fi, B e F.

Definition B.30 (Independence). Let (€2, F, P) be a probability space. Two events
A, B € F are independent if P(An B) = P(A)P(B). Two random variables X : Q@ — X
and Y : Q — Y are independent if for all Ae 2" and B € %, the events {X € A} and
{Y € B} are independent.

In terms of joint distributions, independence means the joint distribution is the

product measure of the marginals. That is, the joint law of (X,Y’) is P xy) = Px ® Py.

Definition B.31 (i.i.d.). A sequence of random variables X, Xs, ..., X,, is independent
and identically distributed (i.i.d.) if they are mutually independent and all have the

same marginal distribution.

If X1,..., X, ¢ P, their joint distribution on the product space (X", 2°®") is the
product measure P®", defined inductively by P®' = P and P®"+D — p®r g p.
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B.3.2 Conditional probability and expectation

The definition of conditional probability is based on the concept of conditional expec-

tation.

Definition B.32 (Conditional Expectation). Let (€2, F, P) be a probability space,
G € F a sub-c-algebra, and X an integrable random variable (i.e., E|X| < o). The
conditional expectation of X given G, denoted E[X | G], is the equivalence class of

G-measurable random variables Z such that

JZdP:JXdP for all G € G.
G G

The existence and uniqueness (up to almost sure equivalence) of Z are guaranteed
by the Radon-Nikodym theorem.

Theorem B.33 (Existence and Uniqueness of Conditional Expectation). Let (€2, F, P)
be a probability space, G = F a sub-o-algebra, and X an integrable random variable.

Then there exists a unique (up to almost sure equivalence) G-measurable random variable
Z such that

JZszfXdP forallGeg.
G G

With this tool, we can rigorously define the probability of an event given partial

information.

Definition B.34 (Conditional Probability). The conditional probability of an event
A € F given a sub-c-algebra G, denoted P(A | G), is defined as the conditional

expectation of the indicator function of A:
P(A|G):=E[l4] 3]

When conditioning on a random variable Y, we mean conditioning on the o-algebra
generated by Y, i.e., E[X | Y] := E[X | o(Y)].

Conditional expectations satisfy a generalized version of Bayes’ theorem.

Theorem B.35 (Abstract Bayes Formula). Let P and Q) be probability measures on
(Q, F) such that P « Q, and let L = dP/dQ) be the Radon-Nikodym derivative. For

any sub-o-algebra G < F and any P-integrable random variable f,

EolfL |9l

P-a.s.
EolL]1g] = *°

Eplf|G] =

Often, we want to view the conditional probability P(- | G)(w) as a probability
measure on (£, F) for each fixed w. This is not guaranteed by the general definition

(due to null sets for each A). However, it is possible in sufficiently “nice” spaces.
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A crucial property relating measurability with respect to a random variable and

functions of that random variable is given by the Doob-Dynkin Lemma.

Lemma B.36 (Doob—Dynkin Lemma). Let (S,S) be a standard Borel space and let
X (QF) — (S,8) be measurable. Then a random variable Y : (Q, F) — (R, B(R))

is o(X)-measurable if and only if there exists a measurable function g : S — R such
that Y = g(X).

This lemma implies that E[Z | X] = ¢g(X) for some measurable function g. Specifi-
cally, if Y is o(X)-measurable, it is a function of X.
Under certain conditions, conditional probabilities can be realized as a kernel that

is a measure for each fixed w.

Definition B.37 (Regular Conditional Probability). Let (2, F, P) be a probability
space and G < F a sub-g-algebra. A regular conditional probability is a function
k:Qx F —[0,1] such that:

1. For each w € 2, k(w,-) is a probability measure on (2, F).

2. For each Ae F, w+— k(w, A) is a version of P(A | G).

Regular conditional probabilities are guaranteed to exist when (2 is a standard Borel
space (e.g. a Polish space (see Definition A.17 in Appendix A) equipped with its Borel
o-algebra).

Theorem B.38 (Existence of Regular Conditional Probabilities). Let (2, F, P) be a
probability space where S is a Polish space and F = B(SY) is its Borel o-algebra. For

any sub-o-algebra G = F, there exists a reqular conditional probability given G.

A related concept is the Markov kernel, which generalizes the idea of a transition

matrix.

Definition B.39 (Markov Kernel). Let (X, .2") and (Y, %) be measurable spaces.
A Markov kernel (or probability kernel) from (X, 2") to (Y,%) is a function K :
X x % — [0, 1] such that:

1. For each x € X, the map B — K (x, B) is a probability measure on (Y, %).

2. For each B € % | the map = — K(z, B) is Z -measurable.

Markov kernels are used to model random mappings where the output distribution
depends on the input, such as in conditional distributions P(Y € B | X = x).
Finally, we state the version of Bayes’ rule for densities, which is the most common

form used in statistical inference.
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Theorem B.40 (Bayes’ Rule for Densities). Let © and X' be random variables taking
values in measurable spaces (Qg, Fo) and (Qx, Fx), respectively. Suppose the joint
distribution of (©,X) is dominated by a product measure v @ u, with joint density
p(0,x). Then the conditional distribution of © given X = x has density (with respect

tov):
p(6 ) = Sau P igex@du (9)’

provided the denominator is positive and finite. In the common case where p(0,z) =

p(x | 0)m(0) (likelihood x prior), this becomes the familiar form:

p(x | O)m(0)
POTD) = T o)m(0) do(o)

B.4 Concentration of measure

Lemma B.41 (Jensen’s Inequality). Let (2, F, P) be a probability space, let X € L*(P)
be real-valued, and let p : R — R be convex such that E|@(X)| < . Then

P(E[X]) < E[p(X)]

If v is strictly convex, then equality holds if and only if X is constant P-a.s. Moreover,
for any sub-o-algebra G < F,

e(E[X | G]) < E[p(X) | g] P-a.s.

Lemma B.42 (Markov’s inequality). If X > 0, then for any a > 0,

Proof. Note that a-1X > a < X. Taking expectations gives a-P(X > a) < E[X]. O
The following concentration inequalities are immediate consequences.

Lemma B.43 (Chebyshev’s inequality). If Var(X) < oo, then for any k > 0,

Var(X)
P(|X —E[X]| = k) < T
Proof. Apply Markov’s inequality to (X — E[X])? with threshold A2 O

Lemma B.44 (Chernoft’s bound). For any random variable X and any a € R,

P(X > a) < infe "“E[e""].

t>0
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Proof. For any t > 0, the event {X > a} implies {e!X > e!*}. Apply Markov’s inequality

to X and take the infimum over t > 0. m

B.5 Transforms

Definition B.45 (Laplace Transform). Let u be a finite measure on (R*, B(R¥)). The
Laplace transform of p is the function ¢ : R¥ — R defined by

() = f e (),

provided the integral exists.

The Laplace transform is a powerful tool for characterizing measures. A key property

is its uniqueness:

Theorem B.46 (Uniqueness of Laplace Transform). Let p and v be two finite measures

on R*. If their Laplace transforms agree on an open set containing the origin, then
w=U.

Proof Sketch. We sketch the argument for £ = 1 and compact support. Suppose p and

v are supported on a compact interval [a, b]. The Laplace transform condition implies

[ et = [ eavta

a a

for all ¢ in a neighborhood of 0. By analyticity, this equality extends to all t € R. By
linearity,
b b
f P(e")du(z) = f P(e") dv(x)

for any polynomial P. The algebra of functions of the form x — P(e®) separates points
on [a,b] and vanishes at no point. By the Stone-Weierstrass theorem, such functions
are dense in the space of continuous functions C([a,b]) with respect to the uniform
norm.

Thus, for any continuous function f, {fdu = { fdv. Since measures on Borel
o-algebras are determined by their integrals against continuous functions (Riesz Rep-
resentation Theorem), we conclude p = v. The extension to non-compact support
requires more careful analysis involving truncation or compactification, but the core

idea remains the density of exponential families in function spaces. n

This uniqueness property extends to signed measures. If u is a signed measure with
Se<t’z> du(x) = 0 for all ¢ in an open set, then pu is the zero measure. This fact is crucial

for proving completeness of exponential families.
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Another important transform is the characteristic function, which similarly provides

a powerful tool for characterizing measures.
Definition B.47 (Characteristic Function). Let u be a finite measure on (R¥, B(R)).
The characteristic function of i is the function ¢ : R¥ — C defined by

o) = | e duta),

where 7 = v/—1.

Unlike the Laplace transform, the characteristic function is always defined for any

finite measure (since [e<%®| = 1 is bounded). It also uniquely determines the measure.

Theorem B.48 (Uniqueness of Characteristic Functions). Let u and v be two finite
measures on R¥. If their characteristic functions agree, i.e., ¢,(t) = ¢, (t) for allt € R¥,

then p = v.

This theorem is a direct consequence of the Fourier Inversion Theorem. Since the
characteristic function is essentially the Fourier transform of the measure, and the

Fourier transform is injective, the measure is uniquely determined.
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